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Basics of Thermally-Activated Batteries
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Typical Lithium Ion Battery1

Heat
Pellet

Molten Salt Cell

• 1-3 year shelf life
• Low voltage/low current
• Liquid electrolyte dispersed 

throughout battery cell

• 20+ years shelf life
• High voltage/high current
• Solid electrolyte initially stored 

in separator – battery must be 
heated to >300°C to draw power

2[1] Yoshio and Brodd, “Lithium-Ion Batteries” (2009)



/15

Thermal Battery Activation

 Separator composed of 65% electrolyte, 35% MgO binder

 Cathode impregnated with separator mixture prior to activation, 
anode initially dry

 Upon thermal activation:

 Electrolyte melts

 Separator mixture transports into voids of cathode and anode

 Cell thins until binder forms solid-like structure capable of 
supporting remaining load
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Cell thins

 Infiltration of electrolyte into cathode and anode reduces the internal 
impedance

 Excess electrolyte can cause shorting/collapse of the cell

Improve the fundamental understanding of electrolyte transport 
during activation 
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Quantifying Transport through Porous Components

 Transport through porous materials is ubiquitous amongst electrochemical 
cells

 Improved understanding of limiting transport processes can lead to 
improvements in performance and lifetime

 How to experimentally study transport at these length scales and in these 
challenging environments?
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Li-Ion Battery1 Fuel Cell2 Thermal Battery

25 μm 20 μm 50 μm

[1] Stephenson et al., J. Elec.Chem. Soc. (2011), [2] Birss et al., J. Elec.Chem. Soc. (2010)
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Introduce Tracker to Probe Transport

5

Bromine electrolyte (BE)
50wt% KBr
36wt% LiBr
12wt% LiCl
Tm=310˚C

Regular electrolyte (RE)
45wt% LiCl
55wt% KCl

Tm=352˚C

Anode - Dry 

Separator - BE

Cathode - RE
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Mica

Experimental Setup

 Cells were compressed to 12 psi (uniaxial compression) between 
heated platens (500 ⁰C) for various time durations

 Quenched to room temperature

 Temperature and open circuit voltage (OCV) data was recorded
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T

V

Glove Box

[1] Grillet et al., Proc. 46th Power Sources Conference (2014)

Heated Platen
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Sample Preparation
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T > 352 ºC

OCV > 1.8 V

Cell name V > 1.8 V T > 350 C
2 sec 4 0

30 sec 30 33
35 sec 27 39

70 sec 70 72
80 sec 74 84

140 sec 133 151
250 sec 238 263

80 sec
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Electron Probe MicroAnalyzer (EPMA)
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 X-rays emitted by a sample under 
electron bombardment

 Extremely stable beam current

 Specific X-ray wavelengths or 
energies are selected and counted 
by wavelength dispersive X-ray 
spectroscopy (WDS)

 Comparison of generated x-rays to 
elemental standard of known 
concentration

 Flow proportional X-ray counter

 Quantitative Chemical Analysis 

 1 μm3 spatial resolution

 Precision 0.1wt% elemental 
composition

mcswiggen.com
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Characterizing Electrolyte Concentration throughout Cell

 Images are thresholded to 2 wt% (K or 
Br) such that only the electrolyte/binder 
mixture is analyzed

 Each pixel normalized by amount of Br 
and K (to account for variations in 
amount of electrolyte per pixel)

Using
EPMA

Backscatter Electron Image

44.2 wt% Br
10.8 wt% K
6.8 wt% Cl

…

��	(��%)

�� ��% + �	(��%)

Relative bromine 
concentration

9
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Bromine Transport into Components
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Cathode  Separator thins by 
≈ 20 % (100 μm)

 Anode is flooded 
within 30 seconds

 Bromine is 
diffusing into 
cathode

 Equilibrium ≈ 
reached within 
140 seconds after 
activation

 Activation process 
is finished within 
250 seconds

Note: Grey areas are void space 
or the solid network (LiSi, FeS2)

1.0

0.0

0.5
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Mechanisms of Transport
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2 second 30 second

 Within first 30 seconds, electrolyte flows and fills dry anode 
structure

 Capillary-pressure driven flow into micron – submicron pore 
structure of lithium-silicon anode

 Transport into cathode is slower, requires ≈ 250 seconds to reach 
equilibrium

 Diffusion-limited transport into tortuous iron disulfide cathode
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Experimental Data

[1] Janz and Bansal, J. Phys. Chem. Ref. Data (1982)  [2] E.L. Cussler, “Diffusion: Mass Transfer in Fluid Systems” (1997)

Separator (ε=0.65)

Br = 0.27

K = 0.12

Cathode (ε=0.3)

Br = 0

K = 0.15�

��
� + � −��� = 0

Dsep = 1x10-8 m2 s-1

Dcath = 5x10-10 m2 s-1

���� = �
�

�

 Estimated diffusivity2 of bromine in cathode using COMSOL 
multiphysics modelling software

 Indicates that tortuosity2 of FeS2 network is between 3 – 6

 Investigating effects of porous flow and temperature-dependent 
diffusivity with Sierra (Sandia’s Multiphysics Modelling Software)

Quantifying Diffusivity of Bromine
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More Data Still Needed…
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EIS

Combining Rheology with 
Impedance Spectroscopy

Investigating impedance, shear 
strength and compression of 
components during activation 

under various temperature and 
loading conditions

G= �
���
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More Data Still Needed…
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Building high temperature (> 350 ⁰C) permeability cell to measure 
electrolyte flow through individual components as a function of applied 

load and temperature

Permeability Cell
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Conclusions

 Developed new methodology exploiting high spatial resolution and 
resolution of electron probe microanalysis (EPMA) to probe 
electrolyte mobility within electrochemical systems

 Estimated an approximate order of magnitude decrease in the 
diffusivity of bromine into the cathode which we suspect is due to the 
large tortuosity (3 – 6) of the cathode structure

 Observed fast capillary-pressure driven flow into the micron –
submicron pore structure of the anode

 Configuring new experiments to obtain more direct measurements 
for more accurate input parameters to aid thermal battery modelling 
efforts at SNL

15
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Molten Salt Battery

Fuse Strips

Heat
Pellet

Molten Salt Cell



17

a)
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d)

e)
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Future Experiments Probing Transport

Building high temperature 
(> 300 ⁰C) permeability cell to 
measure mass flow through 

individual components
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Permeability Cell

EIS

Combining Rheology with 
Impedance Spectroscopy

Investigating impedance 
characteristics of components during 
activation under various temperature 

and loading conditions
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Separator (ε=0.65)

Br = 0.27

K = 0.12

Cathode (ε=0.3)

Br = 0

K = 0.15�

��
� + � −��� = 0

Dsep = 1x10-8 m2 s-1

Dcath = 5x10-10 m2 s-1
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