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M Implementation Algorithms Numerical Experiments
A Basic Fluid-Structure Interaction (FSI) Problem

Interface ~;

Fluid Qf

o Fluid (Navier—Stokes) and structure (linear elasticity) in contact over
an interface

pf (%—FUvVu) —2,V-Du)+Vp = fr in Qi
V-u = 0 inQf
2
pngZwars = f, inQ
e Continuity of velocity: u=n on
e Continuity of traction force: of nf=—0°-n; on 7t

where‘ D(v) == (Vv +Vv')/2 ‘and‘ ()i == 2uD(n); + AD(1) 0
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Challenges of Solving FSI Problems

Interface

Fluid Qf

Solution of FSI problems is challenging because of:
@ nonlinear mathematical models
@ strong coupling between constituent model components
e moving domain, which require mesh update and/or reassembly

@ shape of the fluid domain is part of the solution
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Description of the Optimization Problem

Fluid, Structure

p [(% V)Qf +(u- vU,v)} (0, W) — (5, - W)or

= (ffvv)ﬂf + (UF : nfvv)’Yt
(v -u, q)ﬂf =0

(81}2 ’€) + (0%, V€)as = (s, €)as + (07 - ns, €)5,

Use o' -nf = —o° - n, to replace (o - ne,v),, with (g,v),, and

(o° - ns, &)y, with —(g, &), i.e., unknown traction force as a control.

£

Find a g” that minimizes the functional

y 1 » 5
T i) =5 [ o=V P ) [ (g7 .
Yn

Yn
subject to the flow and structure constraint equations.
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An Optimization-Based FSI Approach

@ Use optimization techniques to find an optimal g that satisfies
continuity of velocity to within some desired tolerance

o Solve adjoint equations to use steepest descent method
e OR solve linearized (and possibly adjoint) equations to use
Gauss-Newton + BICGSTAB/CGLES/GMRES

Fluid Structure
Adjoint Adjoint
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Arbitrary Lagrangian—Eulerian (ALE)

@ Allows for formulation of the fluid on a moving domain
@ Introduces a mesh that moves in time and space

Y, is the time-dependent bijective mapping which maps the reference
domain Qg to the physical domain €;:

\Ut . Qo — Qta \Ut(f() = X(ﬁ, t) y

where X and x are the spatial coordinates in € and €2;, respectively.
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Variational Formulation of the Fluid Governing Equations

Using the Reynold’s Transport theorem

d 0o
- - X x* an
dt Jo, ov dQ /Qt (at +oV z> v

with ¢ = u, the chain rule, and integration by parts, the variational
formulation of the flow equations becomes:

d
pr i (U V)gr + pr ((u = 2) - Vu, v)gr = pr(u(V - 2), v)or + 2v¢(D(u), D(v))gs
— (P, V- V)gr — (2vD(u) - ne — i, v).
= (fr,v)qr Vv € Hb(Q1),
(9, V-u)gr =0 VqeL*(Q),

H H — d‘Ut ~ wn_wnfl
where z is the mesh velocity, z = <3t ~ =1
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Time Discretization of the Flow Equations

Time discretization by implicit Euler yields

At -1
+2v¢(D(u"), D(v))gr — (", V - V)ge

Pf {(un’ V)Qz _(un—17 V(v))ﬂz :| + pr [((u" _ z") . Vu"7v)n£ — (u"(v . z")7V)n;]

— (2v¢D(u") - g — p"nf,v)_Yt

= (7. v)gr W € Hp(2)),

(4. V- u")gr =0 Vg€ 3(Qf).

@ It is expected that the overall order of the time discretization (fluid
and structure) will be only first order.

