

LA-UR- 08-5064

Approved for public release;
distribution is unlimited.

<i>Title:</i>	MDMC Member Update: Los Alamos National Laboratory
<i>Author(s):</i>	Matthew W. Lewis Partha Rangaswamy Tien Appert Beverly Aikin
<i>Intended for:</i>	Materials Data Management Consortium Meeting August 6-8 Cambridge, UK

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

**MDMC Member Update:
Los Alamos National Laboratory**

Tien Appert, Partha Rangaswamy, Beverly Aikin, and Matt Lewis, LANL

Abstract

Progress on developing and implementing a Materials and Models Information System at LANL will be presented.

UNCLASSIFIED

MDMC Member Update: Los Alamos National Laboratory

Tien Appert, Partha Rangaswamy,
Beverly Aikin, Matt Lewis

Los Alamos National Laboratory

Presented at the Materials Data Management
Consortium Meeting, Cambridge, UK

6-8 August, 2008

UNCLASSIFIED

UNCLASSIFIED

Home Page (1)

MI Viewer (WIN)\104538)

https://grantadb.lanl.gov/mi/frameset.aspx

Fiat-out across Mexico Getting Started DexOnline.com Inter... Latest Headlines Apple .Mac Amazon ebay Yahoo! Phonebook: LANL Ins... News Apple http://panamericana...

GRANTADB

Browse Switch To Edit Mode Help

Select a record to view its datasheet:

LANL Weapon and Engineering Materials Database

- Elastomer Models
- Materials Properties
- Modeling
- Pedigree
- Processing Universe
- Testing - Biaxial Tension
- Testing - PVT
- Testing - SHPB
- Testing - Torsional DMA
- Testing - Triaxial
- Testing - Uniaxial
 - Uniaxial Subset (change)
 - Compression [v1]
 - Cyclic Compression [v1]
 - Relaxation [v1]
 - Tension [v1]
- Testing - Uniaxial Stress Relaxation
- WT - New Data

Los Alamos NATIONAL LABORATORY EST. 1943 Operated by Los Alamos National Laboratory in the W-1 Division

Home Training Links Search Help FAQs Contacts MI DB Info

Home Page

The Rules of use for the data within the database are as follows:

- The data fall under export control laws
- If the data is combined with other information, it requires classification review
- Before publishing data or information based on any data obtained from the database, the data owner must authorize such publication. If a specific data owner is not listed, the data is owned by the test operator or data modifier

[View All Announcements](#)

Follow the information below to browse the data.

PBXs:	Elastomeric Foams:	Elastomers:	Crushable Foams:	Composites:
PBX95xx <ul style="list-style-type: none"> PBX9501 PBX9502 	PDMS <ul style="list-style-type: none"> S5370 S5470 M9770 SX358 SX368 LK3626 	PDMS <ul style="list-style-type: none"> Sylgard 184 Sylgard 186 Silastic J Silastic E DC745U 	Polyurethanes <ul style="list-style-type: none"> 25lb./cu. ft. Others 	Chopped fiber <ul style="list-style-type: none"> Carbon phenolic
PBX94xx <ul style="list-style-type: none"> PBX9404 	VCE	VCE	Syntactics <ul style="list-style-type: none"> CMB/APO-BMI 0.3 g/cc GMB/??? 0.??/cc 	Continuous fiber <ul style="list-style-type: none"> TWCP
Others <ul style="list-style-type: none"> PBXN-9 MOCK 900-21 				Particulates <ul style="list-style-type: none"> PEEK DAP

Home Page (2)

MI:Viewer (WIN\104538)

Flat-out across Mexico Getting Started DexOnline.com Inter... Latest Headlines Apple .Mac Amazon eBay Yahoo! Phonebook: LANL Ins... News Apple http://panamericana...

GRAnTAnMI

Browse Switch To Edit Mode Help | Welcome to MI:Viewer

Select a record to view its datasheet:

- LANL Metals and Ceramics
 - Documents & Procedures
 - Elemental Chemistry
 - Equipment Calibration Records
 - Machining Specifications
 - Material Model Fit - MTS
 - Materials Pedigree
 - Microstructure
 - Polishing/Etching Procedures
 - Processing - Casting
 - Processing - Consolidation
 - Processing - Extrusion
 - Processing - Heat Treatment
 - Processing - Rolling
 - Testing - Direct High Explosive
 - Testing - Flyer Plate
 - Testing - Mechanical Testing
 - Testing - Notch Bar
 - Testing - Taylor Cylinder
 - Testing - Thermal Analysis
 - Testing - Valve Components
 - Testing - X-ray Diffraction
 - Work Request

