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Executive Project Summary

The exe-Guard Project is an alliance between Dominion Virginia Power (DVP), Sandia
National Laboratories (SNL), Dartmouth University, and Schweitzer Engineering
Laboratories (SEL). SEL is primary recipient on this project. The exe-Guard project was
selected for award under DE-FOA-0000359 with CFDA number 81.122 to address Topic
Area of Interest 4: Hardened platforms and Systems. The exe-Guard project developed
an antivirus solution for control system embedded devices to prevent the execution of
unauthorized code and maintain settings and configuration integrity.

This project created a white list antivirus solution for control systems capable of running
on embedded Linux® operating systems. White list antivirus methods allow only credible
programs to run through the use of digital signatures and hash functions. Once a
system’s secure state is baselined, white list antivirus software denies deviations from
that state because of the installation of malicious code as this changes hash results.

Black list antivirus software has been effective in traditional IT environments but has
negative implications for control systems. Black list antivirus uses pattern matching and
behavioral analysis to identify system threats while relying on regular updates to the
signature file and recurrent system scanning. Black list antivirus is vulnerable to zero day
exploits which have not yet been incorporated into a signature file update. System scans
hamper the performance of high availability applications, as revealed in NIST special
publication 1058 which summarizes the impact of blacklist antivirus on control systems:
Manual or “on-demand” scanning has a major effect on control processes in that they
take CPU time needed by the control process (Sometimes close to 100% of CPU time).
Minimizing the antivirus software throttle setting will reduce but not eliminate this effect.
Signature updates can also take up to 100% of CPU time, but for a much shorter period
than a typical manual scanning process.

Control systems are vulnerable to performance losses if off-the-shelf blacklist antivirus
solutions aren’t implemented with care. This investment in configuration in addition to
constant decommissioning to perform manual signature file updates is unprecedented
and impractical. Additionally, control systems are often disconnected or islanded from
the network making the delivery of signature updates difficult.

Exe-Guard project developed a white list antivirus solution that mitigated the above
drawbacks and allows control systems to cost-effectively apply malware protection while
maintaining high reliability. The application of security patches can also be minimized
since white listing maintains constant defense against unauthorized code execution.
Security patches can instead be applied in less frequent intervals where system
decommissioning can be scheduled and planned for. Since control systems are less
dynamic than IT environments, the feasibility of maintaining a secure baselined state is
more practical. Because upgrades are performed in infrequent, calculated intervals, it
allows a new security baseline to be established before the system is returned to
service.

Exe-Guard built on the efforts of SNL under the Code Seal project. SNL demonstrated
prototype Trust Anchors on the project which are independent monitoring and control
devices that can be integrated into untrustworthy components. The exe-Guard team



started with the lessons learned under this project then designed commercial solution for
white list malware protection.

Malware is a real threat, even on islanded or un-networked installations, since operators
can unintentionally install infected files, plug in infected mass storage devices, or infect a
piece of equipment on the islanded local area network that can then spread to other
connected equipment. Protection at the device level is one of the last layers of defense
in a security-in-depth defense model before an asset becomes compromised.

This project provided non-destructive intrusion, isolation and automated response
solution, achieving a goal of the Department of Energy (DOE) Roadmap to Secure
Control Systems. It also addressed CIP-007-R4 which requires asset owners to employ
malicious software prevention tools on assets within the electronic security perimeter. In
addition, the CIP-007-R3 requirement for security patch management is minimized
because white listing narrows the impact of vulnerabilities and patch releases.

The exe-Guard Project completed all tasks identified in the statement of project objective
and identified additional tasks within scope that were performed and completed within
the original budget. The cost share was met and all deliverables were successfully
completed and submitted on time. Most importantly the technology developed and
commercialized under this project has been adopted by the Energy sector and
thousands of devices with exe-Guard technology integrated in them have now been
deployed and are protecting our power systems today.

Project Actuals Compared to Goals




Estimated vs. Actual Accomplishments Estimated Actual
Milestone Description Completion Completion
Project Start Date 12/2010 12/2010
Complete revision of the project management plan. 1/2011 1/2011
SE_L,_SNL, and DVP to author high-level white list 3/2011 3/2011
antivirus concept document
Author high-level product requirements in a system
specification. 6/2011 6/2011
Bi-annual Review #1 6/2011 6/2011
Complete |dent|f_|cat|0n of useable open source 2/2011 2/2011
technology and interoperable opportunities
Complete product design and use cases 7/2011 7/2011
Gate 1 Exit - Go/No-Go Decision Point 8/2011 8/2011
Bi-annual Review #2 12/2011
Complete all low-level implementation requirements 3/2012 3/2012
Bi-annual Review #3 6/2012 7/2012
Linux—based product prototype with preliminary 10/2012 10/2012
code completed.
Bi-annual Review #4 12/2012
SEL product code completes unit testing, reviews, 07/2013 6/2013
and approvals.
Sandia National Labs and Dominion Virginia Power
provide prototype feedback to SEL development 09/2013 11/2013
team.
Commercial product development complete. 10/2013 11/2013
. - . Dominion

Gate 2 Exit - Go/No-Go Decision Point 10/2013 Meeting 11/2013
PHASE 2: TESTING & DEMONSTRATION
Sandia Natlonall Labs begins product security 10/2013 9/2013
robustness testing.
Dominion Virginia Power begins field verification. 10/2013 11/2013
Sandia National Labs provides product security test 01/2014 3/2014
report results.
Dominion Virginia Power provides field verification 01/2014 12/2013
results.
Gate 3 Exit - Go/No-Go Decision Point 12/2013 12/2013
Release of commercial product. 01/2014 12/2013
Dominion Virginia begins deployment of the white 02/2014 3/2014

list antivirus solution




Author Deployment Guide 02/2014 3/2014
Com_plete research of inter-process memory access 8/2015 8/2015
policies

Transfer_research results to Open source 9/2015 12/2015
community

Complete testing on inter-process memory access

control policies 10/2015 12/2015
Project Closeout Review 11/2015 1/2016

Project Closeout Reports Submitted 12/2015 1/2016

Project Summary

The team, which is made of a system owner, national laboratory, academia, and
technology supplier gathered to capture the functional requirements required to have a
successful deployment of malware protection on energy delivery systems. This effort
documented the system requirements and came up with a set of top level features that
would need to be met to allow industry adoption:

1) A software solution capable of operating with embedded devices capable of being
installed retroactively

2) Automated response and rejection of unauthorized attempts to inject malicious code
or alter settings with reduced impact to system performance