@ Second order time scheme of the structure will be used for analysis
because of extra accuracy needed.
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Second Order Time Discretization of the Structure

A second order time discretization of the structure problem is

Ps .. .
i(n" _Tl" 175)95

_ (2 L ((D(n”) + L72(n"‘1)) : “S) +A (v. (%”_1)) ns,ﬁ)w0

fnfl

fo+f; S
() ecman,
QS

A"+ 7"t > (n”fn"*l ) 20008
—7) | ——7) =0Vyeli(Q).
( 2 Qs At Qs
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Optimization Constraints

® Set g":= (2vrD(u") - ng — pns — 2 ((u" — 2") - ne)u") |, as our control

° %((u" — z) - n¢)u” will be approximately zero since at an optimal solution —g”
can be used as the stress for the structure

@ —(g" o W, 1) J, representing (2uD(n") - ns + A(V - ™)ns) It

Making this substitution and introducing c(u,v,w) = %((UVV,W)Q[ — (UVw,Vv)qr),
the flow constraints become

f
1
%[(U"ﬂ')ng —(u" VW)gr 1+ ple(u”, u”,V)gr + 5 (U nJu”, v)er
1 mon non
- 5((V -z )” 1")92 - C(Z s u 7")(1;]
+2v¢(D(u"), D(v))gr + (P", V - ¥)gr

= (/. V)gr + (8" V)5, W € HB(),

(@.V-u")gr =0 g€ L*(Q).
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Optimization Constraints

Also, the structure equations constraint can be rewritten as
& -n _ »n—1
A (1" &) gs

o (P2 ) (o (257 ),

_ f£’+fs"’1g _(V(g”)JnJrV(g”*l)Jn—l
- 2 7). 2

,5) V¢ € HL (),
Y0

7"+t ) <n"fn"‘1 ) 2/0ys
b/ — (=T =0V~ € L2(Q9).
( 5 7)o ar 7)o v € LH(Q%)
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A New Functional

Expected difficulties:
@ Not possible to get a stability estimate for " in H}(Q®)
@ An optimal )" can be shown only in L2(Q°)

@ The previous functionals are not well-defined (trace of optimal 0" is
not well-defined)

We introduce a first order finite difference approximation of 0", and
define the new optimization problem as

. V) =V
" At @Y

n .n n =n on 1
jlfl;(u P, M ann7,r] 8 ):E/

g n
+ 5 |g |2 d’Ym
Yn

subject to the flow and structure constraints.
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Penalized Functional as Norm of Nonlinear Function

Define the nonlinear operator N, : L?(7,) — L2(v,) x L2(v,) by
(u"—n" oW ) |,
Veg" ’

where u”, 7" are the fluid and structure velocities when g” is the stress
function on the interface. Then, the functional can be written as

Na(g") = (

n 1 n
Tn(g") = §||N,,(g ey x12(30)
and the nonlinear least squares problem we consider is to

seek g" € L2(vy,) such that J,(g") is minimized.
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Linearization of Nonlinear Function

We can linearize N,(g") using the Fréchet derivative of N,(-) at g",
N;,(8"), by

Nn(g) = Na(8") + N'(8,)(8" — 8") + O(llg" — &"lI2(,,) x12(y)

so that solutions of the nonlinear least squares problem can be obtained
by repeatedly solving the linear least squares problem

. 1 =n n
wiin 5IN(E") + N,(g")h 22 ¢ 2(30) -
where h" = g" — g". Hence, starting with arbitrary g(’o) we can find a

sequence {g ) } obtained by g7, )= g(k y+t h(k) where h?k) is a solution
of the Ilnear Ieast squares probﬁem
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Gauss-Newton Algorithm

Algorithm (Gauss-Newton)

1. Choose g
2. Fork=1,2,3,...,
a. computable in parallel:
i. find “Fk) and p(”k) on Q,f,y(k,l) using z?k_l) and gz’k_l),
ii. find "?k) and h(’k) using g(”k_l),
b. update v, Z(y), v, and Q,f,’(k) using 1k,
if% Vp(k—1) |un —n"o (\|157k_1))_1|2 dy < e, break,
d. compute h(’k) by CGLES, or in some other way solve the least squares
problem with A = Ny (g(,_1)), b = —Na(gk_1)), and x = h{},,
e. set gy = g(k—1) T h{l-
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Haemodynamic Experiment

Ny =0
np =0 =[0,6] x [1,1.1] np =0
T,
uy =b(?) Q) = 0,6 x [0,1] uy =0
up = 0

b(t) = (—103(1 — cos 2£),0) dyne/cm”, t <0.025
(0,0), 0025<t<T.

pr=1g/cm3, vr = 0.035 g/cm-s.
ps=11g/cm3, E =3 x 10° dyne/cmz, v = 0.3. The Lamé-Navier
parameters A and p are defined as follows:

E
A= — 5 dyne/cm2, W=

A=) 1<) dyne/cm”.

