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Co-Extrusion (CoEx) for Enhanced Li-ion 
Transport in Thick Battery Electrodes
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Hypothesis: Using conventional battery materials, thick co-extruded 
electrodes can change conduction pathways in lithium-ion batteries, 
decoupling power and energy trade-offs with novel geometry layout

*ARPA-E Award Number DE-AR0000324
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2D and 3D Battery Electrodes

• 2D & 3D battery 
designs show great 
promise for high energy 
and high power 
batteries

• Large-area, low cost 
processes are required 
to realize the benefits of 
2D & 3D battery 
designs  CoEx

• Design space for 
optimal electrode 
designs is large
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Battery Electrode Trade-offs

• Thin electrodes High power, but increases overhead of 
current collectors and separators in a battery stack

• Thick electrodes High energy, but diffusion limitations
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* Source: Zheng, et al., Electrochimica Acta, 71, pp. 258-265, 2012.
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High fidelity models of electrochemical transport are needed to guide the 
design of complex electrode architectures

Modeling 2D/3D Battery Electrodes

• Nemani et al., Journal of the 
Electrochemical Society, (2015).
• A bi-tortuous anode with macro & micro 

pores increased discharge capacity by 
>2X

• Modeling required a 2D form of porous 
electrode theory to capture anisotropic 
transport behavior

• Zadin et al., Journal of Power 
Sources, (2016).
• Used a 2D porous electrode model to 

study the inhomogeneous lithiation front in 
interdigitated microbatteries

anode

cathode
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h = 100 - 180 µm

h

CoEx Electrode Design Space
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h = 125 - 400 µm
h

Description Stripe Width 
Ratio

Stripe 1 
Porosity 

(%)

Stripe 2 
Porosity 

(%)

Corrugated 
design with 
open 
channels for 
electrolyte

1:1 to 20:1 33.8
(based on 
monolithic 
electrode)

100

Two-material 
design with a 
5-30% 
porosity 
differential 
between the 
stripes

1:1 to 5:1 30-35 40-60

CoEx 1: Corrugated Design

CoEx 2: Two-material Design
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CoEx 1 Geometry Exploration with COMSOL
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Half Cell Geometry Cathode Structure
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LCO = Lithium Cobalt Oxide (LiCoO2) 

LCO Composition:
52% LiCoO2
14.2% Filler/binder
33.8% Porosity

Electrolyte:
1:1 EC:DMC
1M LiPF6
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Model Setup

• Implemented a 2D version of 
John Newman’s 
Macrohomogeneous porous 
electrode model1-3 in 
COMSOL to model a series 
2D CoEx geometries

• Only CoEx cathode geometry 
is varied → Volume fraction of 
LCO active 
material/filler/porosity is 
constant
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1. M. Doyle, T.F. Fuller, J. Newman, J. Electrochem. Soc. 140 (1993) 1526-1533.
2. T.F. Fuller, M. Doyle, J. Newman, J. Electrochem. Soc., 141 (1994) 1-10. 
3. T.F. Fuller, M. Doyle, J. Newman, J. Electrochem. Soc., 141 (1994) 982-990.

Chemical Kinetics

Charge Conservation & Mass Transport

LCO = Lithium Cobalt Oxide (LiCoO2) 
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Lithium Utilization Plots – Conventional Cells
(End of a 1C Discharge Cycle)
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Source: C.L. Cobb and M. Blanco, Journal of Power Sources, Vol. 249, pp. 357-366, 2014. 

74 µm cathode 200 µm cathode

Li
 M

et
al

 A
no

de

Li
 M

et
al

 A
no

de

commercial 
baseline 
cell at the 
end of a 1C 
discharge

Red = Max 
Utilization

Parameters from: G. Ning, R.E. White, B.N. Popov, Electrochimica Acta 51(10) (2006) 2012-2022

Note: COMSOL model was compared against DUALFOIL and a 
conventional 1D COMSOL model and before moving to 2D models



© 2015 PARC, All rights reserved. 10© 2015 PARC, All rights reserved.

Lithium Utilization Plots – 200 µm Thick CoEx Cathodes
(End of a 1C Discharge Cycle)
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1C discharge rate results shows that designs (c) and (d) have the best performance 
based on specific capacity
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Source: C.L. Cobb and M. Blanco, Journal of Power Sources, Vol. 249, pp. 357-366, 2014. 
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Capacity Based on Total Weight and Volume of 
Cathode
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Source: C.L. Cobb and M. Blanco, Journal of Power Sources, Vol. 249, pp. 357-366, 2014. 

Current Collector

Result: 150 µm thick CoEx cathode with wLCO/welec = 20 
was the best performing design & translates to a ~16% 
improvement in gravimetric capacity at the pouch cell level
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• Pure electrolyte channels enhanced lithium utilization in thick 
cathodes but impacted the total capacity 

• Additional modeling is being conducted on structures with higher 
porosity material in the ‘electrolyte’ regions to reduce total capacity 
impact
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Modeling Summary
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Preliminary Modeling Results for CoEx 2 Structure
(End of a 1C Discharge Cycle)
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Co-Extrusion (CoEx): Experimental Progress
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CoEx 1:
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Co-extrusion Printhead

ARPA-E, Award Number DE-AR0000324

EERE, Award Number DE-EE0007303

We are currently 
leveraging ARPA-E 

investment to optimize the 
CoEx cathode for Electric 
Vehicle (EV) applications
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Top View
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