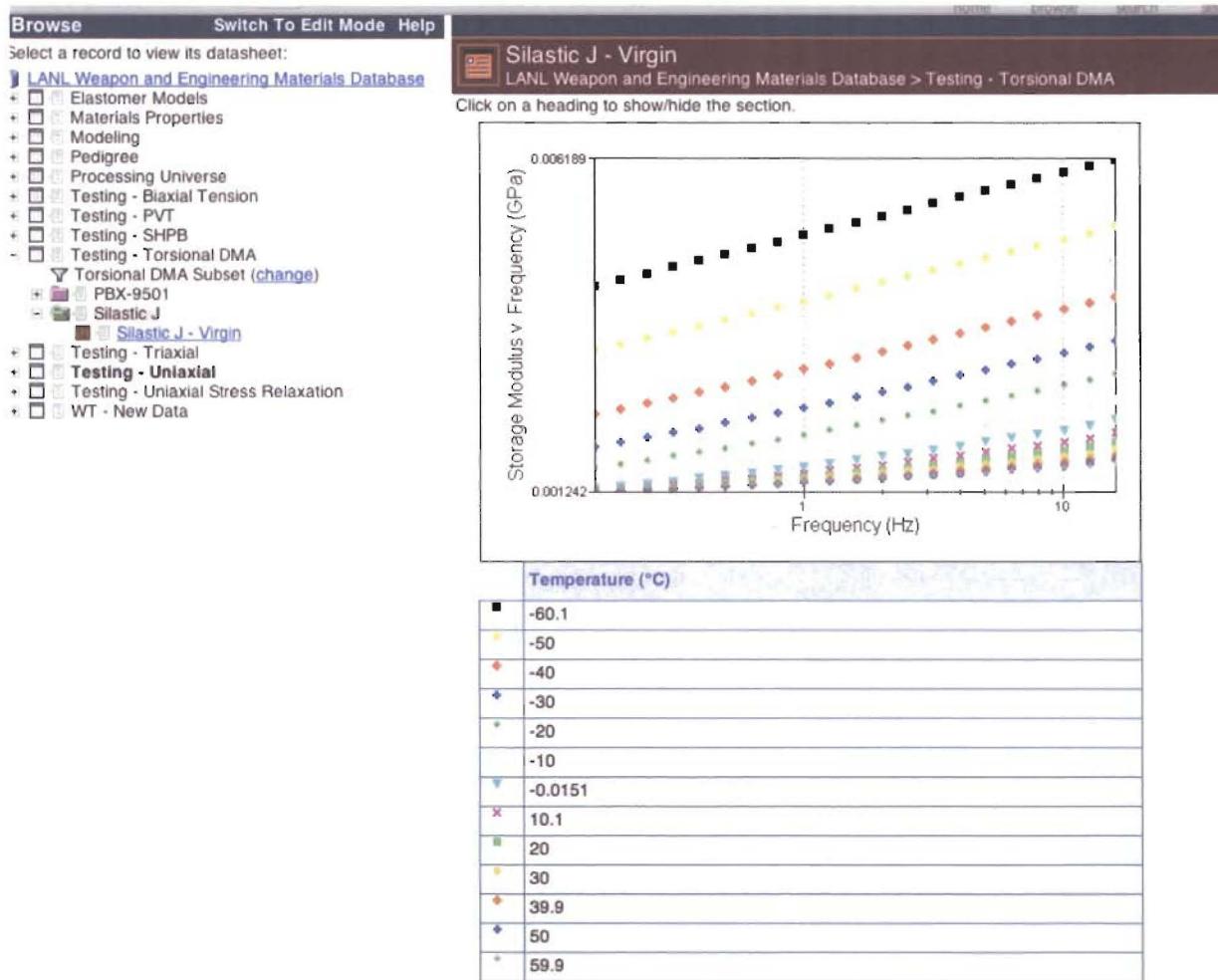
With MI:Viewer , you can perform the following actions:

- [Go to MI:Viewer 's home page](#)
- [Browse](#) - explore and view the database using the tree navigation system on the left
- [Search](#) - search the database for a chosen word or string of words
- [Select](#) - search the database for materials, processes, and other records with a chosen set of properties
- [Report](#) - create a report of the properties of several records
- [Options](#) - Change options
- [View MI:Viewer 's help files](#)