3) Digitally signed firmware to prevent installation of modified firmware and have a
known good starting point

4) Detailed logging and situational awareness of unauthorized attempts
5) Zero settings
6) Minimal impact to boot times and processor burden when in operation

With the design goals clearly identified the team searched for open source software
solutions and evaluated if the Code Seal or Trust Anchor technology could be used. It
was determined that the hardware requirements for Trust Anchor were not able to meet
the backward compatible industry requirement but the team did identify the open source
use of the following:

1) Security enhanced Linux SELinux for application of mandatory access controls

2) Autoscopy from Dartmouth and University of Illinois Urbana Champagne for root kit
prevention

Next the team worked together to develop and commercialize the technology. SEL lead
this development and selected the SEL-3620 as the first product to be commercialized
with the exe-Guard technology. The SEL-3620 is a security gateway developed under
the Lemnos Project which is another DOE sponsored projects under the CEDS program.
During this effort for commercialization the Energy sector requested similar products to



be included in this effort. The exe-Guard team expanded the commercial release to
include six products SEL-3620, SEL-3622, SEL-3610, SEL-3530, SEL-3505, and SEL-
3555 without requiring project schedule or budget to change. This expansion was due to
the simple design and scalability of the technology integration and the overwhelming
industry demand for the technology in this products. The team completed the
development meeting all end user expectations releasing a zero setting malware
protection solution protecting root kit, application whitelisting, digitally signed firmware,
and memory mandatory access controls. The boot times were less the 5% additional
and processor burden is less than 4% additions. This is accomplished by compiling the
whitelist technology into the firmware build of the product and whitelisting the released
functionality of the product.

After commercial release the team provided industry education and outreach through
normal SEL sales channel and industry conferences. Exe-Guard was presented at two
conferences. This industry education generated lots of interest which were addressed
by the team authoring a white paper explaining the functional concepts of the malware
protection and whitelist architecture and application notes detailing how to deploy and
monitor the technology.

Please see attached whitepaper authored by the exe-Guard team explaining the
technology in more detail, “Whitelist Malware Defense for Embedded Control System
Devices”, Josh Powers and Rhett Smith, Schweitzer Engineering Laboratories, Inc.

The project team identified work within scope and added these tasks to the SOPO while
still remaining on budget to the original budget. This allowed more work than originally

planned to be accomplished without any budget adjustments. The team did request no
cost extensions of the project management plan but did not cut any tasks from scope.

Please see additional technical details on this work within scope in the attached
whitepaper, “Implementing a Vertically Hardened ICS/SCADA Control Stack: from kernel
to application runtime”, Sergey Bratus Dartmouth

Products Developed Under Award

The exe-Guard project is a cooperative R&D project to accelerate commercialization of
advanced cybersecurity technology focused on the Energy sector. The technology
developed under this contract is fully commercialized in six products from Schweitzer
Engineering Laboratories, Inc. to date and there are plans for more products to be
released with the technology integrated in the near future. These products can be found
on the SEL website located here

https://selinc.com/products/3620/

https://selinc.com/products/3622/

https://selinc.com/products/3610/

https://selinc.com/products/3530/




https://selinc.com/products/3505/

https://selinc.com/products/3555/

The literature required to support these commercial products including datasheets,
manuals, product flyers, and installation guides can be found at these links as well.

The exe-Guard project published one whitepaper titled, “Whitelist Malware Defense for
Embedded Control System Devices” and can be found at
https://cdn.selinc.com/assets/Literature/Publications/Technical%20Papers/6676_Whitelis
tMalware JP 20150120 Web2.pdf

This paper was presented at the 2015 Power and Energy Automation Conference in
Spokane Washington.

SEL also published an application guide titled, “Incident Response Planning for exe-
Guard” to answer the question industry asked, when | get an exe-Guard log what should
| do. This application guide can be downloaded from https://selinc.com/

This project fostered lots of new industry collaboration as well as strengthen existing
partnerships. SEL participated in the development of more commercial ready Autoscopy
technology using the Dartmouth and UIUC code base and streamlining it to reduce the
burden on the processor. This makes it easier for other suppliers to use it in their
products. SEL and Sandia strengthened their partnership that started in the Lemnos
DOE CEDS project and had the red team from Sandia onsite at SEL for a week working
with the developers to make more secure code.

There were no patents applied for under the project and the efforts were structured to be
fed back to the open source on the relevant packages like ELFbac and Autoscopy.

Industry Validation Testing

The exe-Guard team collected the industry requirements as one of the first tasks of the
project. This was done by communicating with Dominion Virginia Power (DVP). They
then participated in the project development monthly calls to help the team weigh the
technical trade-offs and select the best priorities. Once development design was over
SEL and Sandia traveled to DVP to present the vision for the final product. With
approval from DVP the development team set of the complete the commercialization.
Once the product released a firmware image was sent to DVP for their lab testing to
upgrade an existing SEL-3610 product they had with previous firmware without exe-
Guard to the newly released firmware that included exe-Guard for the SEL-3610. DVP
tested that the same functionality was supported as they had previously and that the
communications through the product was at or better than before. They tested that the
firmware upgrade process was easy and the settings were preserved. Then finally they
tested the burden on the product to make sure it could stand up to the operation
requirements they had at worst case and reliably worked in all conditions. Once all of
this past they accepted the engineering change order and started deploying the
technology at a pilot site. This pilot site ran for many months before expanding the
deployment to the other facilities. All stages of this testing was successful. SEL worked
with many other customers and they have successfully repeated this testing and



deployed the technology on their power systems. Exe-Guard is successful because
industry has tested and deployed it. Exe-Guard is broadly deployed protecting our
nation’'s power systems today.

Conclusion

The exe-Guard project completed all tasks in the original statement of project objectives
and some additional work within scope. The budget covered all work and no additional
federal funds were required. The team collaborated to design the most scalable,
economical, and safest malware protection solution for embedded control systems on
the market today. This was accomplished by having no settings, able to be applied to
equipment already deployed and is offered at no additional charge in the products
commercialized. The industry has tested and deployed the resulting exe-Guard
technology in large scale. This effort awarded in the CEDS program accelerated the
development and deployment of advanced cybersecurity technology that is actively
protecting our critical infrastructure today.
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Whitelist Malware Detense for Embedded
Control System Devices

Josh Powers and Rhett Smith, Schweitzer Engineering Laboratories, Inc.

