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Executive Project Summary 
 

The exe-Guard Project is an alliance between Dominion Virginia Power (DVP), Sandia 
National Laboratories (SNL), Dartmouth University, and Schweitzer Engineering 
Laboratories (SEL). SEL is primary recipient on this project. The exe-Guard project was 
selected for award under DE-FOA-0000359 with CFDA number 81.122 to address Topic 
Area of Interest 4: Hardened platforms and Systems.   The exe-Guard project developed 
an antivirus solution for control system embedded devices to prevent the execution of 
unauthorized code and maintain settings and configuration integrity.  

This project created a white list antivirus solution for control systems capable of running 
on embedded Linux® operating systems. White list antivirus methods allow only credible 
programs to run through the use of digital signatures and hash functions. Once a 
system’s secure state is baselined, white list antivirus software denies deviations from 
that state because of the installation of malicious code as this changes hash results.  

Black list antivirus software has been effective in traditional IT environments but has 
negative implications for control systems. Black list antivirus uses pattern matching and 
behavioral analysis to identify system threats while relying on regular updates to the 
signature file and recurrent system scanning. Black list antivirus is vulnerable to zero day 
exploits which have not yet been incorporated into a signature file update. System scans 
hamper the performance of high availability applications, as revealed in NIST special 
publication 1058 which summarizes the impact of blacklist antivirus on control systems:  
Manual or “on-demand” scanning has a major effect on control processes in that they 
take CPU time needed by the control process (Sometimes close to 100% of CPU time). 
Minimizing the antivirus software throttle setting will reduce but not eliminate this effect.  
Signature updates can also take up to 100% of CPU time, but for a much shorter period 
than a typical manual scanning process.  

Control systems are vulnerable to performance losses if off-the-shelf blacklist antivirus 
solutions aren’t implemented with care. This investment in configuration in addition to 
constant decommissioning to perform manual signature file updates is unprecedented 
and impractical. Additionally, control systems are often disconnected or islanded from 
the network making the delivery of signature updates difficult.  

Exe-Guard project developed a white list antivirus solution that mitigated the above 
drawbacks and allows control systems to cost-effectively apply malware protection while 
maintaining high reliability. The application of security patches can also be minimized 
since white listing maintains constant defense against unauthorized code execution. 
Security patches can instead be applied in less frequent intervals where system 
decommissioning can be scheduled and planned for. Since control systems are less 
dynamic than IT environments, the feasibility of maintaining a secure baselined state is 
more practical. Because upgrades are performed in infrequent, calculated intervals, it 
allows a new security baseline to be established before the system is returned to 
service. 

Exe-Guard built on the efforts of SNL under the Code Seal project. SNL demonstrated 
prototype Trust Anchors on the project which are independent monitoring and control 
devices that can be integrated into untrustworthy components. The exe-Guard team 
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started with the lessons learned under this project then designed commercial solution for 
white list malware protection.   

Malware is a real threat, even on islanded or un-networked installations, since operators 
can unintentionally install infected files, plug in infected mass storage devices, or infect a 
piece of equipment on the islanded local area network that can then spread to other 
connected equipment. Protection at the device level is one of the last layers of defense 
in a security-in-depth defense model before an asset becomes compromised.  

This project provided non-destructive intrusion, isolation and automated response 
solution, achieving a goal of the Department of Energy (DOE) Roadmap to Secure 
Control Systems. It also addressed CIP-007-R4 which requires asset owners to employ 
malicious software prevention tools on assets within the electronic security perimeter. In 
addition, the CIP-007-R3 requirement for security patch management is minimized 
because white listing narrows the impact of vulnerabilities and patch releases. 

The exe-Guard Project completed all tasks identified in the statement of project objective 
and identified additional tasks within scope that were performed and completed within 
the original budget.  The cost share was met and all deliverables were successfully 
completed and submitted on time.  Most importantly the technology developed and 
commercialized under this project has been adopted by the Energy sector and 
thousands of devices with exe-Guard technology integrated in them have now been 
deployed and are protecting our power systems today. 

