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Hubbard used the Kubo-Greenwood formalism to derive ) e,
.. Laboratories
transport coefficients for dense matter
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Assuming OCP (One Component Plasma) structure factors,
degenerate non-interacting electrons and Born approximation
electron-ion scattering, the thermal conductivity is given by
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where the dimensionless Fermi wavenumber k. = (9%) =1.919 for hydrogen
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¢(K) : ion structure factor (OCP) I' : ion-ion coupling parameter




The CEA group demonstrated the viability of ab initio b
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thermal conductivity calculations for dense hydrogen
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There is a problem:
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Larger boxes (more atoms) are necessary to converge the () %,
. . Laboratories
degenerate limit
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First-principles calculations of transport quantities are carried b
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out in the Kubo — Greenwood / Chester — Thellung formalism
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=  For these dense conditions we abandon the pseudopotential
approach and use a bare proton (this forces high plane wave cutoff

energies)

= We calculate the full set of Onsager transport coefficients and
calculate the thermal conductivity directly (no Wiedemann-Franz law

assumptions)
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The electronic density of states with the bare potential i) i,
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is well behaved
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For sufficiently large systems, calculations in the degenerate

limit are well behaved
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(around 4 times the conductivity

of solid aluminum)

The optical conductivity
is well fit by a Drude

profile and gives a good
sum rule.




The thermal conductivity is equally well behaved in this limit

(H <T>=10eV, p=80.¢g/m’

K=4.4610° W/K/m

*The Lorenz number K/oT =2.41 108
compares well with 2.44 108,
the Wiedemann-Franz value for a
degenerate free electron metal
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Careful attention to convergence in the low T limit brought
agreement with Hubbard, and Ichimaru & Kitamura
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CEA/Sandia paper:

Phys. Plasmas 18, 056306 (2011)
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The high temperature CEA-Sandia results suggested a quick (g ps'agdl
approach to the classical limit (for 6 < 2)
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Several issues were tackled in order to revisit
the calculations in the high T limit

= Very poor convergence for charge update algorithm in MD step.
Explored various charge update algorithms for the MD portion; found

one that was stable and fast.

= Frequent crashes due to running off the exchange-correlation table.
Expanded the exchange-correlation tables to handle much smaller r,

values than typical condensed matter conditions.

= One-shot electronic minimization for very large band numbers proved
unstable. Implemented block increases in band numbers, using prior

converged wavefunctions for initialization.
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Several issues remain e

= Scaling is very bad for dense conditions (high Fermi energy) — must have
at least one plane wave that can represent the highest electronic
energy. So as the band number goes up, so must the highest plane wave
energy, to a much higher level than needed for simply resolving a 1s
electron around the bare proton.

= This issue forces fewer atoms in the high T limit.

= At the temperatures explored here, complete convergence on K was not

feasible. We develop a scheme to extrapolate to an infinite number of
bands.
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A power law ansatz for the dipole matrix elements ) e,
in the high energy tail is used to extrapolate to infinity
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To extrapolate to the limit of infinite bands, we write the thermal
conductivity for a given maximum Kohn-Sham eigenvalue in the DFT as an
integral over the derivative of the Fermi function dF/dE, times E? (the
leading Onsager term for thermal) and a power law model for the dipole
matrix elements as a function of energy g(E) ~ EV. This fits all the
simulations quite well, with only very small (2 to 3%) changes in the
power law exponent that gives the best fit.

gmax
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The power law model for the high energy dipole matrix b
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elements fits the calculations very well
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The power law model for the high energy dipole matrix b
. . Laboratories
elements fits the calculations very well
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The power law model for the high energy dipole matrix b
elements fits the calculations very well
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The electrical conductivity from the Kubo-Greenwood Ah o
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calculations agrees well with our quantum Lenard-Balescu results

3e+08 I T T T

— LB
25¢+08 1 m Kohn-Sham DFT 7

2e+08

1.5e+08

le+08

electrical conductivity (1/Ohm m)

Se+07 — —

1

| |
600 800 1000
k T (eV)

|
400

Residual differences are due to small degeneracy effects included in the DFT
The sum rule on o(w) is well satisfied
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The thermal conductivities from the Kubo-Greenwood calculations (=) A ,l?.gg'}ﬂi?a.
aboratories
do not agree with our quantum Lenard-Balescu results
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We explore the addition of an explicit e-e scattering term b
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to the thermal conductivity only

The total thermal conductivity with an e-e collision correction
is obtained in the usual inverse addition

ee

K., is calculated within the Zubarev formalism with T-matrix
cross sections and a Debye screened Coulomb potential

In the following we justify this decomposition and reconstruction
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We write the total scattering as the usual inverse sum ) e,
for two distinct scattering processes
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The subscripts el, ee refer to quantities calculated in the limit
that the other scattering (ee, ei, respectively) is excluded.

The pre-factors S_and S, take into account the reshaping of the
electron distribution function resulting from e-e scattering.

For example, S_ is analogous to the usual Spitzer factor y = 0.5816
in the weakly coupled, non-degenerate limit.
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We test the decomposition with the Zubarev framework L fr

For the 3 cases considered with DFT, the latter equation is satisfied
at the 99% level within the Zubarev/T-matrix framework

We argue that S_ K, = Kprr
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The thermal conductivities from the Kubo-Greenwood calculations fh sandia
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with an e-e correction (®) agree with our quantum Lenard-Balescu results
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The red points show the agreement when an explicit e-e scattering correction, calculated
in the Zubarev formalism (T-matrix, Boltzmann collision operator) is added to the thermal.

Small differences due to the treatment of degeneracy remain 22
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Thermal and electrical conductivity calculations have been performed
for 40 g/cc hydrogen from 1 eV to 900 eV (> 10 million Kelvin).

Convergence of the thermal conductivity is very slow. Earlier published
results (my work, and others) are under-converged in the high T limit.

An approach for extrapolation to infinite bands is proposed.

The conclusion is that the distribution reshaping aspect of e-e collisions is
included within DFT, for both the electrical and thermal conductivities.

The electrical conductivities within DFT require no e-e correction (for
plasmas).

An explicit e-e scattering contribution K., should be added to the thermal.
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