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Exothermic Films rih) s

= Codeposition of a composite film
= Allows for composite foil in a single process step
= Control over nanostructure
= Relatively low cost and scalable process
= Potential for electroforming

= Nickel and aluminum exothermic alloying is suitable
performance for thermal batteries

= Properties of exothermic films

= Reaction rate and heat release are controlled by particle size, shape,
distribution and total content




Nanostructured Thin Films ) e

= Want high energy but no gas generation (using Ni-Al intermetallic)
= Inherently conductive

= Reaction depends on solid state diffusion

= Can be controlled with nanostructuring and increasing reaction area
= Improves propagation reliability and speed
= Higher rates generate higher maximum temperatures

= Achieve this with sputtering
= Cost prohibitive
= Material inefficient and can’t be made in complex shapes
= Slow fabrication process that requires high vacuum

Propagation Direction

Reacted Matenal Reaction Zone As-deposited Foil

——A4 Layers

lgnition—s :a —<—B Layers

o Intermixed

¥ Regions Z --_ . - - =
" Ignition Fully Reacted i Reaction Zone Unreacted
Material 1 i MNanoFoil®

Tharmal Diffusion
S. lto, S. Inoue, and T. Namazu “The Size Limit of Al/Ni Multi Layer Rectangular Cuboids for Generating Self-Propogating Exothermic 3
Reaction on a Si Wafer”2010

Atomic Diffusion



Reactive Metal Couples (Ni-Al) ) .

= Reaction rate increases with increasing interfacial area
= |mproves propagation reliability and speed
= Higher rates generate higher maximum temperatures

= Metals can diffuse between the interface, decreasing energy of
reaction

= Abundant and relatively cheap
materials

= High energy output

= |nherently conductive
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Objectives ) .

= Aluminum deposition
= Want high deposition rate
= Smooth and compact deposition
= High purity and efficiency
= Nickel incorporation

= Control over inclusion size
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Methods rh) pes

= |nvestigate particle properties in the electrolyte
= Agglomeration, surface modifications, migration from settling,
diffusion or other means, and effect of different particle geometries
= |mportant parameters
= Electrolyte viscosity
= Particle shape and size
= Particle-particle interaction

= Particle-electrolyte interactions




Deposition of Aluminum Matrix ) s,

= |onic liquids

= Chloroaluminate anions deposit aluminum readily ‘ol ol
= High efficiency \AI/
= High purity |
= Low vapor pressure and non flammable :Cl:
= Low diffusion rates
= Large bulky ions
= High ionic interactions
= Particle interactions are not well researched
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Investigation - Speciation ) .

= Aluminum deposition
only occurs from specific 100
reduction complexes
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Viscosity Arrhenius behavior .

E
Viscosity = u, * eRT
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Particle Size Effects

= Smaller particles increase reaction rate

= Need to keep agglomeration to a minimum with agitation and
electrolyte properties/surface functionalization

= Preventing agglomeration in the electrolyte will minimize
agglomerations in the deposited film
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Particle Properties and Modifications @&

= Particle size, shape and composition
= Flakes or spheres
= 10 nm to microns (PVD comparison indicates that ~20 nm particles will be
optimal)
= Ni, NiO, Cu and other options will change the burn properties
= Surface functionalization
= Surfactants or oxides
= Modify electrolyte composition
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Electrochemical Stability of Surfactants @

= Saccharins reduce in the range of Aluminum deposition and
are not compatible

= Sodium dodecyl sulfate (SDS) and Centronium Bromide
(CTAB) are compatible

= Particle interaction needs to be investigated
Electrochemical Stability
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Zeta Results (Needs more analysis)

40000i .............................................. ....................... ...................... NOtICG resolved at 30’000 CountS
30000: ........ |dea| ......................... ...................... ....................... We” UnderStOOd |n aqueous
20000 ....................... ...................... ...................... NOH-COndUCtIng part|C|eS
mgoo ....................... ...................... ...................... flxed Charge on Surface

Total Counts

o : : : .
-200 -100 0 100 200

Z eta Potential (mV)

Record 17 CHTOSAN 1 1‘

Figure 2: Zeta potential analysis of chitosan nanoparticles, showing mean zeta
potential of 40mV as determined by Malvern zeta analyzer
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NiO Example Data () i

Width = 20.44 pm



Conclusions

= Viscosity

= Temperature and composition

= Speciation effects
= Particle interaction
= Deposition precursor
= Surfactants in electrolyte

= Needs investigation
= Particles are not acquiring specific zeta potentials

= NiO is not compatible with AICI precursors

= Tailoring agitation is crucial
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= Physical properties of ILs need to be well documented and deposition

vessel well designed
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