Abstract—Malware protection is a necessity for any electric
device in modern critical infrastructure. We must all protect our
critical cyber assets with antivirus as North American Electric
Reliability Corporation (NERC) CIP-007 R4 states, but more
broadly, we must protect our assets from malicious code infection
regardless of whether they are identified as critical assets or not.
Embedded devices and traditional personnel computer devices
should be protected. The Stuxnet worm demonstrated that air
gaps and unplugged devices are not immune from infection. We
must engineer devices and systems to protect against the impact
of malware.

Traditionally, this protection was accomplished by using
blacklist technology, where the technology watched for known
bad code and blocked it. This resulted in a race to update
malware protection technology when new threats were
discovered, before infection happened. With malware statistics
topping 83 million pieces of code, based on the August 2014
McAfee Labs Threats Report, and growing every day, the
administrative task is impossible to keep up with. This design
also can put excessive burden on processors, slowing
computations and communications.

New malware protection technology is designed using a
whitelist architecture that only allows known good code to
execute on the device. This simplifies administrative overhead
because new updates are not needed when new malware is
released. A control system environment is built with application-
specific devices that are set to accomplish one or more tasks and
left alone to continue accomplishing the same tasks for many
years, setting a perfect stage for whitelist malware protection
technology.

This paper investigates the benefits that whitelist malware
protection provides at the application layer (similar to existing
anti-malware technology) and explains why embedded devices
need architecture-specific malware protection. The paper shows
that correctly combining malware protection and embedded
architecture improves the reliability and cost of ownership of the
whole system. The paper also highlights the enhanced security
that whitelist malware protection provides over traditional
solutions and how these principles apply to computers and
embedded devices. The paper shows how whitelist malware
protection meets and exceeds the NERC CIP requirements in
Versions 3 and 5.

I. INTRODUCTION

Malicious software, or malware, is a tool often used to
compromise the integrity of software or hardware. It is
primarily used due to the power of automating the
reconnaissance, infection, and compromise of a wide selection
of targets. Simply put, malware can automate the exploitation
of a system and do it much faster than one person.

Strict laptop computer usage policies and constant malware
protection updates are protection methods that already exist in
the electric sector. Malware trends have moved from targeting

code flaws to enticing people to click links in emails or visit
infected websites. Corporate infrastructure protection plans
and technology are mature and established for malware
protection. So how can we bridge the gap between corporate
infrastructure protection plans and malware protection for
control systems that consist of embedded, application-specific
devices, many of which run on real-time operating systems?
This changes the game completely because we are now talking
about an infrastructure that is built for machine-to-machine
(M2M) communications that have to meet high-reliability and
availability requirements with very little downtime tolerance
in control systems where physical consequences to cyber
exploitation exist. Malware protection solutions have to
support safe and reliable operations and work with the
attributes of the system they are applied to. This leads us to
the conclusion that the solutions designed to protect corporate
systems are not a good fit for the control system due to the
vast differences in their attributes.

Whitelist malware protection provided at the application
layer is a viable solution for control systems. This paper
discusses the enhanced security provided by whitelist malware
protection compared with traditional malware solutions. It
further discusses how the combination of malware protection
and embedded architecture can improve the reliability and
ownership cost of an entire control system. The paper also
discusses the implications of whitelist malware protection on
North American Electric Reliability Corporation Critical
Infrastructure Protection (NERC CIP) requirements in
Versions 3 and 5.

II. INCREASING MALWARE RISKS IN CONTROL SYSTEMS

Increasing demands on power systems today are creating
more opportunities for malware infections. Smart grid is a
term that has many definitions, but all of those definitions can
be boiled down to advancements in control, measurement, and
operations to automate new functions or previously manual
ones. These advances have increased the number of electronic
devices and the amount of code in the devices that make up
power systems. They have also increased the communications
links between all of those devices. These factors have
increased the attack surface and the potential spread of
malware by providing more targets, entry points, propagation
paths, and potential vulnerabilities.

Based on the research results of McAfee Labs in their
August 2014 quarterly threats report, malware is increasing on
average 100 percent per year, and that trend is accelerating
[1]. Malware developers have a lucrative market and are able



to sell their malware for Bitcoin or other currency. In
comparison to the average $60,000 starting salary of a
software engineer in the United States, and considering that
there have been very few successful convictions on malware
charges in the court system, illegal software engineering
activities do not have strong enough deterrents to stop
malware from being created. It is easy to see that ethics are the
only thing stopping more people from making a career out of
malware development. The writing of malware has gone from
the curious and smart just wanting to see what they can do to
organized criminals and nation-state actors with financial and
political agendas offering advanced training and recruitment
programs. Protecting power systems from these motivated and
advanced sources is challenging, but we have the advantage
when we design and engineer systems with protection
capabilities that leverage the core attributes of the power
system.

III. POWER SYSTEM ATTRIBUTES PERFECT
FOR CYBERSECURITY

Power system networks are not like corporate information
technology networks because they have a unique set of
attributes that make information technology (IT) cybersecurity
technology an imperfect fit. Building a cybersecurity program
around these unique attributes provides the long-term stability
and core foundations that we can use to advance cybersecurity
to new levels. The control systems operating power systems
are engineered with a specific purpose and are built to the
highest levels of reliability. Each piece of technology,
communications session, and data set is implemented for a
reason. Every device used on the power system is carefully
engineered and has a specific task. Each task is carefully
programmed and then, in most cases, left alone to run for
many years. This provides a baseline behavior for the device
(how long it takes to respond, the amount of data served, what
other devices talk to it, or what other devices it responds to).

Because the control system is built with M2M applications,
baseline behaviors will not change unless the owner changes
the services or devices on the system. These changes are rare
in comparison to corporate IT infrastructures, so they can be
managed with good change control policies and planned for in
order to accept a new baseline. This level of understanding is
the cybersecurity advantage. The best defense is to know the
system, establish methods and means to monitor what is on
the system, and react to undesired events. Instead of watching
for bad code on the device, operators monitor and confirm that
only approved devices and data are on the system. This
provides the platform to protect against known and unknown
malware. It also provides measurable success criteria for
system uptime, reliability, and service provided, giving
purpose to the engineers that operate the power systems on a
daily basis. Baselining such as this results in metrics for asset
management that inform operators what devices are approved
on the system and that those devices are operating correctly.
Communications outages are captured and unauthorized
devices are logged. When systems are understood and

monitored to this level, it is extremely difficult for attackers to
hide their actions.