E
2(1+v)

B C.M. Murea, S. Sy, A fast method for solving fluid-structure interaction problems numerically, International Journal for Numerica
Methods in Fluids. 60 (2009) 1149-1172.
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Comparison with Aitken's Relaxation
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Figure: Vertical displacement at three points on the interface using first (1)
and second (2) order formulations with the optimal control algorithm beside
vertical displacement using Aitken’s relaxation (3)

Spatial discretization horizontally: 0.2 cm

Spatial discretization vertically: 0.1 cm

Temporal discretization: At=le-4s, T=0.1s
Aitken's stopping tolerance: le-7

Optimization stopping tolerance: le-4
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@;_’ Implementation Algorithms Numerical Experiments
Comparison of Linear vs. Nonlinear Elasticity
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Figure: Vertical displacement at three points on the interface using (1)
optimization and (2) Aitken's relaxation with the St. Venant—Kirchhoff
constitutive equation and (3) optimization and (4) Aitken’s relaxation with the
linear elastic constitutive equation.

Spatial discretization horizontally: 0.2 cm

Spatial discretization vertically: 0.1 cm

Temporal discretization: At=le-4s, T=0.1s
Aitken's stopping tolerance: le-7

Optimization stopping tolerance: le-4
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3D Pulsatile Flow with Nonlinear Elastic

Ll
; L
g T

o Navier-Stokes fluid, ;1 = 0.035 poise, pf = 1 g/cm?,
straight vessel of radius 0.5 cm and length 5 cm
@ St. Venant—Kirchhoff structure, ps = 1.2 g/cm3, E = 3.0e + 6
dynes/cmz, v = 0.3, surrounding structure thickness of 0.1 cm
@ Overpressure on inlet boundary of 1.3332e+4 dynes/cm? for
t € [0,.005] s, inlet and outlet boundaries clamped
o At =le4s

I E. Burman, M.A. Fernandez, Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility,
Computer Methods in Applied Mechanics and Engineering. 198 (2009) 766-784.
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3D Pulsatile Flow Computational Effort

Fefinemant b ‘ DOFs Gauss-Newton ~ GMRES / Fluid Solves

Iterations  Gauss-Newton (Total) (Strgsl:ldDeStZ:"r,:isned) Work Factor
1 5/12| 3975 3807 11.54 14302 2570 8.53
2 5/24| 17983 4472 15.39 16608 2473 10.33
3 5/48|128790 5185 24.84 20006 2791 10.88

__ Fluid Solves (Total) + 2 Gauss-Newton Iterations
Work Factor = Fluid Solves (Stress Determined)

@ Even without preconditioning, the cost of optimization does not
grow significantly with DOFs
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Significance of these Results

@ Very few outer optimization iterations are performed per timestep
(3-5 generally)
@ The assembled matrix does not change between inner optimization
iterations
o We can reuse the matrix factorization over all linear optimization
iterations!
@ We can solve the coupled FSI problem in a constant multiple of
the computational effort needed to solve the forward problems, had
the correct boundary condition been known

@ We use partitioned solvers, so the forward solves are cheap in
comparison to a monolithic approach
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Completed Research

Navier—Stokes / Linear Elasticity

Recast FSI problem as a constrained minimization of the velocity
mismatch

Proved the existence of an optimal solution
Proved the existence of Lagrange multipliers

Applied Brezzi-Rappaz-Raviart (BRR) theory to prove convergence
rates over a single time step

Proved convergence of steepest descent algorithm

Demonstrated theoretical rate of convergence via computation for
fixed domain over a single time step

Navier—Stokes / St. Venant-Kirchhoff

o
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Derived linearization of St. Venant—Kirchhoff constitutive equation

Executed computational complexity experiments on 3D flow through
a cylinder
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