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Los Alamos, NM 87545 

 

1. Introduction 

This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation 
hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for 
irradiation hardening and the crystal plasticity framework are described in a previous report [1]. 
Here we describe these models briefly and then describe an algorithm for interfacing VPSC with 
finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D 
pre-irradiated bar specimen performed using MOOSE are demonstrated. 

 

2. Constitutive Model Description 

The constitutive model framework, adopted from [2], [3], is described in detail in Ref. [1]. We 
will briefly summarize it here. 

The following internal state variables (ISVs) are used at the level of slip system,  , in our 

crystal plasticity framework: mobile dislocation density, M
 , immobile dislocation density, I

 , 

number density, 111N , and size, 111d  , of <111> dislocation loops, number density, 100N  , and size, 

100d  , of <100> dislocation loops, and number density, 'N 
 , and size, 'd 

 , of '  precipitates. 

The crystallographic shearing rate,  , is given as a function of the resolved shear stress,  , 

such that: 

  0

0

sgn

n


 




  


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 
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where, 0  is the reference shear rate, 0
  is the slip resistance, and n  is the inverse of strain rate 

sensitivity. 

The contributions to slip resistance, 0
 , are assumed to be: the intrinsic frictional resistance, 0 , 

the Hall-Petch term accounting for grain size dependence [4], [5], HP HPk D   ( HPk  is a 

material constant, D  is the grain size), and the lattice resistance to dislocation glide due to long 

range interactions, LR
 , with other dislocations, dislocation loops, and '  precipitates. A 
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dispersed barrier hardening model [6], [7] is used to model these long range interactions, such 
that: 

   111 111 111 111 100 100 ' ' 'LR M IGb h A h N d h N d h N d        
    



  
 

      
 

   (2) 

where, G  is the shear modulus, b  is the Burgers vector magnitude, A  is the matrix of slip 

system dislocation interaction coefficients (to model self and latent hardening), and h , 111h , 100h

, 'h  are the hardening coefficients associated with line dislocations, <111> dislocation loops, 

<100> dislocation loops, and '  precipitates, respectively. 

Accordingly, the total slip resistance on slip system, �, has the following form: 

 0 0 HP LR
         (3) 

Mobile dislocations are assumed to evolve primarily via three mechanisms [2]: creation of 
mobile dislocations via multiplication at existing dislocation segments, mutual annihilation of 
dislocation dipoles, and trapping of mobile dislocation segments at barriers, thus rendering them 
immobile. Dynamic recovery of immobile dislocations may lead to the depletion of the immobile 
dislocation population. Accordingly, the net rate of evolution of mobile and immobile 
dislocations is given as 

 
2 1mul c
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    
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        (4) 
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   


      (5) 

where, mulk  is a material constant associated with dislocation multiplication, 

111 111 100 1001/d M Il N d N d     



      is the total line length of dislocations [8], cR  is the 

capture radius associated with mutual annihilation of mobile dislocations (the factor of 2 

accounts for the fact that two dislocations are annihilated during this event) [9],   is the 
effective mean free path of trapping mobile dislocations at barriers, given by [10], [11] 

 111 111 111 100 100 100 ' ' '

111 100 '

1 1 1 1 1
M I N d N d N d       

       
 

     
    

           (6), 

and dynk  is the material constant associated with dynamic recovery.  , 111 , 100 , and '  are 

the trapping coefficients associated with line dislocations, <111> dislocation loops, <100> 

dislocation loops, and '  precipitates, respectively. Detailed description of the physical 
mechanisms behind these models is given in Ref. [1], [2]. 
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The interaction of irradiation-induced defects with mobile dislocations is modeled using a 
previously developed phenomenological model [3] that accounts for the annihilation rate of 
irradiation-induced defects as a function of the crystallographic defect density and the interacting 
mobile dislocation density. Accordingly, the rate of annihilation of the areal density of 
irradiation-induced defects is given as [3] 
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where, c  is the annihilation exponent, and 111R  , 100R  , and 'R
  are the capture radii associated 

with the annihilation of <111> loops, <100> loops, and '  precipitates, respectively.  