Power systems consist of many control and monitoring
devices that are application-specific technology or embedded
devices. These embedded devices have a wvariety of
microprocessor architectures and operating systems. With a
whitelist malware protection approach, we have the device
operations and communications that can be monitored to
confirm the system is doing only what is desired by the asset
owners.

Even better, the operational and administrative
management (OAM) costs are very low when technology
applies safeguards in a whitelist architecture because it is
locked in by the manufacturer. The only time the footprint
changes is when a firmware upgrade is performed. There are
no requirements for signature or patch updates as new
malware is released. The devices are purpose-built, so the
running of specific tasks and the communications are
consistent. Specific protocols are enabled and turned on for a
task and allowed to run continually for that task, enabling a
communications baseline to be established. Control system
devices on the power system measure the power at various
distributed geographic locations, and any change in
measurement will be seen by the operators or the automation
schemes, triggering an event response action.

Based on the native attributes, the power system is perfect
for some of the most advanced cybersecurity ever seen. Two
simple protection methods contribute to this level of
cybersecurity: whitelisting and deny-by-default. A whitelist
approach is the method used to ensure that only desired
devices, communications, and data are present on the system.
The keys to its success are knowing what is on the system and
knowing what each device is doing (this is the baseline). The
deny-by-default method requires each device and
communication to be off unless explicitly turned on for a
purpose. In power systems, the advantage goes to engineers
and operators when they know their system, establish a known
good baseline, and have methods to ensure that this baseline is
preserved.

IV. POWER SYSTEM ATTRIBUTES CHALLENGING
FOR CYBERSECURITY

The foundations of the control system architecture enable
the industry to advance cybersecurity to greater levels than
corporate networks, but there are specific challenges we must
address to get there. Power systems are built with many
embedded control and measurement devices. Embedded
devices are not open computer platforms that allow the end
user to install new software. The software running on these
devices is produced by the manufacturer, and steps are taken
to ensure that no new software can be installed. This is good
and bad. The good part is that malware is software trying to
install itself on these devices, so the architecture is already
safeguarding against this. The bad part is that the end user has
limited visibility of what software is running on the device.
This is important for patch management procedures. The end
user now has to establish monitoring processes for the



manufacturers they have purchased products from and rely on
these manufacturers to not only alert them when security
vulnerabilities are discovered but release the mitigations in a
timely manner.

Another challenge is the availability requirement for
control systems. There is very little tolerance for downtime.
Any reboot or decommissioning to take a product out of
service for updates costs the company money and increases
safety hazards. These updates need to be planned and tested
well in advance, which will result in a slower deployment time
between when security vulnerabilities are fixed and when they
are deployed on the control system. The best mitigation to this
is to select devices that accomplish the job they are intended
to do with as small a code footprint as possible. These devices
all work as a larger system, so many times when taking one
device out of service for maintenance, the overall system
suffers.

It is good that these systems have many channels for
monitoring, and that operators watching the system
understand event response plans. The challenge comes with
change control. When changes are made, alarms and logs
generated by these changes need to be expected or operators
will waste time investigating them, or worse, will get
comfortable seeing alarms and not respond. Most importantly,
these systems are built for reliability and use redundancy to
meet extreme reliability requirements. The contingencies to
any change must be planned and well understood before the
change is applied. This mandates that lab testing and system
validation testing be performed and that engineering standard
documents inform work instructions to prevent any undesired
operations.

V. MALWARE PROTECTION ARCHITECTURES

There are four common means of protecting a system from
malware that we look at in this paper: blacklisting,
whitelisting, mandatory access control (MAC), and rootkit
prevention.

A. Blacklisting

Blacklisting is the traditional approach used in corporate
environments to protect computing resources. In this
environment, systems change frequently to support corporate
requirements. Blacklisting works well in these environments
because updates are easily managed and automated. When
new malware is detected, a signature is created and all of the
clients receive the new signature. Blacklisting has a long
history and has been shown to work reasonably well in many
cases. The signatures are stored in large proprietary databases
that are updated regularly with the newly detected signatures.
Because new signatures are created regularly, a system with a
recently updated signature database must scan all files and
processes on the device in order to check for possible
infections it did not previously know about.

B. Whitelisting

Whitelist anti-malware creates a signature for all of the
allowed software on a system and assumes that the system

will rarely change. This means that programs cannot be
installed or modified without updates to the whitelist.
Whitelist protection is fairly unexplored because it is difficult
to manage in corporate environments. There are also two
kinds of whitelist anti-malware. In some systems, the whitelist
can be modified in the field by entering a password. This type
of system is used in some corporate environments. The other
way to use whitelist anti-malware is to cryptographically sign
the files with a public and private key pair and keep the
private key elsewhere. This type of system is more difficult to
update because any updates have to be signed before they can
be brought out into the field. It is more secure in the field
because the secret protecting the whitelist security is not kept
on the device being secured.

C. Mandatory Access Control

MAC has a lot of support in the open source community
and has a strong backer in the National Security Agency
(NSA). MAC works by segregating applications into separate
domains of execution with very specific permissions granted
to those domains. This is in contrast to discretionary access
control (DAC), which is the default system used by most
operating systems. Fig. 1 shows that with DAC systems,
permission levels lower on the list have access to anything
above them. Kernel can access root and root can access
anything user specific. While the kernel still has access to
anything in user space with MAC, each user space application
is segregated into separate domains that all have limited,
specifically granted permissions to each other. This narrows
the scope of an exploit, limiting its reach to only the
permissions the original domain had. Before, if the root layer
was compromised, the entire user space was compromised.

DAC MAC
User Space
User User Space

|UDUDU

| Kernel | Kernel |

Fig. 1. DAC and MAC Protection Architectures

D. Rootkit Prevention

Rootkit prevention is the newest and most unexplored area
of malware protection. It works by attempting to ensure that
drivers and kernel modules come from a trusted source and, if
not, preventing their use entirely. Drivers and kernel modules
can both circumvent many other security measures because of
their access to the kernel or operating system. Some rootkit
prevention systems also attempt to verify that system calls
have not been modified or interfered with. Adding a hook, a
piece of code that runs when another function is called, to a
system call is a common means of getting a rootkit into the
kernel, and it is exceptionally difficult to detect.



VI. EVALUATING SECURITY OF MALWARE TECHNOLOGY

Each of the previously described methods that are used to
protect a system from malware has advantages and
disadvantages.

