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Image: GM

Preference Balancing Tasks (PBTs)

 Robotic motion
 Control-affine system

 Continuous states and 
actions

 High-dimensional

 Complicated dynamics
 Difficult demonstration

 Lack of motion 
primitives

 Described with 
preferences

[Faust et al., 2013]

[Figueroa et al., 2014]

[Faust et al., in press]

Image: 
NASA/JPL/Caltech

Image: SpaceX



PrEference Appraisal Reinforcement Learning (PEARL)

 Learns to perform PBTs* 

 Batch reinforcement learning (RL)

 Learning

 Continuous action fitted value 
iteration (CAFVI)

 Linear map state-value function 
approximation

 Features are squared preferences

 Planning

 Generates trajectory

 Real-time, one step at the time

 Axial sum policy approximation

PlanningPlanning

System

State

Greedy policy

Action

Simulator

Training Task

Feature 
selection

AVI 

g

AVI 
learnin

g

R
ew

ar
d

Planning Task

Objectives

Features

Parameter

PlanningPlanning

Axial policy
approximation

CAFVI

*Preference Balancing Tasks

[Faust, 2014]

[Faust, et al, in press]

[Faust, et al, in press]

Works only with deterministic systems



Axial sum policy approximation

 Greedy policy                       in cont in 
continuous spaces 

 Sampling-based search space narrowing 

 Gradient descent 

 Deterministic axial sum policy (DAS)

 Interpolate action-value function along each the 
axis

 Find maximum

 Combine with a vector or convex sum

 Sufficient conditions for convergence to goal 

 Control-affine system with bounded drift

 Squared-features

 Negative weights

[Busoniu et al. 2013]

[Mansley et al. 2011]

[Walsh et al. 2010]
[Hasselt et al. 2012]

[Faust, et al, in press]

Extend DAS to work under external disturbances.

[Faust, et al, in press]



Least Squares Axial Policy Approximation (LSAPA)

 Problem

 PBTs

 Control-affine system with external input 
disturbance

 Learning

 Deterministic CAFVI

 Planning

 Estimate disturbance in real-time

 Least Squares Axial Policy Approximation 
selects an action at every time step

 Adapts to observed disturbance



Least Squares Axial Policy Approximation Continued

 On each input axis

 Action-value function 

 Collect     dynamic samples

 Calculate

 Solve supervised ML problem

 Find maximum



Results

 Related work on UAV robust control

 Trajectory tracking  

 Harmonic potential fields 

 Low-level controllers 

 Trajectory libraries 

 Blimp path planning with dynamic programming

 Coffee-delivery Tasks

 Swing-free aerial cargo delivery

 Rendezvous task

[Alexis et al. 2010]

[Masoud 2011]

[DeCastro and Kess-Gazit 2013]

[Majumdar and Tedrake 2013]

[Kawano 2011]



Coffee Delivery: Setup

 Aerial Problem
 Holonomic cargo-bearing UAV

 Bring the suspended load to the destination

 Minimal residual load oscillations at arrival

 Rendezvous Problem
 Holonomic cargo-bearing UAV and ground robot

 Bring the suspended load to the ground robot

 Minimal residual load oscillations at arrival

 Preferences, reduce
 Distance from the destination

 Vehicle's velocity

 Load displacement 

 Load’s velocity

 MDP
 Aerial: 10-dimensional vector states, 3-dimenstional actions

 Rendezvous: 16-dimensional vector states, 5-dimenstional actions

8 [Faust et al., 2015]



Trajectory Characteristics under Varying Disturbance

9

• Least Squares Axial Policy Approximation (LSAPA) [Faust et al., 2015]

• Deterministic Axial Sum (DAS) [Faust et al., 2014]

• HOOT [Mansley et al. ‘11]

• Nonlinear Model Predictive Control (NMPC) [Grune and Pannek, 2011]

LSAPA reaches the goal for non-zero mean disturbances.

LSAPA and DAS perform decision-making in real-time.

Rendezvous
Aerial Coffee Delivery



Swing-free aerial cargo delivery with disturbances

http://www.cs.unm.edu/~afaust/movies/afaustIcra15.mp4

http://www.cs.unm.edu/~afaust/movies/afaustIcra15.mp4
http://www.cs.unm.edu/~afaust/movies/afaustIcra15.mp4


Questions

 Thank you!
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Preference-balancing Motion Planning under 
Stochastic Disturbances Summary 

 Reinforcement learning with no disturbances

 Online planning in the presence of disturbances

 Applicable for continuous actions

 Linear in the input dimensionality

 Works through a Least Squares Axial Sum Policy 
Approximation



Swing-free aerial cargo delivery with disturbances

http://www.cs.unm.edu/~afaust/movies/afaustIcra15.mp4

http://www.cs.unm.edu/~afaust/movies/afaustIcra15.mp4
http://www.cs.unm.edu/~afaust/movies/afaustIcra15.mp4




Flying Inverted Pendulum

Number of samples need 

Trajectory characteristics improve exponentially with number of samples.



Flying Inverted Pendulum



Related work

 UAV Robust control

 Trajectory tracking  

 Harmonic potential fields 

 Low-level controllers 

 Trajectory libraries 

 Blimp path planning with dynamic programming 

 Greedy policy approximation

 Sampling based planning search space narrowing 

 Gradient descent 

[Alexis et al. 2010]

[Masoud 2011]

[DeCastro and Kess-Gazit 2013]

[Majumdar and Tedrake 2013]

[Kawano 2011]

[Bubek et al. 2011][Busoniu et al. 2013]

[Mansley et al. 2011]

[Walsh et al. 2010]

[Hasselt et al. 2012]