Project Actuals Compared to Goals 
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Estimated vs. Actual Accomplishments 
Milestone Description 

Estimated 
Completion 

Actual 
Completion 

Project Start Date 12/2010 12/2010 

Complete revision of the project management plan. 1/2011 1/2011 

SEL, SNL, and DVP to author high-level white list 
antivirus concept document 3/2011 3/2011 

Author high-level product requirements in a system 
specification. 6/2011 6/2011 

Bi-annual Review #1 6/2011 6/2011 

Complete identification of useable open source 
technology and interoperable opportunities 7/2011 7/2011 

Complete product design and use cases 7/2011 7/2011 

Gate 1 Exit - Go/No-Go Decision Point 8/2011 8/2011 

Bi-annual Review #2 12/2011  

Complete all low-level implementation requirements 3/2012 3/2012 

Bi-annual Review #3 6/2012 7/2012 

Linux–based product prototype with preliminary 
code completed. 10/2012 10/2012 

Bi-annual Review #4 12/2012  

SEL product code completes unit testing, reviews, 
and approvals. 07/2013 6/2013 

Sandia National Labs and Dominion Virginia Power 
provide prototype feedback to SEL development 
team. 

09/2013 11/2013 

Commercial product development complete. 10/2013 11/2013 

Gate 2 Exit - Go/No-Go Decision Point 10/2013 Dominion 
Meeting 11/2013 

PHASE 2: TESTING & DEMONSTRATION   

Sandia National Labs begins product security 
robustness testing. 10/2013 9/2013 

Dominion Virginia Power begins field verification. 10/2013 11/2013 

Sandia National Labs provides product security test 
report results. 01/2014 3/2014 

Dominion Virginia Power provides field verification 
results. 01/2014 12/2013 

Gate 3 Exit - Go/No-Go Decision Point 12/2013 12/2013 

Release of commercial product.  01/2014 12/2013 

Dominion Virginia begins deployment of the white 
list antivirus solution 02/2014 3/2014 
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Author Deployment Guide 02/2014 3/2014 

Complete research of inter-process memory access 
policies 8/2015 8/2015 

Transfer research results to Open source 
community 9/2015 12/2015 

Complete testing on inter-process memory access 
control policies 10/2015 12/2015 

Project Closeout Review 11/2015 1/2016  
Project Closeout Reports Submitted 12/2015 1/2016 

Project Summary 
 

The team, which is made of a system owner, national laboratory, academia, and 
technology supplier gathered to capture the functional requirements required to have a 
successful deployment of malware protection on energy delivery systems.  This effort 
documented the system requirements and came up with a set of top level features that 
would need to be met to allow industry adoption:  

1) A software solution capable of operating with embedded devices capable of being 
installed retroactively  

2) Automated response and rejection of unauthorized attempts to inject malicious code 
or alter settings with reduced impact to system performance  

3) Digitally signed firmware to prevent installation of modified firmware and have a 
known good starting point 

4) Detailed logging and situational awareness of unauthorized attempts  

5) Zero settings 

6) Minimal impact to boot times and processor burden when in operation 

With the design goals clearly identified the team searched for open source software 
solutions and evaluated if the Code Seal or Trust Anchor technology could be used.  It 
was determined that the hardware requirements for Trust Anchor were not able to meet 
the backward compatible industry requirement but the team did identify the open source 
use of the following: 

1) Security enhanced Linux SELinux for application of mandatory access controls 

2) Autoscopy from Dartmouth and University of Illinois Urbana Champagne for root kit 
prevention 

Next the team worked together to develop and commercialize the technology.  SEL lead 
this development and selected the SEL-3620 as the first product to be commercialized 
with the exe-Guard technology.  The SEL-3620 is a security gateway developed under 
the Lemnos Project which is another DOE sponsored projects under the CEDS program.  
During this effort for commercialization the Energy sector requested similar products to 
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be included in this effort.  The exe-Guard team expanded the commercial release to 
include six products SEL-3620, SEL-3622, SEL-3610, SEL-3530, SEL-3505, and SEL-
3555 without requiring project schedule or budget to change.  This expansion was due to 
the simple design and scalability of the technology integration and the overwhelming 
industry demand for the technology in this products.  The team completed the 
development meeting all end user expectations releasing a zero setting malware 
protection solution protecting root kit, application whitelisting, digitally signed firmware, 
and memory mandatory access controls.  The boot times were less the 5% additional 
and processor burden is less than 4% additions.  This is accomplished by compiling the 
whitelist technology into the firmware build of the product and whitelisting the released 
functionality of the product. 

After commercial release the team provided industry education and outreach through 
normal SEL sales channel and industry conferences.  Exe-Guard was presented at two 
conferences.  This industry education generated lots of interest which were addressed 
by the team authoring a white paper explaining the functional concepts of the malware 
protection and whitelist architecture and application notes detailing how to deploy and 
monitor the technology. 