A. Blacklisting Benefits and Drawbacks

Blacklisting is a reactive approach. It suffers from zero-day
vulnerabilities because of this, but it does have the advantage
of experience. It also benefits from the fact that specific
attacks can be countered once a new signature is created. The
biggest disadvantage, however, comes from the requirement to
update the blacklist antivirus signature database on a regular
basis in order to maintain its effectiveness. This is a poor
design in an embedded system where updates are costly and
infrequent. As mentioned previously, when a signature
database is updated, a scan of the system must be performed to
ensure that an infection that was previously undetectable is
now detectable. The problem, though, is that embedded
systems generally perform a specific task, often with real-time
constraints. They are generally not engineered with occasional
central processing unit (CPU) spikes and I/O-intensive disk
scans in mind. This means that simply updating the signature
database could degrade the ability of an embedded system to
perform its main function for a period after the install. These
limitations make blacklist anti-malware unsuitable for use in
embedded systems.

B. Whitelisting Benefits and Drawbacks

Whitelist anti-malware maximizes safeguards while
minimizing the administrative overhead in purpose-built M2M
infrastructures. Whitelist malware protection is optimized for
control systems instead of corporate information systems
because of the reduced change management requirements on
control systems. When there are frequent changes in what
each devices does, whitelist malware protections become
administratively burdensome. Each time an update is made to
the system, an update must be made to the whitelist signature
database as well. This is cost prohibitive in corporate
environments, where updates to software are frequent.
However, in an embedded system, updates to software are
infrequent and it is not infeasible to include updates to the
whitelist signature database when updates are made. In fact, it
is often the case that updates to software in an embedded
system are done via firmware image updates that can include
the whitelist signature updates as well. The strong suit of
whitelist anti-malware is that it does not require periodic
updates to keep up with recent malware activity and does not
suffer from zero-day exploits, except those against the
whitelist anti-malware software itself.

Another weakness of whitelist anti-malware is that it
cannot perform checks on running software. Once a piece of
software has been loaded into memory, whitelist anti-malware
can no longer say anything meaningful about its integrity.
This means that a whitelist anti-malware solution cannot
protect against malware that exploits things like buffer
overflows, except to contain the exploit to only the running

process that was exploited. Whitelist anti-malware does
prevent an infection that has been persisted to disk from
running.

C. MAC Benefits and Drawbacks

MAC takes a different approach to security than that of
either whitelist or blacklist anti-malware. Instead of
attempting to block the execution of a program, it attempts to
constrain the reach of running software. All resources on a
system are placed in a predefined domain and domains are
then given specific access to other domains.

There are many MAC implementations, but the most
common MAC systems are AppArmor and Security-Enhanced
Linux (SELinux), both of which provide a similar result when
properly configured. Individual executables are limited to the
minimum set of permissions they need to do their job. This
means that an exploited process will have limited reach and
will be less likely to corrupt a system or prevent it from
performing its primary function.

The downside to MAC is that it is very difficult to
configure correctly, and mistakes in the configuration may not
be detectable without a significant design effort. Fortunately,
the effort of setting up MAC for an embedded system falls to
the company creating the firmware, and they generally have
the information required to correctly configure MAC. In the
corporate environment, MAC is much more difficult to
configure because small changes in the system can be difficult
to adapt to in the MAC policy. Another problem with MAC is
that it makes no attempt to verify the integrity of the process
being placed into a domain. This means that an exploit that
can modify the file system can persist its infection and perhaps
spread by infecting other executables on the system,
increasing its reach over time.

D. Rootkit Prevention Benefits and Drawbacks

Rootkit prevention provides yet another approach to
securing a system. Generally speaking, operating systems are
divided into two segments: the user space and the kernel
space. User space tools are kept secure largely by software
running in kernel space. Requests for access to all resources
on a device go through the kernel, so it is the logical place to
provide security. However, the kernel can be compromised, so
a layer of security to attempt to detect these types of attacks,
called rootkits, is needed.

Rootkit prevention is difficult at best because there is no
other layer managing and monitoring the kernel, so the kernel
must attempt to monitor itself. There are two common kinds
of rootkit preventions. The first one attempts to verify that
syscalls from user space to the kernel are not tampered with
and the other attempts to verify that drivers and kernel
modules that are loaded into the system are not malicious. The
second kind is a form of whitelist anti-malware for drivers and
kernel modules. Something similar is already implemented in
Microsoft® Windows® systems, but not in Linux® systems, by
default. The first type, however, is more difficult and is the
subject of current research.



VII. LAYERING MALWARE PREVENTION TECHNOLOGIES

All of the malware prevention technologies we analyzed
have strengths and weaknesses. A solution we identified to
prevent the weaknesses from being exploited is to layer
malware prevention technologies. As mentioned, a whitelist
antivirus system cannot prevent runtime exploitation of things
like buffer overflows. Layering on MAC to limit the scope of
access that an exploited running application has is a good
solution. MAC has no concept of integrity when placing a
particular binary into a domain and granting it the permissions
associated with that domain, so whitelist anti-malware should
be layered on to prevent modified binaries from loading.
Neither whitelisting nor MAC can detect a compromised
kernel, so rootkit prevention technology should be added as
another layer to mitigate these vulnerabilities.

By layering these technologies, we found that a secure
system that is compatible with an embedded environment can
be provided. This solution provides the best level of integrity
of the software running on the embedded system, and the
reach of attacks can be minimized. Also, the layered solution
provides ample warning of attempted infections so additional
measures can be taken outside of the embedded system. If an
attack is detected against an embedded system, the network
firewall can be hardened to stop that attack in particular and
then forensic data can be gathered on the attack and the
affected systems can be patched and updated.

VIII. LONG-TERM ADMINISTRATION

Long-term administration of an embedded system running
blacklist anti-malware requires frequent signature updates.
Regular updates must be pushed to the embedded system and
regular scans must be made to ensure infections do not already
exist that were not previously known about. Device burden is
also a large problem. As previously mentioned, regular system
scans must be performed. These scans create a large, irregular
burden to disk I/O and to the CPU. Recent measurements
show that up to 95 percent of the CPU processing power can
be consumed during a scan.

Long-term administration of a system using whitelist
antivirus depends on the environment. In a corporate
environment, where software is updated very regularly, the
administration of whitelist anti-malware would be time- and
cost-prohibitive. However, in an embedded system,
administration is minimized and only needs to be done when
the embedded system itself is updated, which is generally not
often. Additionally, the maintenance of the whitelist generally
would fall to the firmware provider, therefore decreasing the
required maintenance further. An embedded system running
whitelist anti-malware should require no intervention between
firmware updates for a device owner.