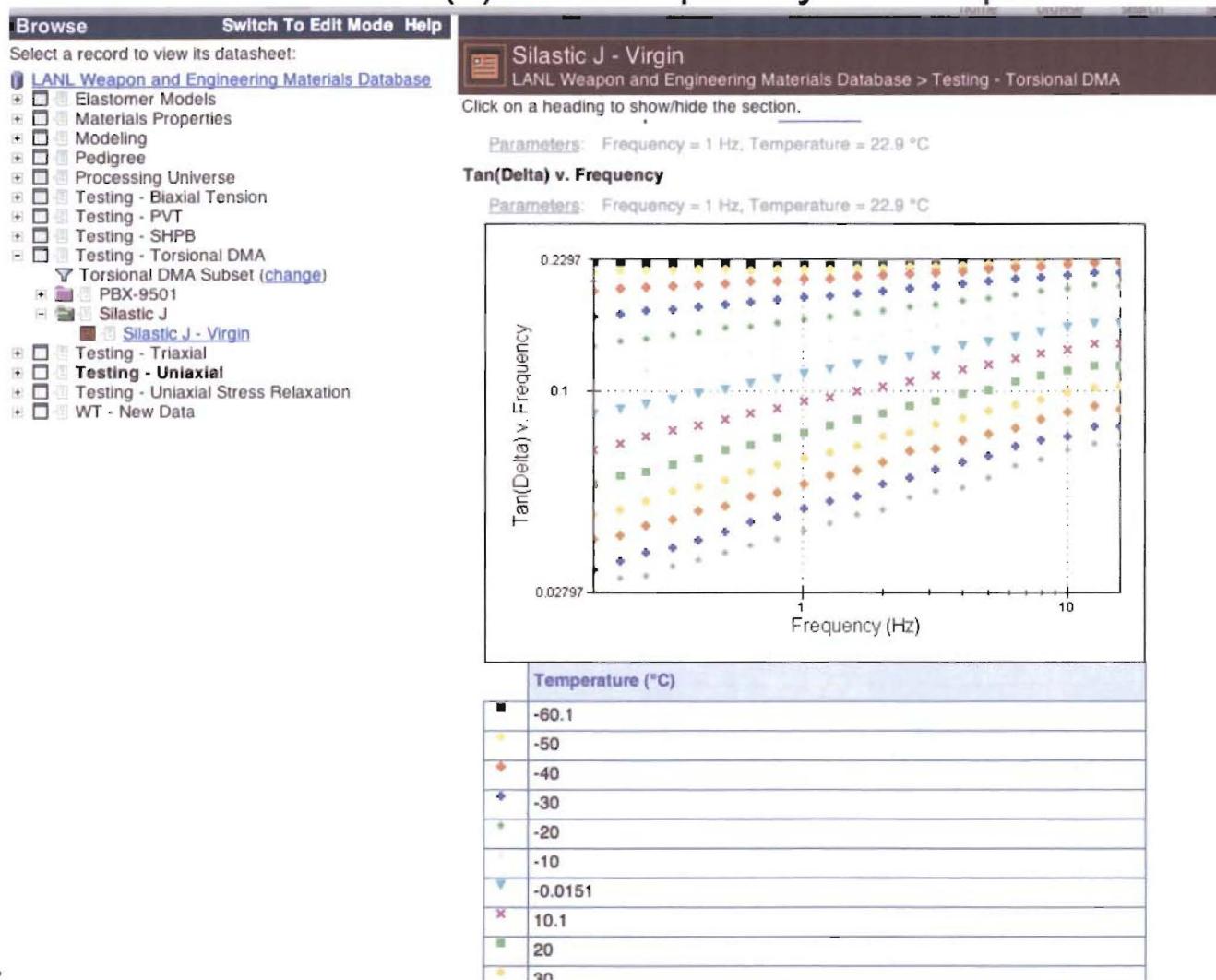
POWERED BY
GRAnTAnMI

Done

grantadb.lanl.gov


Real LANL Status

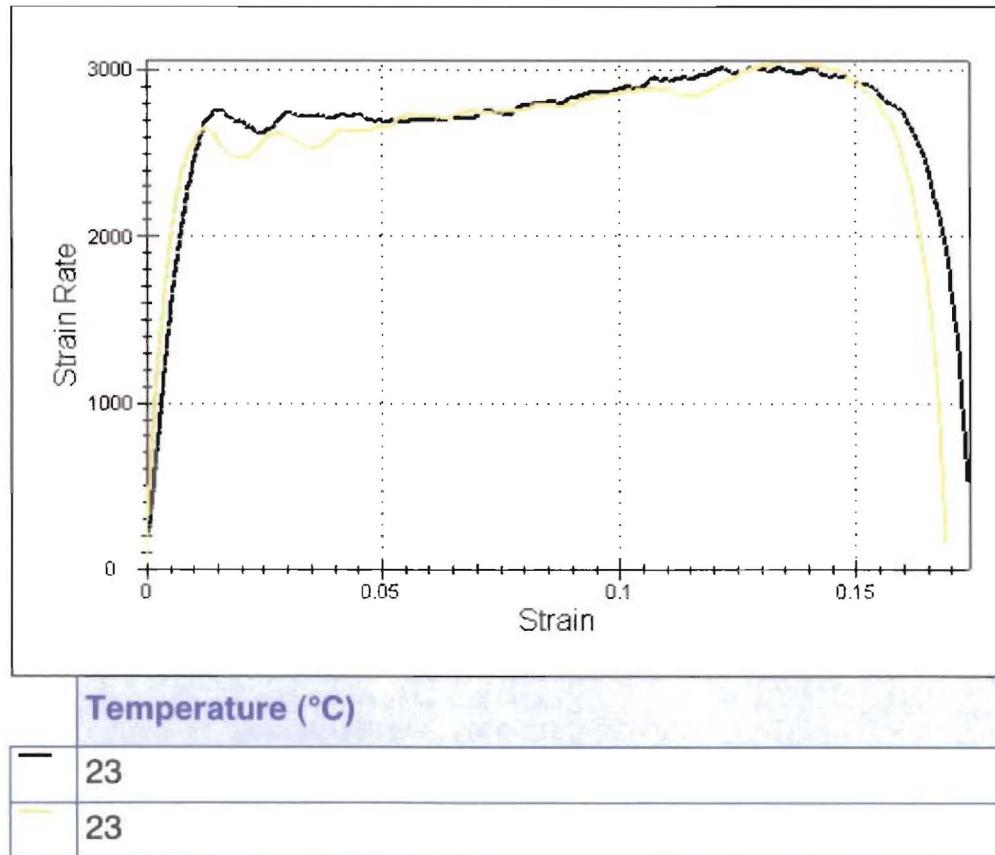
- Currently small, separate databases (Metals & Ceramics; Polymers, Foams & Composites)
- Yellow (fire-walled network) server and red (isolated network) server
- Installed 2.0 and testing on yellow server (July 2008)
- Bringing in new data (including SHPB test as uniaxial compression data)
- Starting foam model table
- Significant funding expected in FY09 (start October 1):
 - Goal: LANL Materials and Models Information System
 - Enough funding for approximately 2 FTEs plus licensing costs
 - Two steering committees
 - Analyst-centric
 - Characterization-centric
 - Merge both databases likely
 - Purchase of perpetual license expected


Data Examples

Dynamic Modulus Data---Storage Modulus vs. Frequency & Temperature

Data Examples(2)

Dynamic Modulus Data--- $\tan(\delta)$ vs. Frequency & Temperature



Data Examples(3)

SHPB Compression Data---Strain Rate vs. Strain

StrainRate vs Strain (1W vs 2W) [171](#)

Parameters: Strain = 0.0002, Temperature = 22.9 °C

Data Examples(4)

SHPB Compression Data---Stress vs. Strain

Properties

Universe

Uniaxial Tension

VT

HPB

Uniaxial DMA

Uniaxial

Uniaxial subset (change)

Session [v1]

CK [v1]

C-9501 [v1]

C-9502 [v1]

CN-9 [v1]

+00 deg C [v1]

+21 deg C [v1]

+22 deg C [v1]

+23 deg C [v1]

Strain Rate (SHPB) 2500 - 7500 [v1]

2952500N906 [v2]

2952500N930 [v2]

2953000N911 [v2]

2954500N907 [v2]

2956000N910 [v2]

Strain Rate 0.001 [v1]