Please see attached whitepaper authored by the exe-Guard team explaining the 
technology in more detail, “Whitelist Malware Defense for Embedded Control System 
Devices”, Josh Powers and Rhett Smith, Schweitzer Engineering Laboratories, Inc. 

The project team identified work within scope and added these tasks to the SOPO while 
still remaining on budget to the original budget.  This allowed more work than originally 
planned to be accomplished without any budget adjustments.  The team did request no 
cost extensions of the project management plan but did not cut any tasks from scope. 

Please see additional technical details on this work within scope in the attached 
whitepaper, “Implementing a Vertically Hardened ICS/SCADA Control Stack: from kernel 
to application runtime”, Sergey Bratus Dartmouth 

Products Developed Under Award 
 

The exe-Guard project is a cooperative R&D project to accelerate commercialization of 
advanced cybersecurity technology focused on the Energy sector.  The technology 
developed under this contract is fully commercialized in six products from Schweitzer 
Engineering Laboratories, Inc. to date and there are plans for more products to be 
released with the technology integrated in the near future.  These products can be found 
on the SEL website located here 

https://selinc.com/products/3620/ 

https://selinc.com/products/3622/ 

https://selinc.com/products/3610/ 

https://selinc.com/products/3530/ 
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https://selinc.com/products/3505/ 

https://selinc.com/products/3555/ 

The literature required to support these commercial products including datasheets, 
manuals, product flyers, and installation guides can be found at these links as well. 

The exe-Guard project published one whitepaper titled, “Whitelist Malware Defense for 
Embedded Control System Devices” and can be found at 
https://cdn.selinc.com/assets/Literature/Publications/Technical%20Papers/6676_Whitelis
tMalware_JP_20150120_Web2.pdf 

This paper was presented at the 2015 Power and Energy Automation Conference in 
Spokane Washington. 

SEL also published an application guide titled, “Incident Response Planning for exe-
Guard” to answer the question industry asked, when I get an exe-Guard log what should 
I do.  This application guide can be downloaded from https://selinc.com/    

This project fostered lots of new industry collaboration as well as strengthen existing 
partnerships.  SEL participated in the development of more commercial ready Autoscopy 
technology using the Dartmouth and UIUC code base and streamlining it to reduce the 
burden on the processor.  This makes it easier for other suppliers to use it in their 
products.  SEL and Sandia strengthened their partnership that started in the Lemnos 
DOE CEDS project and had the red team from Sandia onsite at SEL for a week working 
with the developers to make more secure code. 

There were no patents applied for under the project and the efforts were structured to be 
fed back to the open source on the relevant packages like ELFbac and Autoscopy. 

Industry Validation Testing 
The exe-Guard team collected the industry requirements as one of the first tasks of the 
project.  This was done by communicating with Dominion Virginia Power (DVP).  They 
then participated in the project development monthly calls to help the team weigh the 
technical trade-offs and select the best priorities.  Once development design was over 
SEL and Sandia traveled to DVP to present the vision for the final product.  With 
approval from DVP the development team set of the complete the commercialization.  
Once the product released a firmware image was sent to DVP for their lab testing to 
upgrade an existing SEL-3610 product they had with previous firmware without exe-
Guard to the newly released firmware that included exe-Guard for the SEL-3610.  DVP 
tested that the same functionality was supported as they had previously and that the 
communications through the product was at or better than before.  They tested that the 
firmware upgrade process was easy and the settings were preserved.  Then finally they 
tested the burden on the product to make sure it could stand up to the operation 
requirements they had at worst case and reliably worked in all conditions.  Once all of 
this past they accepted the engineering change order and started deploying the 
technology at a pilot site.  This pilot site ran for many months before expanding the 
deployment to the other facilities.  All stages of this testing was successful.  SEL worked 
with many other customers and they have successfully repeated this testing and 
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deployed the technology on their power systems.  Exe-Guard is successful because 
industry has tested and deployed it.  Exe-Guard is broadly deployed protecting our 
nation’s power systems today. 

Conclusion 
The exe-Guard project completed all tasks in the original statement of project objectives 
and some additional work within scope.  The budget covered all work and no additional 
federal funds were required.  The team collaborated to design the most scalable, 
economical, and safest malware protection solution for embedded control systems on 
the market today.  This was accomplished by having no settings, able to be applied to 
equipment already deployed and is offered at no additional charge in the products 
commercialized.  The industry has tested and deployed the resulting exe-Guard 
technology in large scale.  This effort awarded in the CEDS program accelerated the 
development and deployment of advanced cybersecurity technology that is actively 
protecting our critical infrastructure today. 
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Whitelist Malware Defense for Embedded 
Control System Devices 

Josh Powers and Rhett Smith, Schweitzer Engineering Laboratories, Inc. 

