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Motivation

 Electronic devices need protection from mechanical and thermal shocks 

 Foams, ex PMDI polyurethane

 Foams pyrolyze at low temperatures 

 Fire environment

 In sealed systems, can cause pressurization 

 Need a computer simulation to model heat transfer and pressurization

 Medium scale experiments for validation



 Medium Scale Experiment
 Foam in a Can (FIC)
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Foam in a Can

Removable Epoxy Foam heated to 900 C at a rate of 
200 C/min



Foam in a Can Experiment

 Data Set:

 320 kg/m3 PMDI polyurethane foam 
(rigid, closed cell)

 Heated to 800 C at a rate of 150 C/min 
and 50 C/min.  

 16 sets collects, representative data is 
shown

 Can dimensions are approximately

 Diameters: 9 cm

 Length: 6.5 cm 

 Wall Thickness: 0.5 mm
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Foam in a Can Experiment

 Monitor pressure inside the can

 X-Rays to view can interior 

 Experiments run to breach
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Foam in a Can Experiment

 Experiment conducted in upright and inverted orientations

 Material bulk movement towards or away from heat source
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Foam in a Can Experiment

Temperature is monitored on the top, along the 
sides, and on the bottom of the can as well as on an 

embedded object.
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Decomposing Foam
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Model
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Virgin Foam

Gas filled Char

Steel

Current Model – Heat Transfer
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Virgin Foam

Gas filled Char

Steel

Current Model – Pyrolysis  
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The rate is modeled as an Arrhenius type 
reaction (��) and the mass fraction of 

unreacted moieties �� (���)

The production of ��� products is also controlled by 

this rate. 



Virgin Foam

Gas filled Char

Steel

Current Model – Pressurization 
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Current Model – Boundary Conditions
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Finite Element Model

 Sierra Thermal/Fluids Code

 3D heat transfer 
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Uncertainty Quantification: Mean Value
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Input parameter ��
Foam Conductivity 0.1

Foam Specific Heat 0.1

Foam Density 0.01

Foam Activation Energy 0.02

Far Field Temperature 0.05

Steel Conductivity 0.1

Steel Specific Heat 0.1

Steel Emissivity 0.1

Convective heat transfer coefficient 0.2

Temperature of heated surface 0.01



Uncertainty Quantification
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A vector of � input parameters �� produces a vector of M response predictions, ��.  
Each parameter is perturbed and the sensitivity is estimated by central difference.

The variance for the system response considering all the parameter uncertainties is 
estimated

The importance measures the relative contribution of each parameter to the variance 



Results: Temperature  
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Sensitivity for Side Wall Temperature
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Steel Conductivity



Results: Object Temperature  
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Sensitivity for Object Temperature
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Results: Pressure  
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Sensitivity for Pressure
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Modeled Physics
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Unmodeled Physics: Radiation
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 Current model assumes a structured char 
is left behind in the reacted space.

 Heat transfer through reacted space 
accounted for using conduction with 
diffuse approximation for optically thick 
material

 Alternative: Radiation Enclosure 
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Unmodeled Physics: Liquids
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Unmodeled Physics: Liquids
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Future Work

 Address radiation and liquefaction

 CDFEM – Front tracking

 Liquefaction 

 Radiation enclosures behind the front

 Vapor-Liquid Equilibrium 
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QUESTIONS?
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BACKUP SLIDES
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Experimental Results: Pressure  
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Inverted cans have a steeper pressure increase than upright 



Experimental Results: Pressure  
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Experimental Results: Pressure  
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Experimental Results: Temperature 
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Experimental Results: Temperature  
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Experimental Results: Temperature  
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Experimental Results: Temperature  
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Experimental Results: Temperature  
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Experimental Results: Temperature 
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Experimental Results: Temperature  
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Experimental Results: Temperature  
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Experimental Results: Summary

 Inverted cans have a steeper pressure increase than upright

 Slower heating rate increases temperature of the embedded 
object at breach and decreases the pressure at which breach 
occurs. 

 This result indicates that different modes of heat 
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