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Hubbard	
  used	
  the	
  Kubo-­‐Greenwood	
  formalism	
  to	
  derive	
  
transport	
  coefficients	
  for	
  dense	
  ma>er	
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φ(k) : ion structure factor (OCP)        Γ : ion-ion coupling parameter 	



Assuming OCP (One Component Plasma) structure factors, 
degenerate non-interacting electrons and Born approximation 
electron-ion scattering, the thermal conductivity is given by 
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=1.919 for hydrogen where the dimensionless Fermi wavenumber 
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The	
  CEA	
  group	
  demonstrated	
  the	
  viability	
  of	
  ab	
  ini&o	
  	
  
thermal	
  conducFvity	
  calculaFons	
  for	
  dense	
  hydrogen	
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These earlier ab initio calculations 
gave thermal conductivities a 
factor of two below the Hubbard 
model in the degenerate limit, and 
a stronger scaling with T. 
 
     80 g/cc hydrogen 
     256 atoms    L=1.75 Å 
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= 49.28 eV!

There is a problem: 



Larger	
  boxes	
  (more	
  atoms)	
  are	
  necessary	
  to	
  converge	
  the	
  
degenerate	
  limit	
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2.7 Å 

1024 H atoms 
 
0.0208 Å3/atom 
 
0.14 aB

3 /atom 
 
   T = 10 eV 

   80 g/cc H 
 
        or  
 
  200 g/cc DT 

P = 13 Gbar 



First-­‐principles	
  calculaFons	
  of	
  transport	
  quanFFes	
  are	
  carried	
  
out	
  in	
  the	
  Kubo	
  –	
  Greenwood	
  /	
  Chester	
  –	
  Thellung	
  formalism	
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§  For	
  these	
  dense	
  condiFons	
  we	
  abandon	
  the	
  pseudopotenFal	
  
approach	
  and	
  use	
  a	
  bare	
  proton	
  (this	
  forces	
  high	
  plane	
  wave	
  cutoff	
  
energies)	
  

§  We	
  calculate	
  the	
  full	
  set	
  of	
  Onsager	
  transport	
  coefficients	
  and	
  
calculate	
  the	
  thermal	
  conducFvity	
  directly	
  (no	
  Wiedemann-­‐Franz	
  law	
  
assumpFons)	
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ω → 0

Fermi weights Dipole matrix elements 

Energy conservation Onsager weights 



The	
  electronic	
  density	
  of	
  states	
  with	
  the	
  bare	
  potenFal	
  
is	
  well	
  behaved	
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40 g/cc,   100 eV 

occupations x 100 

∼ ε1/2 



For	
  sufficiently	
  large	
  systems,	
  calculaFons	
  in	
  the	
  degenerate	
  
limit	
  are	
  well	
  behaved	
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σ = 159.3 106     (Ω m)-1 

The optical conductivity 
is well fit by a Drude 
profile and gives a good 
sum rule. 

(around 4 times the conductivity 
of solid aluminum) 



The	
  thermal	
  conducFvity	
  is	
  equally	
  well	
  behaved	
  in	
  this	
  limit	
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Κ = 4.46 105     W/K/m 

*The Lorenz number  Κ/σT = 2.41 10-8  
compares well with 2.44 10-8, 

 the Wiedemann-Franz value for a 
degenerate free electron metal     



Careful	
  a>enFon	
  to	
  convergence	
  in	
  the	
  low	
  T	
  limit	
  brought	
  
agreement	
  with	
  Hubbard,	
  and	
  Ichimaru	
  &	
  Kitamura	
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CEA/Sandia paper: 

Ichimaru-Kitamura 
is low by a factor of 
~1.6 in this limit 
(approximate e-e 
treatment) 



The	
  high	
  temperature	
  CEA-­‐Sandia	
  results	
  suggested	
  a	
  quick	
  
approach	
  to	
  the	
  classical	
  limit	
  (for	
  θ	
  <	
  2)	
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The classical limit for γ is 1.597 

€ 

γ ≡
e2

k 2
L



Several	
  issues	
  were	
  tackled	
  in	
  order	
  to	
  revisit	
  
the	
  calculaFons	
  in	
  the	
  high	
  T	
  limit	
  

§  Very	
  poor	
  convergence	
  for	
  charge	
  update	
  algorithm	
  in	
  MD	
  step.	
  