Another consideration in long-term administration is
burden to the system. The whitelist anti-malware system we
tested saw a 15 percent increase to system boot time but only
had a 0.5 percent increase in the time to complete a task
during runtime. The reason for a large impact to boot time but
a smaller impact to general running time is that the whitelist
anti-malware we tested uses cryptographic signatures to verify

integrity but also caches integrity lookups. This means that at
first boot, the system must run cryptographic analysis on
every executable, but after an initial check has been done, the
CPU burden decreases. In our tests, SELinux showed only a
0.5 percent increased burden overall. SELinux has no
cryptographic security, so it adds little burden. The rootkit
prevention software we tested, a variation of the program
described in [2], showed an overall 5 percent increased
runtime burden. All told, this provided a system with about
20 percent increased boot time and 6 percent increased
runtime burden. Because all of these times are constant, they
are easy to account for in an embedded system in contrast to
blacklist anti-malware, which has inconsistent burden on a
system.

IX. CONFIGURATION MANAGEMENT

Another interesting benefit of whitelist anti-malware is that
it can be used to protect system configuration. Any embedded
system will have configuration files that are not modified in
the field. Things such as boot order and the disk to be
mounted are set up in the firmware and never modified by the
end user. By modifying the system binaries that use those
configuration files and having them request integrity scans of
their configuration files, the configuration integrity can be
guaranteed. We call this voluntary scanning. Because the
individual executables have had their integrity verified, it can
be guaranteed that they will voluntarily scan their
configuration. Then, all that must be done is to create
signatures for the various unchanging configuration files on
the system, and the same whitelist anti-malware that protects
the system executables and libraries can be extended to protect
configuration and scripts.

Fig. 2 shows the general flow of whitelist integrity
verification and voluntary scanning. An executable is loaded
into memory from disk at the request of another process or
user. The whitelist anti-malware automatically scans the
executable to verify its integrity before it is allowed to be
placed into executable memory. Once the application has
loaded, it then attempts to load its configuration files. Because
it has been modified to include voluntary scanning by the
whitelist anti-malware system, it first requests that the
whitelist system scan the configuration file to verify its
integrity. If the configuration file has integrity, the executable
is notified and continues to load its configuration.
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Fig. 2. Whitelist Integrity Verification and Voluntary Scanning



X. COMPLIANCE CONSIDERATIONS FOR NERC CIP
VERSIONS 3 AND 5

NERC CIP from its inception recognized that devices need
to have malware protections in place. The specific technology
is not mandated, but the need for it is and the policies and
procedures to keep the technology updated are mandated.
NERC CIP Version 3 is specific to the device and states that
every critical cyber asset (CCA) needs malware protection,
and if the device cannot provide this, a technical feasibility
exception (TFE) must be submitted. This was a huge
generator for TFEs because many of these devices were
embedded, so the end user could not install malware
protection software.

NERC CIP Version 5 also requires malware protection and
the procedures to keep it updated, but applies it to the system
instead of the individual devices. This allows more freedom in
the type of technology to select, and network-based
technology can cover clients that do not have the capabilities
to run malware protection.

For embedded devices, it is up to the manufacturer to
provide the solution, either in the device or the system
solution recommendations. When the whitelist malware
protections discussed in this paper are implemented, the
compliance to NERC CIP is accomplished. A small number of
update procedures are required, keeping the operational costs
low.

XI. CONCLUSION

Control systems are a very important area of focus for
cybersecurity, and current malware protection technologies
are not ideal in that environment. However, with the proper
application of various anti-malware techniques such as
whitelisting and deny-by-default, a control system can be
reliably secured. This paper shows that control systems are an
ideal candidate for cybersecurity.

Future research is still needed into rootkit protection to find
ways to secure the kernel further and constrain exploits to the
smallest area possible.

Control system owners reduce the total cost of ownership
and improve cybersecurity by selecting technology from
manufacturers investing in anti-malware solutions with
whitelist architectures.
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Implementing a vertically hardened ICS/SCADA control stack:
from kernel to application runtime
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Architectural summary

The primary principle of our study was to implement wvertical integration of security measures: a set of
features distributed across the systems components and supporting each other to implement a security
policy operating from the kernel boot time to throughout the control application’s runtime.

In particular, we combined the intra-process ABI-based memory protection technology, ELFbac, the
input-validation assurance methodology of LangSec (both originally developed by us), with the proven Gr-
security/PaX Linux kernel hardening,.

Each of these technologies can be applied independently, but they work best in concert. ELFbac enforces
programmer intent with respect to data flows between the application’s intra-memory code and data units
on the ABI level, whereas Grsecurity/PaX’s UDEREF feature enforces such intent between the kernel and
the userspace. In turn, the LangSec methodology of application design ensures that the security-critical
units that handle input validation can be properly separated to take the best advantage of ELFbac policies
to mitigate potential exploits targeting these units via crafted inputs.

In order to showcase the composition of these approaches, we built a Linux-based filtering proxy for the
DNP3 protocol. This proxy applies ezhaustive inspection of the DNP3 frames before passing them between
an outstation and a master controller; by this we mean full inspection of all syntactic elements of the protocol,
such as headers and objects, and all relationships between them specified by the protocol documentation
than can be expressed in the form of a grammar. This methodology brings the absolute majority of the
DNP3 frame validity checks forward, into the input-checking unit we call the recognizer; this unit is then
isolated by an ELFbac policy from the rest of the processing.

The choice of the filtering proxy as the test application for the stack policies was made with the view
towards generality: our proxy code is meant to be extensible to other applications that act on DNP3, such
as rewriting proxies and adapters to other protocols. Such extensions would replace the processing part but
keep the input-validating, parsing part of our code.

Working with a prototype that nevertheless implemented over 70-80% of the underlying complex protocol
specification in a functional, testable way gave us a complex enough structure to test our security policies.
The summary of lessons learned follows.

Recommendations for commercial development

The ELFbac model is recommended for the industry developers who seek to leverage both the existing Linux
ecosystem and the best-of-breed Linux kernel self-protection of Grsecurity/PaX, while remaining compatible
with the standard C/C++4 ABI and its build chain. ELFbac is complementary to the mandatory access
controls (MAC) such SELinux, which operate at the granularity level of an entire process, and can be
combined with an ELFbac intra-process policy without any additional costs.

More specifically, SELinux policies apply to system calls issued by a process entirely based on the process’
SELinux identity label, regardless of the order of issue or of the particular code executing in the process at



the time of the system call. For example, an allowed system call can be issued either by the main executable
or any of its loaded libraries, at any stage of the process’ timeline; it is all the same to SELinux."

