

Introduction

- Track detection in SAR CCD imagery has applications in surveillance, search and rescue
- Difficult due to various sources of noise: SAR speckle, radar shadow, vegetation, weather phenomena
- Existing techniques require user cues and assume only a single track is present, cannot detect multiple tracks in an image
- Our approach is fully automatic, can detect multiple and overlapping tracks in an image, and can correctly identify images with no tracks present

Technical Approach

- **Given:** Set of n 2D points $X = \{x_1, x_2, \dots, x_n\}$ that are likely to belong to tracks
- **Track model:** points as set $C = \{c_1, c_2, \dots, c_n\}$ of m curves, where distances of points to curves (distance from point to projection on curve) are zero-mean Gaussian with standard deviation σ
- **Likelihood model:** Gaussian mixture with mixing coefficients π_j :

$$L(X|C) = \prod_{i=1}^n \sum_{j=0}^m \pi_j L(x_i|c_j) \quad (1)$$

- c_0 is “noise curve”—case where no true tracks are present

- For $j > 1$

$$L(x_i|c_j) = \frac{1}{\|c_j\|} \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-\|x_i - c_j\|^2}{2\sigma^2}\right) \right) \quad (2)$$

where $\|c_j\|$ is the length of curve c_j and $\|x_i - c_j\|$ is Euclidean distance from point x_i to curve c_j

- For $j = 0$,

$$L(x_i|c_0) = l_{\text{noise}} \quad (3)$$

where l_{noise} is a constant

- **Objective:** Bayesian Information Criterion (BIC)

$$B(X|C) = -2 \log(L(X|C)) + k \log(n) \quad (4)$$

where k is the number of degrees of freedom of the model, i.e.,

$$k = \sum_{j=1}^m |c_j| + m \quad (5)$$

$|c_j| =$ # degrees of freedom of curve c_j , $m =$ # mixing coefficients

- This cost maximizes likelihood while penalizing model complexity

Algorithm:

1. Set $C = \emptyset$, $B_{\min} = B(X|C)$
2. Find a line segment c through X
3. If $B(X|C \cup c) < B_{\min}$
 - (a) Set $C = C \cup c$, $B_{\min} = B(X|C)$
 - (b) Remove points assigned to C from X
 - (c) Repeat step 2.
4. Refine C and the model parameters iteratively until convergence
5. Merge segments in C to form curves

- Finding lines: find initial lines via RANSAC. Project associated points onto each line. Determine line segment endpoints via mean shift
- Merging curves: effectively search over all possible mergings of detected segments for configuration with lowest BIC

Figure 1. Track finding results on real SAR CCD images.

Validation

- Algorithm evaluated on set of 40 real 600x800 CCD images containing simulated parallel vehicle tracks
- Simulated tracks randomly generated and placed in images by adding Gaussian phase shifts along track trajectories in non-reference SAR image
- Three different versions of image set with three different track thicknesses: *light*, *medium*, *dark*
- Same model parameters used for all three versions: $\sigma=4$, $l_{\text{noise}}=\frac{1}{600*800}$

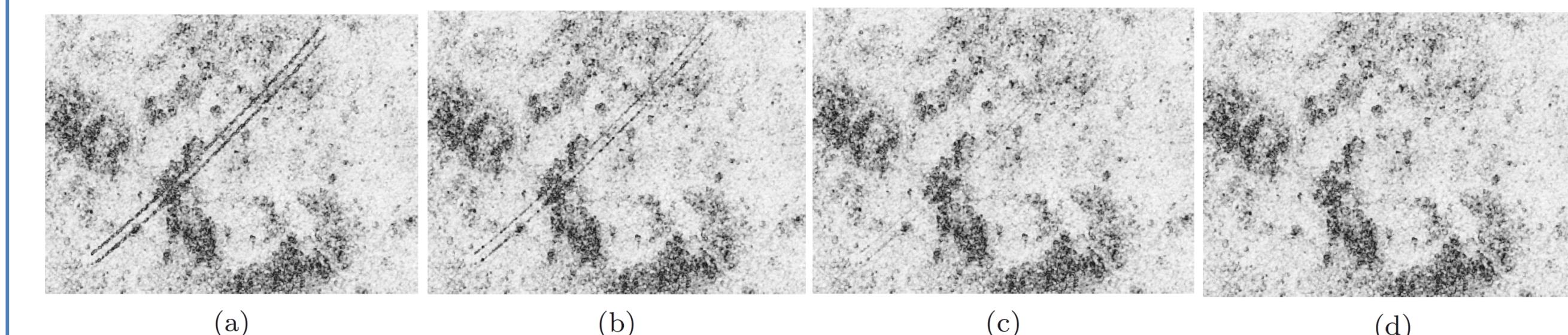


Figure 2. Example test images: (a) *dark*, (b) *medium*, (c) *light*, and (d) original CCD image. Each set consists of 40 images of size 600x800 containing various track curvatures and background clutters. Average track length is 705 pixels.

- Performance metric: $\frac{TP}{TP+FN+FP}$ where $TP =$ # true positives, $FN =$ # false negatives, $FP =$ # false positives

Results

	Mean	Median	Std. Dev.
<i>dark</i>	0.9721	0.9872	0.0471
<i>medium</i>	0.8352	0.9108	0.1812
<i>light</i>	0.2631	0.2623	0.2495

- Algorithm also tested on CCD background images without simulated tracks added – algorithm correctly declared no tracks present in all but two test images. In these two images, there were track-like structures present in the CCD image

Future Work

- Improved algorithm for extracting set of likely track points
- Improved algorithm for merging detected segments