 

3. Polycrystal Framework 

The visco-plastic self-consistent (VPSC) framework is used to relate the macroscopic polycrystal 
deformation to the individual grains deformation. The self-consistent model assumes that each 
grain can be considered as an inhomogeneous inclusion embedded in an effective medium 
having the average properties of all grains in the aggregate. A detailed description of the VPSC 
model can be found in Refs. [12], [13]. Plastic deformation in each grain occurs via the 
activation of slip and/or twin systems. The total strain rate on a given grain is given by the 
combined contribution of the shear rates of all slip and twinning systems, and the latter are 
related to the stress in the grain through the constitutive law: 

 0

:
kl

ns g
klg s s s

ij ij ij s
s s

m
m m


  



 
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 
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where,  1

2
s s s s s
ij i j j im n b n b   is the symmetric Schmid tensor associated with slip system s ; sn  

and sb are the normal and burgers vector of the system; g
ij  and g

kl  are the deviatoric strain-rate 

and stress of the grain, 0  is the normalization rate and n  is the rate sensitivity exponent. The 

linearized form for the constitutive law of the single crystal response is: 

   0,g g g g g
ij ijkl kl ijM        (11) 

where, g
ijklM  and 0,g

ij  are the visco-plastic compliance and the back-extrapolated rate of grain g , 

respectively. Depending on the linearization assumption chosen, Eq. (11) gives a response that 
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goes from the stiff secant to the compliant tangent approximation [12]. For an affine linearization 
(the kind used in the present work), the actual grain level compliance is used, i.e., 

 

1

0 0 0

ns s s g
ij kl pq pqg

ijkl
s s s

m m m
M n




 


 

   
 

   (12) 

  0, 1g g
ij n      (13) 

Performing homogenization on this linearized heterogeneous medium consists of assuming that a 
linear relation analogous to Eq. (13) is valid at the effective medium (polycrystal) level:  

 0( )ij ijkl kl ijM        (14) 

where, ij and kl  are the macroscopic rate and stress, and ijklM  and 0
ij  are the macroscopic 

viscoplastic compliance and back extrapolated rate, respectively. Solving the stress equilibrium 
equation of an ellipsoidal inclusion described by Eq. (11) embedded in a medium described by 
Eq. (14) leads to the so called ‘interaction equation’ relating macroscopic and inclusion 
magnitudes  

 ( ) ( )ij ij ijkl kl klM          (15) 

where, 

   1
ijkl mnpq pqklijmn

M I S S M


    (16) 

is the ‘interaction tensor’. Depending on the linearization assumption chosen, M varies between 

the upper bound compliance tangentM  and the lower bound compliance, secant tangentM M n .  

The macroscopic moduli are unknown a priori and need to be adjusted self-consistently by 
enforcing the condition that the average stress and strain rate over all grains has to be equal to the 
macroscopic stress and strain rate: 

 ,ij ij ij ij        (17) 

The conditions in Eq. (17), along with grain strain rate and stress given by the visco-plastic 
inclusion formalism, define what is called a ‘self-consistent visco-plastic’ polycrystal model.  
Substituting Eqs. (11) and (14) in Eq. (17) leads to an expression for the visco-plastic moduli of 
the linearized effective medium [12]. 

 

4. VPSC-Finite Element Interface 

In this work, the constitutive deformation behavior of the FEs is solved at the level of grains 
using VPSC. Effectively, each Gauss point in the FE mesh represents a polycrystalline aggregate 
with associated texture. VPSC solves the local boundary conditions imposed by the interface 
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code between VPSC and FE (referred as VPSC-FE interface from here on) and then passes the 
deformed (stress and strain) state of the Gauss point to the FE code, which solves for global 
equilibrium of deformation in the FE mesh. 

VPSC has previously been interfaced with the FE code, ABAQUS [14], and implemented in the 
form of a User MATerial subroutine (UMAT) [15], [16], and also with the BISON-CASL fuel 
performance code in the form of a material model [17]. In this work, a similar algorithm has 
been used, albeit with a modified convergence criterion.  