In short, SELinux and other MAC schemes do not concern themselves with the order of system calls
not with the order of memory accesses that happen inside a process. For control processes that naturally
contain distinct phases of operation, this level of control is clearly not expressing the programmer’s intended
operation of the process.

ELFbac is the only policy of its kind that allows the developer to enforce the intra-process access control
between the structural units of a program at its runtime—such as between libraries loaded into the process
and their sensitive data to which these libraries are intended to have exclusive access. Further, ELFbac’s
intra-process policies isolate sensitive code units from accidentally operating on untrusted, un-validated,
potentially maliciously crafted data, and the sensitive data units from being accessed or operated upon code
units not intended to do so.

Thus we recommend the ELFbac protections for any front-end ICS/SCADA systems facing untrusted
data. Although an ELFbac policy requires knowledge of programmer intent of the program’s units, such
as the sequence in which these units are expected to execute and the kinds of data they are supposed to
execute on, these intents are typically easily observable at the development time and well-understood by the
programmers.

An explicit enforcement mechanism for these intents will both help the programmer catch errors and
help communicate these actual intents to Unix runtime, where they are currently almost entirely ignored.
This ELFbac achieves at the cost of at most few lines per compilation and scoping units of a program what
modern programming languages strove to achieve via new language semantics means: an enforcement of
existing and clear intent at runtime—while, unlike most of them, maintaining compatibility with the core
C/C++ ABI, binary OS utilities, and the build chain tools.

Lessons learned

Modifying programs to support ELFbac policies. Our DNP3 proxy code was developed with a view
towards being deployed under an ELFbac policy, but was functionally completed and unit-tested separately
from the kernel work. This was a deliberate choice, because we wanted to apply the policy to an existing,
functional application and thus observe the integration effects and challenges.

The resulting integration effort required, besides including one-line ELFbac unit policy annotations per
unit, several small modifications to the application’s memory allocation code. In particular, the original
code performed all of its allocation from the common heap, including the raw input buffers.

Since ELFbac policies specifically enforce such relations as intended exclusive access to raw input buffers
only by the parser—the rest of the program should only consume validated, well-typed objects created by
the parser—we changed the allocation of the raw input buffers to a separate static arena labeled for ELFBac.
The change was minimal, and applied to the proxy “driver”? code only (since the underlying Hammer parser
construction kit we used works with externally provided buffers).

We also noted that the Hammer kit and therefore the parsers derived from it can also work with externally
provided allocators, which, unlike many other such tools, allows separation of the parser’s own scratch space
from the rest of the program’s memory objects involved in processing, affording another degree of protection
from the parser’s potential weaknesses.

In all, the amount of code changes to the application to enforce intended separation of its input-validating
front end from its proxy back-end was small and trivial, and did not apply to either the parsing or processing
logic, but rather to the overall “driver” code.?

1For this reason, SELinux permission policies are colloquially described as a “bag of permissions”, per process.

2Te., code unit containing its main() function.

3We also derived a non-trivial observation from refining this policy to isolating not just the raw buffers from the rest of the
program to the parser’s exclusive access, but also isolating the parser’s own “scratch space” from the validated objects that
it prepared. Namely, validating parsers that must backtrack (a necessity for protocols with context-sensitive syntax elements
such as DNP3) need an additional deep-copy step to gather the parsed elements—and only those elements—into a “ready zone”
that alone is exposed to the rest of the program. This happens because a backtracking parser cannot know when allocating an
element whether that element will be taken up in the final parse or discarded during a backtracking step. This is an argument
for simpler parsers with unambiguous grammars that do not need to backtrack.



Synchronous vs asynchronous I/O: the trade-offs. Synchronous Unix-style I/O is the easiest to
read and write and thus the easiest to adopt. It also fills the need of protective traffic proxying in many
circumstances. However, we also want adoption of our framework by those who need performant servers
serving many connections at once—and this means asynchronous I/0, even though its overall code structure
is less transparent.

The lesson we learned after considering a number of designs was that the parser should be decoupled
from the I/O model (blocking on non-blocking event loops), as well as from the thread/process models.
More specifically, it must support non-blocking, chunk-wise processing. This is the design that finally
implemented.

For parsers that serve as front-ends to non-trivial semantic actions on the parsed objects—such as adap-
tors to different protocols, or rewriting DNP3 normalizers—the most natural parser design is to queue
semantic action, including output operations. In particular, our interface for both message pretty-printing
and rewriting uses queued write callbacks, which are called when a recognition verdict is rendered by the
parser code.

This decouples our parser from the specific I/O and concurrency models at a negligible complexity cost.

ELFbac’s additional guarantee: control over pointer dereferencing. Dereferencing pointers in the
wrong context is a known security concern. One additional power of ELFbac is that, even though it does
not control the passing of pointers to system calls and program units, it will trap attempts by wrong code
units to dereference these pointers if they point to an ELFbac-labeled data section (if the dereference means
an access against the policy).

For example, the proxy’s “driver” code that coordinates the parser never dereferences pointers to the
buffers it gets back; it passes them to system calls unchanged.

Since ELFbac also allows its policies to reduce the system calls made by each code unit*, an ELFbac
policy can and should reduce the parts capable of making syscalls. Such parts should act a bridge to the OS,
decoupled from the main computation and possessing least memory access privileges.

Our application is constructed as just such a bridge.

Filtering vs transforming traffic. Our additional lesson is that although a per-message pass/fail decision
structure of the code for a proxy might seem simple, it is not actually so in practice. In fact, a structure
suited to transforming the messages is actually a simpler even for pure filtering purposes and a more sound
choice to implement. In a nutshell, an abstract parser API should support protocol normalization (ours
does).

This is because rendering a pass-fail decision would require the parser to be aware of the network session
and context, especially when the desired behavior is to drop only some messages selectively, not the entire
connection. This is precisely what happens in a DNP3 TCP session shared by several endpoints.

Handling simultaneous connections, multiple endpoints on a single stream reminiscent of another stack
on top of TCP is in fact typical for ICS/SCADA, and is naturally accommodated by our design.

Validation and resource control. Small payloads in DNP3 (and other ICS protocols) can result in
construction of large objects, consuming resources on the receiving endpoint. Thus a resilient application
must resist resource consumption attacks.