Explored	
  various	
  charge	
  update	
  algorithms	
  for	
  the	
  MD	
  porFon;	
  found	
  
one	
  that	
  was	
  stable	
  and	
  fast.	
  

§  Frequent	
  crashes	
  due	
  to	
  running	
  off	
  the	
  exchange-­‐correlaFon	
  table.	
  
Expanded	
  the	
  exchange-­‐correlaFon	
  tables	
  to	
  handle	
  much	
  smaller	
  rs	
  
values	
  than	
  typical	
  condensed	
  ma>er	
  condiFons.	
  

§  One-­‐shot	
  electronic	
  minimizaFon	
  for	
  very	
  large	
  band	
  numbers	
  proved	
  
unstable.	
  	
  Implemented	
  block	
  increases	
  in	
  band	
  numbers,	
  using	
  prior	
  
converged	
  wavefuncFons	
  for	
  iniFalizaFon.	
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Several	
  issues	
  remain	
  

§  Scaling	
  is	
  very	
  bad	
  for	
  dense	
  condiFons	
  (high	
  Fermi	
  energy)	
  –	
  must	
  have	
  
at	
  least	
  one	
  plane	
  wave	
  that	
  can	
  represent	
  the	
  highest	
  electronic	
  
energy.	
  So	
  as	
  the	
  band	
  number	
  goes	
  up,	
  so	
  must	
  the	
  highest	
  plane	
  wave	
  
energy,	
  to	
  a	
  much	
  higher	
  level	
  than	
  needed	
  for	
  simply	
  resolving	
  a	
  1s	
  
electron	
  around	
  the	
  bare	
  proton.	
  

§  This	
  issue	
  forces	
  fewer	
  atoms	
  in	
  the	
  high	
  T	
  limit.	
  	
  	
  

§  At	
  the	
  temperatures	
  explored	
  here,	
  complete	
  convergence	
  on	
  K	
  was	
  not	
  
feasible.	
  	
  	
  We	
  develop	
  a	
  scheme	
  to	
  extrapolate	
  to	
  an	
  infinite	
  number	
  of	
  
bands.	
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A	
  power	
  law	
  ansatz	
  for	
  the	
  dipole	
  matrix	
  elements	
  
in	
  the	
  high	
  energy	
  tail	
  is	
  used	
  to	
  extrapolate	
  to	
  infinity	
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K(εmax ) ~ L22 ~ E 2g(E) dF
dE

dE
ε=0

εmax

∫

To	
  extrapolate	
  to	
  the	
  limit	
  of	
  infinite	
  bands,	
  we	
  write	
  the	
  thermal	
  
conducFvity	
  for	
  a	
  given	
  maximum	
  Kohn-­‐Sham	
  eigenvalue	
  in	
  the	
  DFT	
  as	
  an	
  
integral	
  over	
  the	
  derivaFve	
  of	
  the	
  Fermi	
  funcFon	
  dF/dE,	
  Fmes	
  E2	
  (the	
  
leading	
  Onsager	
  term	
  for	
  thermal)	
  and	
  a	
  power	
  law	
  model	
  for	
  the	
  dipole	
  
matrix	
  elements	
  as	
  a	
  funcFon	
  of	
  energy	
  	
  g(E)	
  ~	
  Eν.	
  	
  This	
  fits	
  all	
  the	
  
simulaFons	
  quite	
  well,	
  with	
  only	
  very	
  small	
  (2	
  to	
  3%)	
  changes	
  in	
  the	
  
power	
  law	
  exponent	
  that	
  gives	
  the	
  best	
  fit.	
  