VPSC has been interfaced with MOOSE to simulate component-level irradiation growth and 
creep in Zr alloys (under the CASL program) [18]. Here the same algorithm is used and is briefly 
explained in the following. Before moving forward, it should be noted that standalone VPSC 
only solves for the viscoplastic strain corresponding to a stress state (or, vice-versa) and does not 
model the elastic strain. The VPSC-FE interface described here accounts for ‘macroscopic’ 
elastic deformation as well. Also note that VPSC solves for deformation in the local (material) 
coordinate system, which is then rotated to the global (component level) coordinate system for 
FE calculations. 

An additive decomposition of the strain increment,  , into the elastic, e , and viscoplastic, 
vp , parts is assumed in the VPSC-FE interface, i.e., e vp       . The stress increment, 

 , corresponding to this strain increment may be used to estimate the elastic strain increment, 

i.e., 1 :e    C , where C  is the self-consistent elastic stiffness of the polycrystalline 

aggregate calcualted by the VPSC code at the beginning of each deformation increment. The 

history-dependent viscoplastic strain increment, vp , on the other hand, is a function of the 

stress state,   (rather than the stress increment), and the internal state variables (ISVs) in the 
constitutive model. 

The FE code calls the VPSC-FE interface with an estimate of the stretch increment, FE , the 

rigid spin increment, FER , and the time step increment, t . The VPSC-FE interface then 

solves for   corresponding to this strain increment using an iterative Newton-Raphson scheme. 

The trial stress at time, t t , is estimated based on the elastic strain increment from the 
previous time step, i.e., 

  : :e vp
t t t t t                  C C     (18) 

where, the subscript refers to the respective time increment. VPSC is called with this stress state, 

t t , to obtain the corresponding viscoplastic strain rate, vp . VPSC-FE interface then 

calculates the residual between   and FE  according to the following expression: 

   1 : vp
FE FEt             X C           (19) 

If the convergence criteria (described in the following) is not satisfied in increment k , a trial 

stress increment for the next iteration, 1k  , is calculated as 
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          1

1
:NRk k k k




        J X           (20) 

where, the Jacobian, NRJ , of the Newton-Raphson iteration is given as 

  
 
 

1
NR t 

    
 






X
J C M            (21) 

where, M  is the viscoplastic tangent moduli computed by VPSC as part of the self-consistent 
calculations.  

A weighted convergence metric (cf. [19]) is employed here to achieve faster convergence. The 
scalar convergence metric is weighted according to the largest component of the strain 

increment, FE , such that 

 
 

2

max

ij
FE ij

ij
i j FE

X





 
 
 
 

                   (22) 

where, i  and j  denote the respective indices of the tensor quantities.  

Note that VPSC computes all quantities in the local coordinate system (the one in which the 
texture of the cladding is referred to), while the FE code computes all quantities in the global 
coordinate system. The VPSC-FE interface, therefore, rotates all deformation quantities from the 

global to the local coordinate system via the rotation tensor, FE t  R R R  before passing them 

from the FE code on to VPSC (and, vice-versa). Also note that the tangent stiffness matrix, tC , 

required by some FE codes for calculation of the deformation increment for the next time step, is 
simply the inverse of the Jacobian used in the Newton-Raphson calculations in Eq. (21), i.e, 

1t
NR
C J . This is therefore passed on to the calling FE code by VPSC-FE interface. The 

algorithm for interfacing VPSC with the FE code is summarized in Fig. 1 [18]. 
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Figure 1. Algorithm for interfacing VPSC with the FE code (from [18]). 

 

4. Model Application 

The VPSC-FE interface code has been implemented in a general fashion such that it can be used 
with ABAQUS and MOOSE FE codes (an additional wrapper code is implemented to call the 
VPSC-FE interface from MOOSE). This allows for benchmarking model predictions of the 
deformation behavior across different FE codes. 

