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Problem: lonic liquid flow batteries suffer from high viscosities
but hold the promise of higher energy densities due to higher

metal concentrations and

wider voltage windows

Approach: New multi-valent anode/cathode materials by

judicious ligand/anion selection for lower viscosity, tunable
membranes for non-agueous compatibility, AND rapid
laboratory-scale prototyping to quickly evaluate materials and

cell designs.
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lonic Liquids i,
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lonic liquids are solvents that consist entirely of ions; they conduct
electricity by ion migration.

Three Groups

[\ (1)Based on AlCl;/cations
N@N (2)Based on fluorinated anions

R~ R' N (BF,~, PF¢)/cations
| (3)Based on CF;SO;~, (CF;SO,),N7,
R etc./cations
IT . Pl\ . Advantages Over Water
RN Rum-P (1) Wider window helps prevent
Rl \R RI \R side reactions

(2) Can vary temperature over
wider ranges

F. Endres, ChemPhysChem, 2002, 144.




Synthesis of an Iron lonic Liquid )
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Anderson, Ingersoll, Rose, Staiger, and Leonard, Dalton Trans. 2010, 8609.
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Approach: Consider a compound CuL,BF, (L = methanolamine,
MW =47 g/mol), measured density 1.6 g/mL, formula weight,
244 g/mol; concentration is 6.6 M in redox-active copper

Organic Approach™: (MetlLs) are an attractive
approach to reach high energy density; however there = uimoa
is an environmental concern due to the heavy metals gl

and lower energy density caused by the bulky cations A

“Takechi, Kato, and Hase, Adv. Mater. 2015, 2501.
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Anion: Influences ligand coordination and electrochemistry.

Ligand Coordination: Hydroxyl-coordinated complexes

display quasi-reversible Cu(ll) reduction at lower potentials
and have higher reversibility.
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Role of the Anion

EA ethanolamine
DEA diethanolamine
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Ligand | Anion | Anion | State at AE
[mV]
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Pratt, Leonard, Steele, Staiger, and Anderson, Inorg. Chim. Acta. 2013, 78.




lonic Liquid Viscosity )
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Approach: Temperature | Approach: New cell designs
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The back pressures from the viscous materials are
minimized by increasing the outlet to inlet ratio and
by smoothing the turns in the flow field.




Static Cell Testing
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Partially irreversible copper
plating on the electrode
results in a lower
coulombic efficiency.
However this reversibility
can be controlled by
utilizing different anions.

Pratt, Ingersoll, Hudak, McKenzie, and Anderson, J. Electroanal. Chem. 2013, 153.



Copper Plating ) .
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Significant improvements in the battery performance were achieved
and three oxidation states of copper have now been utilized.



lonic Liquid Battery Prototype h) s

* [nitial tests on Cu-
MetIL/Fe-MetIL (1.5 V)
system used commercial
membranes.
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Membranes™ ) i,

Commercially available, ion selective membranes are not designed
for non-aqueous use.
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"Cy Fujimoto, Principal Investigator



Membrane lon Content rh) s

Membranes contain a polyphenylene backbone with pendant
ionic groups. The ionic content was varied qualitatively high,
medium, and low. Membranes were cast and flow cells were

constructed and tested.
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The membranes can be “tuned” to improve performance.



Membrane Characterization rh) s

Electrochemical Impedance Spectroscopy Used to Measure
Through-Plane Resistance
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Hudak, Small, Pratt, and Anderson, manuscript submitted



Through-Plane Resistances (EIS) ) i,

Membranes in 0.5 M Neosepta® AHA in
TEA-BF,/ACN

Different Solvents
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that in turn are solvent dependent.

“Escalante-Garcia, Wainright, Thompson, and Savinell, J. Electrochem. Soc., 2015, A363.
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Concluding Statement rh)

Redox-active ionic liquid flow batteries offer the potential of
higher energy densities compared to aqueous chemistries
due to larger voltage windows, but they are limited by their
higher viscosities and potentially higher costs. We seek to
overcome these hurdles by developing:

* New electrolyte chemistries Vise

* Tunable non-aqueous membranes N ;;%

* Unique cell designs = :;’%? y &
. “s_,“:. /

* Mediators” t%;; o

U

"Huang and Wang, ChemPlusChem., 2015, 312.
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