The	
  power	
  law	
  model	
  for	
  the	
  high	
  energy	
  dipole	
  matrix	
  
elements	
  fits	
  the	
  calculaFons	
  very	
  well	
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The	
  power	
  law	
  model	
  for	
  the	
  high	
  energy	
  dipole	
  matrix	
  
elements	
  fits	
  the	
  calculaFons	
  very	
  well	
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The	
  power	
  law	
  model	
  for	
  the	
  high	
  energy	
  dipole	
  matrix	
  
elements	
  fits	
  the	
  calculaFons	
  very	
  well	
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The	
  electrical	
  conducFvity	
  from	
  the	
  Kubo-­‐Greenwood	
  
calculaFons	
  agrees	
  well	
  with	
  our	
  quantum	
  Lenard-­‐Balescu	
  results	
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Residual differences are due to small degeneracy effects included in the DFT 
The sum rule on σ(ω) is well satisfied 



The	
  thermal	
  conducFviFes	
  from	
  the	
  Kubo-­‐Greenwood	
  calculaFons	
  (n)	
  	
  
do	
  not	
  agree	
  with	
  our	
  quantum	
  Lenard-­‐Balescu	
  results	
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We	
  explore	
  the	
  addiFon	
  of	
  an	
  explicit	
  e-­‐e	
  sca>ering	
  term	
  
to	
  the	
  thermal	
  conducFvity	
  only	
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1
K
=

1
KDFT

+
1
Kee

The total thermal conductivity with an e-e collision correction 
is obtained in the usual inverse addition 

In the following we justify this decomposition and reconstruction 

Kee is calculated within the Zubarev formalism with T-matrix 
cross sections and a Debye screened Coulomb potential 



We	
  write	
  the	
  total	
  sca>ering	
  as	
  the	
  usual	
  inverse	
  sum	
  
for	
  two	
  disFnct	
  sca>ering	
  processes	
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1
σ
=

1
Sσσ ei

+
1
σ ee

1
K
=

1
SKKei

+
1
Kee

The subscripts ei, ee refer to quantities calculated in the limit 
that the other scattering (ee, ei, respectively) is excluded. 
 
The pre-factors Sσ and SK take into account the reshaping of the 
electron distribution function resulting from e-e scattering. 
For example, Sσ is analogous to the usual Spitzer factor γE = 0.5816 
in the weakly coupled, non-degenerate limit. 

Note σee = ∞ 



We	
  test	
  the	
  decomposiFon	
  with	
  the	
  Zubarev	
  framework	
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1
σ
=

1
Sσσ ei

+
1
σ ee

1
K
=

1
SσKei

+
1
Kee

Assume SK = Sσ   

Satisfied by definition 

For the 3 cases considered with DFT, the latter equation is satisfied 
at the 99% level within the Zubarev/T-matrix framework 

We argue that Sσ Kei = KDFT     



The	
  thermal	
  conducFviFes	
  from	
  the	
  Kubo-­‐Greenwood	
  calculaFons	
  
with	
  an	
  e-­‐e	
  correcFon	
  (�)	
  agree	
  with	
  our	
  quantum	
  Lenard-­‐Balescu	
  results	
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The red points show the agreement when an explicit e-e scattering correction, calculated 
in the Zubarev formalism (T-matrix, Boltzmann collision operator) is added to the thermal. 

Small differences due to the treatment of degeneracy remain 



Summary	
  

§  Thermal	
  and	
  electrical	
  conducFvity	
  calculaFons	
  have	
  been	
  performed	
  
for	
  40	
  g/cc	
  hydrogen	
  from	
  1	
  eV	
  to	
  900	
  eV	
  	
  (>	
  10	
  million	
  Kelvin).	
  

§  Convergence	
  of	
  the	
  thermal	
  conducFvity	
  is	
  very	
  slow.	
  	
  Earlier	
  published	
  
results	
  (my	
  work,	
  and	
  others)	
  are	
  under-­‐converged	
  in	
  the	
  high	
  T	
  limit.	
  

§  	
  An	
  approach	
  for	
  extrapolaFon	
  to	
  infinite	
  bands	
  is	
  proposed.	
  

§  The	
  conclusion	
  is	
  that	
  the	
  distribuFon	
  reshaping	
  aspect	
  of	
  e-­‐e	
  collisions	
  is	
  
included	
  within	
  DFT,	
  for	
  both	
  the	
  electrical	
  and	
  thermal	
  conducFviFes.	
  

§  The	
  electrical	
  conducFviFes	
  within	
  DFT	
  require	
  no	
  e-­‐e	
  correcFon	
  (for	
  
plasmas).	
  

§  An	
  explicit	
  e-­‐e	
  sca>ering	
  contribuFon	
  Kee	
  should	
  be	
  added	
  to	
  the	
  thermal.	
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