 

4.1. Benchmarking VPSC-FE predictions with VPSC standalone predictions 

We performed single element simulations in MOOSE to compare model predictions with VPSC 
standalone (referred as VPSC-SA here on) predictions. Symmetric boundary conditions were 
imposed and the simulation geometry was loaded in tension to 0.1 true strain at a strain rate of 
10-3 s-1, as in the VPSC-SA calculations. Figure 2 compares the true stress-strain curves from 
VPSC-FE and VPSC-SA calculations for two different materials: (a) unirradiated Fe-15Cr-4Al 
weld zone material, representative of an annealed material, and (b) Fe-15Cr-3.9Al alloy 
irradiated to 1.6 dpa (cf. [20], [21]). The material models were calibrated to the experimental 
stress-strain response and yield stress in the previous phase of this project (cf. [1]). An initial 
texture representative of a randomly oriented polycrystal with 50 orientations (shown in Fig. 3) 
was used in these calculations. 
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As seen in Fig. 2, a reasonable agreement is obtained between predictions from VPSC-FE and 
VPSC-SA calculations. As mentioned earlier, VPSC-SA does not account for elastic 
deformation. This leads to the discrepancy observed between VPSC-FE and VPSC-FE 
predictions, especially at very low strains (< 0.005). Once plastic deformation commences, 
VPSC-FE predicts a marginally lower true stress at a given strain for both materials. This is due 
to the fact that VPSC-FE accommodates the imposed strain via both elastic and plastic 
deformation. At a given strain, relatively lower plastic strain in the VPSC-FE simulations (as 
compared to VPSC-SA calculations) leads to lower hardening and lower flow stress. However, 
the difference in predictions between the two calculations is less than 1% and compare 
favorably. 

 

Figure 2. Model predictions of true stress-strain response from VPSC-SA and VPSC-FE 
calculations for two different FeCrAl alloys. 

 

 

Figure 3. Initial texture used for VPSC-FE and VPSC-SA model comparisons using 50 randomly 
oriented grains. 
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4.2. Tensile deformation of a dog bone specimen 

We have simulated tensile deformation in the half-geometry of a dog bone specimen using the 
VPSC-FE interface in MOOSE. Dimensions of the half-geometry of the tensile specimen used in 
our FE simulations is shown in Fig. 4 and were taken from Ref. [21], where they were used to 
determine the tensile properties of various FeCrAl alloys. The total length of the specimen is 16 
mm. The gage length is 5 mm and the grip length is 4.1 mm. The gage width is 1.2 mm and the 
grip width is 4 mm. The thickness of the specimen is 0.75 mm. The half-geometry was meshed 
using 5390 elements with a minimum element size of 0.15 mm. The bottom face of the specimen 
was constrained along the y-direction. The flat face of the half-geometry was constrained along 
the x-direction along the length of the specimen. The bottom corner edge of the specimen was 
constrained in all degrees of freedom to prevent rigid body motion. Displacement-controlled 
tensile loading was applied on the top face along the y-direction at a rate of 0.016 mm∙s-1, 
effectively implying a nominal strain rate of 10-3 s-1. The material is representative of an 
unirradiated Fe-15Cr-4Al weld zone alloy. A randomly instantiated texture with 10 orientations 
was used in this simulation and is shown in Fig. 5. Model parameters used in these simulations 
are given in Ref. [1]. 

Figure 6 shows the distribution of strain along the y-direction and the corresponding von Mises 
stress in the specimen after loading the specimen in tension for 60 s. As expected, majority of the 
deformation takes place in the gage section of the specimen. The gage section exhibits strain 
magnitudes as high as 19%, while the grips generally exhibit strain magnitudes lower than 1%. 
This is also evident from the distribution of the von Mises effective stress across the length of the 
specimen. A representative stress-strain response from an element picked at random near the 
center of the section of the gage section is shown in Fig. 7. Note that this material, with 10 
orientations, is ‘more textured’ (Fig. 5) as compared to the random polycrystal (Fig. 3), with 50 
orientations. As a result, this tensile specimen exhibits a higher flow stress (≈ 35 MPa) and 
hardening as compared to the corresponding unirradiated Fe-15Cr-4Al weld zone alloy in Fig. 2. 
Less number of orientations were used in these simulations simply to minimize computational 
costs at the level of VPSC calculations. However, this highlights the importance of having an 
appropriate reduced texture that is representative of the processing history of the material. 
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Figure 4. Dimensions of the half-geometry of the tensile specimen. 