From testing our application both via fuzzing and know-bad payload scenarios, we concluded that building
the parser as a modular structure allows flexibility w.r.t. semantic object representation (which may be
resource-intensive). Creation of these representations must be explicitly a part of the semantic actions,
separate from the recognizer.

This encourages moving all possible checks that logically precede the creation of an object into the
recognizer—which is where it really belongs, since no objects should be constructed (or acted upon) until
the incoming data that describes them is validated.

4and even by the process state, of which several different states may correspond to the same code unit, differently reached.



Applying the LangSec methodology to DNP3: a deeper understanding of the protocol. LangSec
is a mission-assurance methodology for software that must handle inputs safely. In a nutshell, LangSec posits
that the design of the input-handling software must start with analyzing the grammar of the protocol, gath-
ering all syntactic validity requirements under this grammar, and writing the parsing/validating code to
resemble this grammar as closely as possible. The latter is best achieved by employing the parser combi-
nator approach, which has been implemented for a variety of production languages, including C++, Java,
Python, etc.

LangSec further posits that more syntactically complex protocols are liable to lead to buggy and ex-
ploitable implementations. When the nature of validity checks for protocol messages is unclear, the likelihood
of the implementation actually failing to check what the subsequent code assumes it had checked increases—
indeed, becomes very hard to avoid and consistently eliminate, as the example of SSL/TLS implementations
shows across the board.

Therefore, LangSec recommends syntactically simpler formats that stay within the regular or context-free
classes of languages.® On the contrary, syntactic elements of a protocol that introduce context-sensitivity
must be avoided and handled with utmost care—and, if possible, filtered out from the language. A LangSec
analysis of a protocol tends to point out these elements as pitfalls; a large set of famous vulnerabilities
upholds this analysis.

We applied this analysis to DNP3, coming up with the grammar for its frames based on the protocol
specification, and extending this grammar with the specification’s requirements wherever these requirements
touched on mutual co-occurrence or relationships between elements. In doing so, we found a number of
problem spots, which, not unexpectedly, corresponded to many vulnerabilities found in DNP3 parsers by
previous fuzzing efforts (see below).

Our DNP3 parser was built according to this grammar, utilizing the Hammer parser construction kit, to
which we added several combinators needed for DNP3 specifically.

We plan to publish a series on articles on the syntactic pitfalls of the DNP3 specification—and, therefore,
of its implementations. We also identified a simpler subset of DNP3 that has much more easily parseable
syntax, to be described in a separate publication; we recommend using this safer subset for future protocol
development.

Leveraging Grsecurity/PaX, a state-of-the-art kernel hardening technology. Grsecurity/PaX is
the industry’s leading kernel hardening technology. Meant for general-purpose systems, the Grsecurity/PaX
patch is sufficiently more complex than it needs to be for control systems that do not need, e.g., to support
just-in-time compilation (JIT) at runtime and can place other restrictions on the applications as a matter
of policy.

A version of Grsecurity /PaX offering a cohesive subset of its protective features has been ported by the
Grsecurity /PaX team for the ARM platform of our project.

We integrated our ELFbac kernel mechanism with it without conflict, thus leveraging the strongest
practical kernel self-protection mitigations in industry into our prototype hardened stack.

Challenge: Separating allocation of address space from the allocation of memory is a useful
design pattern. Finally, the ELFbac approach favors arena-based memory allocations rather using the
same genetic heap and malloc() for all allocations.

This should not, in theory, present a problem on Unix systems, since physical memory pages are only
committed on a page fault; but in reality the Linux kernel does not favor preallocations of large blocks, as
these run afoul of the ulimit and other memory limiting checks for processes, fixed by internal parameters—so
preallocation should be tested and these limits adjusted from stock kernel defaults accordingly.

Robustness evaluation

We subjected the proxy to fuzz-testing by both the Aegis specialized DNP3 fuzzer developed by Adam
Crain and Chris Sistrunk—with which they demonstrated that most commercial DNP3 implementations

5Such as those that can be fully parsed by an anchored regular expression or a pushdown automaton, respectively; JSON is
an example of the latter.



were vulnerable to attacks via crafted inputs—and with the American Fuzzy Lop fuzzer from Google’s Micha
Zalewski, a state-of-the-art fuzzer that learns from source code.

Despite vigorous testing, our application did not reveal any bugs beyond the classic resource-exhaustion
attack that we subsequently fixed. Although we hoped for exactly this result due to our parser construction
methodology, we note that few commercial implementations approached it in Crain’s and Sistrunk’s testing—
and those that did, unlike ours, implemented small and restrictive subsets of the DNP3 protocol.

Validation methodologies

While fuzz-testing described above provides an empirical evaluation of the system’s overall robustness, the
individual components must have their respective unit-testing and validation methodologies that can be
applied to them in isolation. The following describes how our designs provide for it.

ELFbac policies. An ELFbac policy is essentially meant to contravene any accesses by code units to data
units not allowed by the policy. Since both code and data units are, in fact, ABI units of the executable,
the relative positions of either the reference or the referent within their respective units do not matter, so
long as these are placed within their boundaries.

Consequently, the easiest and most comprehensive way to test an ELFbac policy’s efficacy is to insert
memory references to disallowed sections into its code units, and assert the resulting memory traps.

Representing the policy’s allowed accesses as a bipartite labeled graph between the code sections and
the data sections of an executable, the exhaustive test is easily derived as the complement of that graph.
For each specific edge of this complement graph, a unit test for the policy’s intended rejection of it is easily
constructed by placing a violating access instruction at the top of the particular code section.

LangSec parsers. The LangSec methodology for constructing input-validating parsers lends itself to ex-
haustive unit-testing by design. Namely, under this methodology, parsers for the whole protocol messages
are constructed from the parsers for their simpler parts, and so on, down to the simplest elements such as
integer and string fields. Consequently, for every protocol unit from the primitive types up, a definitive
function that validates these elements and these elements alone exits, and can be tested independently of all
others.

In other words, the structural units of the parser correspond to the structural units of the grammar
correspond to natural unit tests for the functions implementing their parsing and validation.

Conclusion

We demonstrated that ABI-based intra-memory protection policies that do not place a considerable burden
on the programmers so long as they follow reasonable design practices are feasible for control applications
receiving and filtering the DNP3 protocol. The resulting implementation was robust and withstood vigorous
fuzz-testing with state-of-the-art tools.

We also demonstrated that our approach composes with the state-of-the-art Linux kernel hardening
technology, Grsecurity/PaX. A cohesive set of protection features has been adopted and reviewed for our
project’s ARM platform by the Grsecurity team.
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