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 The vacuum insulator 
separates the vacuum-
insulated load region from 
the fluid-insulated pulsed 
power system

 The solid-vacuum 
interface can be 
problematic because 
insulators in vacuum can 
“flash” quickly and carry 
almost arbitrarily large 
current 

 The ability of the vacuum 
interface to withstand 
voltage often affects the 
size of the entire system
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Vacuum insulators
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Axial vacuum insulators: power 
flows towards the insulator axis
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Vacuum insulator topology

Radial vacuum insulators: power 
flows along the insulator axis
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 Non-uniform electric field in 
a coaxial transmission line
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Radial vacuum insulators have additional issues 
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A dielectric wedge with differing permittivity can improve 
field grading

In an oil-insulated system, 
water is a convenient 
wedge material

oil

water

vacuum

oil oil

The water increases capacitance in 
relation to its width
But- the total electrostatic energy in 
oil is lower with uniform field

water
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 A 60 cm 
diameter 
insulator has 30 
kN total force 
due to 
atmospheric 
pressure

 An insulator 
built from 
separate pieces 
is preferable for 
fabrication 
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Mechanical stress in a radial insulator can be significant

Cathode

Anode

Insulator ring

Grading ring

Vacuum

Fluid



Pulsed Power 2015 Austin TX

A graded, wedged radial vacuum insulator has been 
used successfully on Airix
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Adding the 10° angle increases the 
insulator length slightly, and reduces 
mechanical stress in the plastic

1.8 m diameter Airix interface

Vacuum interface
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Another solution is to use an arched 
or conical insulator stack
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10°

An axial preload force comparable to the vacuum load keeps the assembly stable
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The final design uses a 10° cone for strength and a water 
wedge for grading
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Mechanical stress level for a larger assembly is acceptable

Our goal of testing an insulator that 
can be scaled mechanically to larger 
sizes is met  

Barrier σmax: 1,676 psi, FOS = 7.2 

Insulator σmax: 1,306 psi, FOS = 9.2

Max stress location 
(barrier and insulator)

1.2m radius
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 No UV is present on 
the insulator

 No electrons except 
for emission from 
stressed surfaces

 Insulator is sanded, 
and wiped before 
pump-down and test

 No conditioning

 No oil applied to the 
insulator surfaces
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Testing of the insulator is done with a high impedance 
driver and no magnetic field 
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Testing shows that electrical performance of a well-graded 
radial insulator is no worse than an axial insulator

• First series:
• 184±4 kV/cm: 50 shots, 

no partial or complete 
flash

• Second series (different stack 
build):

• 204±4 kV/cm: 50 shots, 
no partial or complete 
flash

• Third series (interrupted):
• 220±4 kV/cm: 4 shots, 

no partial or complete 
flash 

Insulator 
number

Voltage deviation, 
%, (water lens)

Voltage deviation, 
%, (no lens)

1

+0.2 -28
2

+0.6 -12
3

-0.3 +8
4

-0.4 +32
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 We observed a flashover rate less than 2% at 204 kV/cm

 Flashover calculations consider the stressed area and the stress duration

 Typical flashover models used:

 JCM: Used for decades, many working systems designed using JCM

 Statistical model: more recent analysis, more underlying data
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Large numbers of shots allows additional analysis

Simplified JCM analysis
Flashover probability
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Predicts 11% chance of flashing at 204 kV/cm

We assume that models developed for axial insulators are valid for radial insulators
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 Flashover models cannot consider all 
possible insulator conditions

 We believe the present experiment has 
better than average conditions of the 
insulator

 Pre-shot cleaning consists of sanding 
entire insulator surface with 280 grit, then 
400 grit, then 1000 grit silicon carbide 
sandpaper

 The surface is wiped with lint-free cloths 
dampened with 190-proof ethanol

 The entire surface is blown with synthetic 
air and inspected with a UV light

 The chamber is pumped to Torr or 
below with a cryo-pump

 The surface is not oiled

 Condition is critical: we have observed 
flashing initiated by mm-sized chips on 
the cathode triple point
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Agreement with the statistical model is good; the JCM model 
is conservative

5 �106
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 We have tested a radial insulator design that is scalable to larger 
systems

 We have done considerable electrical testing in a realistic environment 
for a large system: venting, inspecting, and cleaning before every shot

 The dielectric lens distributes potential so that grading is nearly ideal

 Large numbers of tests at fields of 204 kV/cm and above without 
flashover
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Conclusions
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Shunt capacity of the lens could affect the pulse rise time

 RC time adds in quadrature 
with driver pulse rise time
 Present value of 6 ns is 

acceptable

 Resistive grading to reduce RC, 
and pulse compensation can be 
used if needed

17

Vacuum interface
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The insulator uses a water lens to improve the voltage 
distribution
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We can compare the flashover model to ZR data
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Vacuum interface

We have considerable 
experience with the large Z 
vacuum insulator at 140 kV/cm

 ZR A-level is comparable to Pluto 
in area, effective time and stress
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Radial oil-vacuum interface: Mechanical design

 The oil vacuum interface design is 
based on prior work

 Sphinx original design (ca. 1984)

 DARHT-1 vacuum interface

 Airix vacuum interface

 Sphinx scaled design (2014)
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Quarter-scale radial insulator 
testing combined with Z data will 
enable an accurate assessment of 
the vacuum interface

Vacuum interface
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Mechanical stress in the plastic is acceptable

Barrier σmax: 1,676 psi, FOS = 7.2 

Insulator σmax: 1,306 psi, FOS = 9.2

Max stress 
location (barrier 
and insulator)

1.2m radius

Vacuum interface
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Operational issues
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Operations and maintenance for transmission line and 
vacuum interface
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 Transmission line

 Water: continuous resin bed deionizing 
and de-aerating.  1M-cm adequate.

• No routine drains

 Oil: continual filtration and de-aeration

• No routine drains

 Vacuum interface and vacuum feed

 Interface: Post-shot wet-sand and wipe

 Vacuum feed: deposited metal removal, 
re-coat with emission inhibitor

Fluid processing is routine on Z, and could be automated

The insulator area is comparable to one level of the Z 
interface- two people, ~one hour