 

 

Figure 5. Randomly instantiated texture with 10 orientations. 
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Figure 6. Distribution of (a) accumulated strain along the y-direction, and (b) von Mises stress in 
the specimen.  

 

 

Figure 7. Simulated true stress-strain response of an element picked at random from the center of 
the gage section. 
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4.3. Effect of radiation dose on the deformation of a 3D bar specimen 

We have performed tensile test simulations of a 3D bar specimen with different radiation dose 
histories. The bar specimen is 1 mm in length and 0.1 mm in breadth and width. The specimen 
was meshed using finite elements of uniform size 0.025 mm, such that there are a total of 640 
elements in the simulation geometry. This simulation geometry is shown in Fig. 8(a). The bottom 
face of the specimen was constrained in the z-direction, and the center node of the bottom face 
constrained in all degrees of freedom to prevent rigid body motion. Bars with two different 
radiation dose histories were simulated: (a) the bottom end of the rod has 1.6 dpa radiation dose 
and the dose decreases along the length of the bar according to the profile shown in Case 1 in 
Fig. 8(b), and (b) a uniform radiation dose of 1.6 dpa across the length of the bar, as shown in 
Case 2 in Fig. 8(b). The same texture as in Fig. 5 was used in these simulations. Displacement-
controlled loading was applied on the top face along the z-direction and the bars were loaded to a 
nominal strain of 10%. 

 

 

Figure 8. (a) Simulation geometry of the bar specimen, and (b) radiation dose histories along the 
length of the bar for two different cases. 

The distribution of strain (along the z-direction) and von Mises effective stress for the two cases 
are shown in Fig. 9. It is seen that the bar with a variable radiation dose history (Case 1) has a 
heterogeneous deformation profile. Specifically, deformation is localized near the top end of the 
bar. The top end of the bar exhibits strain magnitudes as high as 0.25, while the strain 
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magnitudes near the bottom end are less than 0.05. The top end of the bar, with lower radiation 
dose, is more compliant since it has relative lower irradiation hardening and yield stress. As a 
result, the top end of the bar accommodates a higher fraction of the applied deformation and, as a 
consequence, the top section shrinks more than the bottom section due to the Poisson effect. The 
hardening model leads to an increase in the dislocation density and so to an increase in the local 
flow stress, which reaches 750 MPa near the top end, higher than the 640 MPa at the bottom end, 
which has a higher irradiation dose. Increased localization at the top is to be expected for larger 
deformation. 

The bar with a uniform radiation dose (Case 2) exhibits a relatively homogeneous deformation 
profile. There is some small heterogeneity near the ends of the bar. This is due to the ‘non-
random’ 10 grain texture, which leads to a non-negligible component of shear deformation. We 
have verified the same using VPSC-SA calculations. If an ‘ideal’ random polycrystal, with larger 
number of grains, were used in these simulations, it would eliminate the observed shear 
deformation, albeit at the cost of higher computational costs.  
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Figure 9. Distribution of (a) strain along the z-direction and (b) von Mises stress for Case 1, and 
(c) strain along the z-direction and (d) von Mises stress for Case 2. Note that the scales are 
different in each of these contours to highlight the heterogeneous deformation profiles. 
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5. Summary 

The VPSC framework has been interfaced with the FE code, MOOSE to simulate irradiation 
hardening and plastic deformation in FeCrAl alloys in this work. This framework is validated by 
comparison of the stress-strain response predicted from VPSC-FE and VPSC-SA calculations. 
The framework is then used to simulate tensile deformation of a dog bone specimen. It is 
observed that majority of the deformation is accommodated in the gage section of the dog bone 
specimen. The framework is also used to study the effect of variable radiation dose on the 
deformation behavior of a bar specimen. The deformation tends to localize in regions of the bar 
with lower irradiation dose, which have relatively lower irradiation hardening and are more 
compliant. 
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