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Failure is the loss of load-bearing capacity ) Hona

Laboratories

Austenitic stainless steels are
extremely tough and damage
tolerant

The failure of 304-L is a necking
problem. Free surface creation is a
2"d order effect.

Hypothesis: Pore size and
distribution can aid the necking
process
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» u-CT needed to probe initial and
interrupted pore structures

» Remeshing/mapping needed to
resolve the evolution of pore
structure

= Homogenization not applicable
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Pores large relative to the ligament — homogenization n/a Moo
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u-Computed Tomography

Magnification: 9X
Voxel size: 14 um
Energy: 130 keV
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Do the pores dominant the deformation process? Ah) N
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) 100 um |

- What elements of microstructure
dominate the load-bearing

Hoyos & capacity:
Robino)
(Madison)
= \Weh i sheet thickness: 1.6 mm
ypothesize that pores are the ligament length: 508 m
dominant microstructural feature pore diameter: 150 urt

area fraction: 0.066

= We adopt J, plasticity for both the base
material and the weld

=  We have lumped dislocation structures,
deformation twinning, and martensitic phase
transformations into a phenomenological
model for hardening and recovery

NOTE: Unlike experiments, simulation can systematically increase complexity. Pores first. 4




Initial efforts w/pores problematic — remeshing needed Ah) N
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Deeper-penetration welds provide additional motivation ) Netona
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Weld schedule impacts porosity. Porosity impacts performance.
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Our approach: maplLL (L, + Lie Group/Algebra)

.......................................................

Interpolate XX i x o oxix
new mesh : :

——————————————————

[ ] source field

—1
Zh = Ao (f )\a)\,gI dV) [
B B

= The variational principle naturally yields an optimal, L, projection
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B, 2, 7] ;=/ W(F,2) dV+f g-(2—2) dV—/ wB-pdv— | T-pds
B B B orB

source field available at global field through

integration points projection

|| target field
)\5 zdV

» The spaces of variables (Lie algrebra, Lie Group) are honored through log() and exp()

= Advocated by Mota, et. al., Computational Mechanics, 2013

Past works: Ortiz and Quigley (1991), Radovitzky and Ortiz (1999), Rashid (2002), Jiao and Heath ( 2004)
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We use tetrahedral elements
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Motivated by prior work of Thoutireddy, et. al., IINME (2002)
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This is exact. Evaluate for your flavor of cubature
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o o Sandi
We adopt a new reference configuration i) o

reference
configuration

current
configuration

remesh
remes h map
map remesh
map

znzt - F3F2F1 4
F = F’inchz'nit

= Prior work on hexahedral elements maintained the reference configuration
= Elements degrade in the reference configuration - T-L element integrate in reference

= We now adopt a new reference configuration and map F,; (which lives in a Lie Group)




. Sandi
We accommodate local remeshing A Haona
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I:‘ remesh

. do not remesh

B; This methodology is
completely general to

body
/ element type and
fower order  \ tetd" constitutive model.
projection needed ’

new straight edges
reference | in reference

i / Fz+1 \ \

Bit1 global L2
; B;
reference current
configuration configuration
@ / i
Efforts to simulate ductile

‘ remeshed portion
Q completed
O—0O—=0
> O source nodal fields
failure at the

Biv1 " with richer basis
O nodai felds microstuctural level are

@ projected fields burdened with an explicit

O corrected fietas representation of void

evolution. Remeshing
needed.

" source
" element fields

. element fields (Lie algebras)
I:l corrected fields (Lie groups)
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Sandia
Move over bar. Cubes can neck too. @miﬂonal
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initial configuration 117 maps 235 maps

Unit cube w/symmetry.
Pull “top” and keep 5
elements at “‘waist”

force (kN)

235 remesh/map steps

Plastic strains > 500%
Pressure is smooth

0.02 0.03 0.04
displacement (mm)
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Every frame is another circle of remeshing and mapping Natoral
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. o Sandi
Can we Nnow model the Ioss of Ic\anl_l\nnrlnn ranacitud Vace mmaﬁm?nl

1.4

We only remesh local
element blocks (blue)

Composite-Tet10
Elements: 110,944
Nodes: 163,444

Yield stress: 196 MPa
Hardening: 2360 MPa
Recovery: 1.3
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18 maps (equally spaced)
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Additional interior and exterior views of necking rh) taiona
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undeformed mesh
with notch

necking at
mid-plane

necking at
surface
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. . . Sandi
Progress in modeling the evolution of pore structures i) feor
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What is the impact of “realistic”
void configurations? Employ
tomography + simulation.
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Additional interior and exterior views of necking w/pores
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Increasing the number of mappings () i
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Animation illustrating the deformation process with 31 maps
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Conclusions and Path forward Ah) N
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= mapLL ensures a sound theoretical basis

= Tetrahedral elements permit discretization

= Composite-tetrahedral elements resolves ISVs
= New reference configuration enables solution

= We are able to predict the load-bearing capacity

» General methodology for modeling localization

= Re-examine convergence

= Mesh refinement un-cracked

ligament

plate
= # maps / # intervals e

= Solidify remeshing/mapping —

= Model idealized void configurations offset

= Connect void structure to weld performance




Numerous remaps exhibits minimal “diffusion” of ISVs ) Natona
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Equivalent plastic strain in fine mesh at one integration
point per element att = 0.25
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Repeated mapping convergent in global and field quantities (rh) ti
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Maximum plastic strain converges Initial residual decreasing with additional mappings
03085 T T T T T T T T T T T T T I I I I I I I 0.03 T T T T T T T T T T T L S S S S _—
CDL b b e pfter equiliorium e AfterMap
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The system comes back into equilibrium l

rapidly, i.e. only a few iterations. Difference in

The residual after mapping may be an magpnitude of

indication of the discretization error. residual
Investigation into different levels of
refinement are needed.




Include remeshing in automated procedure

Read user inputs, initialize

for number of intervals:

Analysis

for number of remaps:

Logarithmic mapping

Project from integration points
to nodes

Push forward to current
configuration

Remesh

Interpolate from source nodes
to target integration points

Pull back to reference
configuration

Exponential mapping

Come back into equilibrium

Analysis

Sandia
m National
Laboratories

Adagio

Light weight
C++ codes

Python script

Cubit

NOTE: This scheme keeps
the reference configuration
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Converged meshes not sensitive to remeshing/mapping rih) ot
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25x refers to 25 mapping and remeshing procedures

12000 T T y y ; ; 12000 T T y y
: ! ! ! 1x0 : ! ! ! 1x0
: ‘ : : 25x1-no remesh 25x1-no remesh
100000 ,,,,,,,,,,, ,,,,,,,,,,, — L ‘ 25x1—re‘mesh i 100000 b TN ‘ 25x1—remesh
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NOTE: Discretizations with resolved (converged) \si\ ]
fields of internal state variables are less sensitive B e et W
to the remeshing/mapping procedures. meo \s




Are we any closer to our goal? Yes and no. Ah) N
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Hexes look great, but....

= Meshing of arbitrary geometries requires tetrahedral elements
= Composite tet10 formulation not robust for isochoric motions
= Consistent projection for piecewise linear tet10 is flawed

= Total-Lagrange elements will require a new reference configuration

We did not hesitate to address these fundamental issues (no shortcuts)

= We will use tetrahedral elements. Period.

= Derive an analytical gradient operator for composite tet10

= Volume averaging J yields smooth pressure fields under isochoric motions
= Employ linear projection (tet4) for higher-order tetrahedral elements
= Establish a new reference configurations for T-L elements through F;;
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