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Outline
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– Nanoimplanter



Why Memristors?

• Current nonvolatile memory (NVM) technologies like Flash are 
expected to be increasingly limited by scaling

• Resistive RAM (ReRAM) is a strong candidate to replace Flash 
with many promising performance metrics

– Scalability, endurance, speed, low power

– Promising initial radiation studies

• State of the art is rapidly advancing

– Panasonic has a commercial product

– HP plans DIMM by 2016, later “The Machine”

“Industry-leading low power 
operation (less than 4µW in 
low-speed active mode”

“High-speed rewriting, 5 times 
faster than conventional flash-
based MCU”



Memristor I-V Characteristics

• Resistive RAM (ReRAM) 
stores state as a function of 
resistance

• Applied current and voltage 
can change resistance state

– Hysteresis loop

• Low voltages can read state

– Read window

• Resistive switching

– Oxygen vacancies

• TaOx

– Oxygen anions



Displacement Damage vs. Ionization

• Different circuit configurations

– Floating and shorted

Displacement 
damage

Ionization800 keV Ta 28 MeV Si 70 keV e-

• Different damage mechanisms investigated using various 
beams



70 keV Electrons (Ionization) - TaOx

• Ionization

– Threshold 100-200 
krad(Si) per shot

• When pins are shorted
no changes occur for 
doses up to 18 Mrad(Si)

• Resistance change varies 
with dose per shot
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Displacement Damage Effects

• 800 keV Ta

– Gradual resistance 
degradation

• Creation of oxygen 
vacancies

– Fluence > 1010 cm-2

– Vo > 1019 cm-3

• Fluence for a single 
device

– What size is the 
sensitive area?
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Ionization and Displacement Damage 
Initial Study Summary

• Separate displacement damage and ionization effects

– Gradual resistance decrease above ~1019 cm-3 oxygen 
vacancies

– Abrupt and consistent changes at rad(Si) per shot 
threshold

• Potential mitigation strategies

– Displacement damage: Repeated cycling may restore 
degraded ROFF

– Ionization: Devices that aren’t floating are less susceptible

– If devices are floating often, apply small voltages 
periodically



Microbeam Raster Scan

• Target smaller regions 
of the oxide to look for 
sensitive regions
– Spatial mapping of 

potential conduction 
channels

• 800 keV Si beam 
rastered across the 
device
– Targeted area ~1 µm 

x 2 µm (device is 10 
µm x 10 µm)

– Resistance recorded 
each time beam 
moves (50 mV)
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Spatial Mapping

• There are multiple distinct 
sensitive areas

• Changes in resistance tend to 
happen on the edges

– More defects formed on 
perimeter during forming

– Stronger electric field

• Beam targeted center with no 
effect



Microbeam Summary

• Multiple distinct sensitive regions

• Device is most sensitive on perimeter

– Likely more defects on the perimeter

– Appears insensitive in center of device

– Sensitive area is not the entire oxide region

• Targeting likely not precise enough

– Takes many scans to get changes

– It sure would be great to have more precise targeting…



Nano-scale Ion Implantation

• NanoImplanter (nI)

• 15 µm by 15 µm scan area
– 200 keV Si++

– Beam spot size ~40 nm

Scan 
area

Device 
area



Size of a Sensitive Area

• Events equally spaced 
apart

– 30 ms (one scan 
length)

– Part of one region

• Estimate filament in Y

– Symmetric in X?

• 300 nm

– 120 nm critical region?

• Filament size affected by 
non-radiation factors
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Summary and Conclusions

• Characterized ionization and displacement damage 
sensitivity

• Spatially mapped multiple conduction paths, or potential 
conduction paths

– Sensitive areas exist preferentially on the perimeter

– Forming method and operating conditions may impact 
sensitive area

• Large portion of the active area is insensitive to 
displacement damage

– Scaling implications

• Capability to locate and characterize sensitive regions with 
high precision