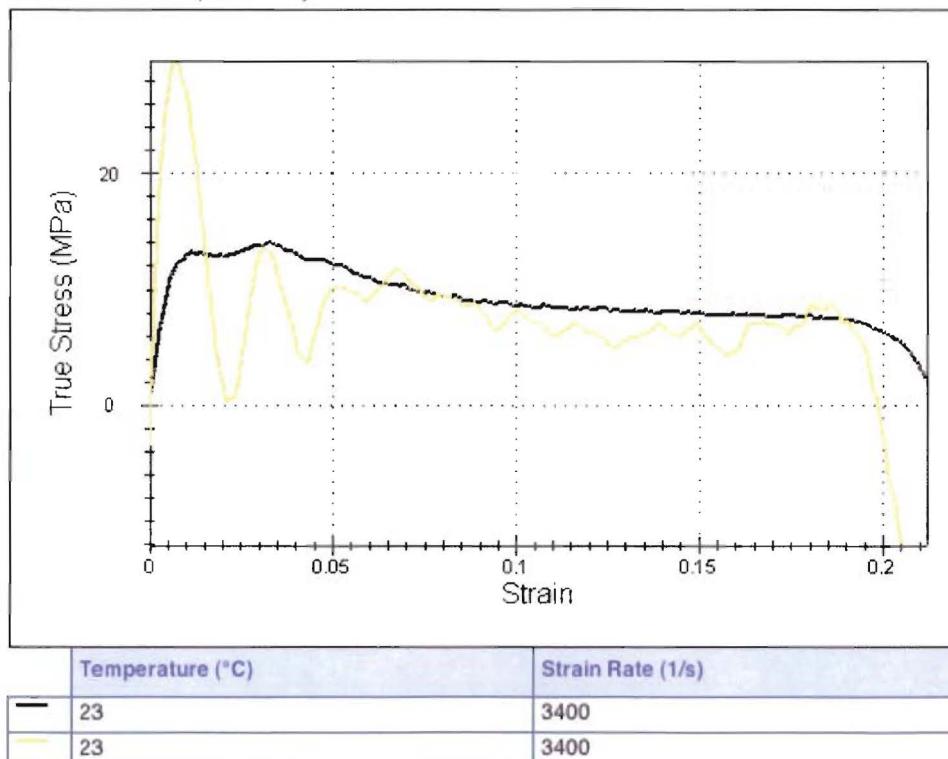
+55 deg C [v1]

-15 deg C [v1]

-20 deg C [v1]

-40 deg C [v1]

-55 deg C [v1]


stic J [v1]

58 Foam [v1]

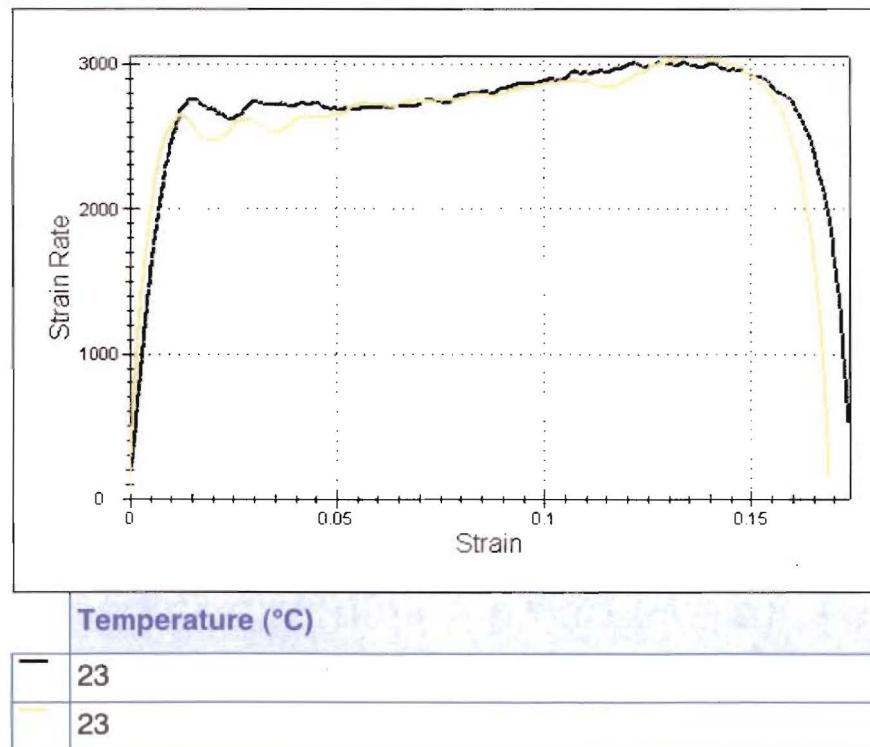
tactic Foams [v1]

[View all data for StrainRate vs Strain \(1W vs 2W\)](#)

True Stress vs Strain (1W vs 2W)

[View all data for True Stress vs Strain \(1W vs 2W\)](#)

True Stress vs Strain (1-wave)


MPa

Issues

- Out-of-range annoyance for updated version (of MI) (need to create special file)
- Kudos to Craig and software engineer (change color of lines in plots--less yellow!) Q: 2.1 release?

StrainRate vs Strain (1W vs 2W) [171](#)

Parameters: Strain = 0.0002, Temperature = 22.9 °C

Issues

- Initial quality rating by system (can be over-ruled by admin or highlighted because of anomalies by software) This currently involves a lot of time to review each record upon entry/release. Initial quality ratings that flag anomalies or extreme value quality scores would help in this process.
- We need to know when the "change color on all the folders, or record within a table" will be released.
- We need a method for incremental one-way updates from CD or file(s) pushed onto isolated network.