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Preference Balancing Tasks (PBTs)

» Robotic motion
Control-affine system
Continuous states and
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actions
High-dimensional 3 .

» Complicated dynamics = Image:Spacex 4
Difficult demonstration B NASA/JPL/Caltech
Lack of motion [Faust et al, 2013] |
primitives

» Described with - 0w |

preferences , TRCOR o

[Faust et al., in press]
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| Figueroa etal,2014]
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PrEference Appraisal Reinforcement Learning (PEARAL)

[Faust, 2014] [ Training Task ] [ Planning Task ]

Objectives

» Learns to perform PBTs* 7

Planning

Axial policy
approximation

Parameter l T State
| | Action

System

Feature
selection

» Batch reinforcement learning (RL) Features

» Learning

Continuous action fitted value
iteration (CAFVI)  [Faust etal,in press]

Linear map state-value function
approximation

Simulator

Features are squared preferences V/(s) = 9" F(s)

» Planning
Generates trajectory
Real-time, one step at the time

Axial sum policy approximation  [Faust, et al,in press]

Works only with deterministic systems

*Preference Balancing Tasks
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Axial sum policy approximation

. ) . . —
» Greedy policy h*(z) = argmax, o, V(D(z,u)) in O N I B
o
continuous spaces | ;i
[Busoniu et al. 2013] _ 5 4 =
Sampling-based search space narrowing [Mansley etal. 2031] ° '
[Walsh et al.2010] 1 3 0 0 s
Gradient descent [Hasselt etal. 2012] . max@)
» Deterministic axial sum policy (DAS T R R R
[Faust, et'al, in press] x
Interpolate action-value function along each the
axis
Find maximum
Combine with a vector or convex sum e - oe
RREE e
» Sufficient conditions for convergence to goal BEBEQHE
Control-affine system with bounded drift :
[Faust, et al, in press] o . 1
- : lar
Squared-features T, %IKQ"L'%;] IU:}

Negative weights

Extend DAS to work under external disturbances.
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Least Squares Axial Policy Approximation (LSAPA)

» Problem )
PBTs v(z)= Z 0;F;(x).
Control-affine System with external input

disturbance ;.1 = f(xx) + g(@r) (ug + nx). Rl'-
. F(x), B
» Learning "l
« s s Planner
Deterministic CAFVI v
x(t) o LSAPA u(t)—»
» Planning 1
. . . . * I
Estimate disturbance in real-time N, oPs] Simulator

Least Squares Axial Policy Approximation
selects an action at every time step

Adapts to observed disturbance
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Least Squares Axial Policy Approximation Continued

» On each input axis

Action-value function Q. ;(u) = p? [u® v 1]*

Collect d, dynamic samples U; = [u1; ... ua, :]”
Calculate Xi=[2}; . xy "
Qi - [Qm,l(ul,i) Qm,d (ud t)]
.Q‘I’.-‘Jf (“j,i_} = QTF({E;',J =1,..,d,

Solve supervised ML problem
pi = argminZ( YjiPi — Qa5 (1, 1))

Pi i

uuuuuuuuuuu

(ul,i)z Uy 4 1

. — (u2,:)? w1

(ud 1}2 U;;E-,;__«; 1
Find maximum
- pl i

U, = — ==
213'2,1'
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» Related work on UAV robust control
Trajectory tracking (Alexs ecal.2010]
Harmonic potential fields asoud 20111

LOW-Ievel ContI’O”el"S [DeCastro and Kess-Gazit 2013]

Tr’ajector')l Iibrar’ies [Majumdar and Tedrake 2013]
Blimp path planning with dynamic programming kawano 2011]
» Coffee-delivery Tasks

Swing-free aerial cargo delivery
Rendezvous task
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Coffee Delivery: Setup

» Aerial Problem
Holonomic cargo-bearing UAV
Bring the suspended load to the destination
Minimal residual load oscillations at arrival

» Rendezvous Problem
Holonomic cargo-bearing UAV and ground robot |
Bring the suspended load to the ground robot SRR T WS
Minimal residual load oscillations at arrival T

Preferences, reduce
Distance from the destination
Vehicle's velocity

Load displacement
Load’s velocity
» MDP
Aerial: | 0-dimensional vector states, 3-dimenstional actions
Rendezvous: | 6-dimensional vector states, 5-dimenstional actions

8  [Faustetal., 2015]
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Trajectory Characteristics under Varying Disturbance
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* Least Squares Axial Policy Approximation (LSAPA) [Faust et al,, 2015]
* Deterministic Axial Sum (DAS) [Faust et al, 2014]
« HOOT [Mansley et al. ‘I 1]

* Nonlinear Model Predictive Control (NMPC) [Grune and Pannek, 2011]

LSAPA and DAS perform decision-making in real-time.
LSAPA reaches the goal for non-zero mean disturbances.

9
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Swing-free aerial cargo delivery with disturbances
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» Thank you!
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Preference-balancing Motion Planning unde
Stochastic Disturbances Summary

» Reinforcement learning with no disturbances

» Online planning in the presence of disturbances
» Applicable for continuous actions

» Linear in the input dimensionality

» Works through a Least Squares Axial Sum Policy
Approximation
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Flying Inverted Pendulum

Displacement {cm)
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Trajectory characteristics improve exponentially with number of samples.
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Flying Inverted Pendulum

-25

Task: Flying inverted pendulum
Planning: Least squares axial policy approximation (LSAPA)

Upper left: Stochastic disturbance ~N(1,1)

x (m)
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Related work

» UAV Robust control
Trajectory tracking (Alexs ecal.2010]
Harmonic potential fields [Masoud2011]
Low-level controllers pecastro and Kess-Gazit 2013]
Trajectory libraries [Majumdar and Tedrake 2013]

Blimp path planning with dynamic programming (kawano 2011]

» Greedy policy approximation

Sampling based planning search space narrowing [ e2-201l]

[Busoniu et al. 2013] [Walsh et al. 2010] [Bubek et al. 201 1]

Gradient descent [Hassel ecal. 2012]