Abstract—Malware protection is a necessity for any electric 
device in modern critical infrastructure. We must all protect our 
critical cyber assets with antivirus as North American Electric 
Reliability Corporation (NERC) CIP-007 R4 states, but more 
broadly, we must protect our assets from malicious code infection 
regardless of whether they are identified as critical assets or not. 
Embedded devices and traditional personnel computer devices 
should be protected. The Stuxnet worm demonstrated that air 
gaps and unplugged devices are not immune from infection. We 
must engineer devices and systems to protect against the impact 
of malware. 

Traditionally, this protection was accomplished by using 
blacklist technology, where the technology watched for known 
bad code and blocked it. This resulted in a race to update 
malware protection technology when new threats were 
discovered, before infection happened. With malware statistics 
topping 83 million pieces of code, based on the August 2014 
McAfee Labs Threats Report, and growing every day, the 
administrative task is impossible to keep up with. This design 
also can put excessive burden on processors, slowing 
computations and communications. 

New malware protection technology is designed using a 
whitelist architecture that only allows known good code to 
execute on the device. This simplifies administrative overhead 
because new updates are not needed when new malware is 
released. A control system environment is built with application-
specific devices that are set to accomplish one or more tasks and 
left alone to continue accomplishing the same tasks for many 
years, setting a perfect stage for whitelist malware protection 
technology. 

This paper investigates the benefits that whitelist malware 
protection provides at the application layer (similar to existing 
anti-malware technology) and explains why embedded devices 
need architecture-specific malware protection. The paper shows 
that correctly combining malware protection and embedded 
architecture improves the reliability and cost of ownership of the 
whole system. The paper also highlights the enhanced security 
that whitelist malware protection provides over traditional 
solutions and how these principles apply to computers and 
embedded devices. The paper shows how whitelist malware 
protection meets and exceeds the NERC CIP requirements in 
Versions 3 and 5. 

I.  INTRODUCTION 
Malicious software, or malware, is a tool often used to 

compromise the integrity of software or hardware. It is 
primarily used due to the power of automating the 
reconnaissance, infection, and compromise of a wide selection 
of targets. Simply put, malware can automate the exploitation 
of a system and do it much faster than one person. 

Strict laptop computer usage policies and constant malware 
protection updates are protection methods that already exist in 
the electric sector. Malware trends have moved from targeting 

code flaws to enticing people to click links in emails or visit 
infected websites. Corporate infrastructure protection plans 
and technology are mature and established for malware 
protection. So how can we bridge the gap between corporate 
infrastructure protection plans and malware protection for 
control systems that consist of embedded, application-specific 
devices, many of which run on real-time operating systems? 
This changes the game completely because we are now talking 
about an infrastructure that is built for machine-to-machine 
(M2M) communications that have to meet high-reliability and 
availability requirements with very little downtime tolerance 
in control systems where physical consequences to cyber 
exploitation exist. Malware protection solutions have to 
support safe and reliable operations and work with the 
attributes of the system they are applied to. This leads us to 
the conclusion that the solutions designed to protect corporate 
systems are not a good fit for the control system due to the 
vast differences in their attributes. 

Whitelist malware protection provided at the application 
layer is a viable solution for control systems. This paper 
discusses the enhanced security provided by whitelist malware 
protection compared with traditional malware solutions. It 
further discusses how the combination of malware protection 
and embedded architecture can improve the reliability and 
ownership cost of an entire control system. The paper also 
discusses the implications of whitelist malware protection on 
North American Electric Reliability Corporation Critical 
Infrastructure Protection (NERC CIP) requirements in 
Versions 3 and 5. 

II.  INCREASING MALWARE RISKS IN CONTROL SYSTEMS 
Increasing demands on power systems today are creating 

more opportunities for malware infections. Smart grid is a 
term that has many definitions, but all of those definitions can 
be boiled down to advancements in control, measurement, and 
operations to automate new functions or previously manual 
ones. These advances have increased the number of electronic 
devices and the amount of code in the devices that make up 
power systems. They have also increased the communications 
links between all of those devices. These factors have 
increased the attack surface and the potential spread of 
malware by providing more targets, entry points, propagation 
paths, and potential vulnerabilities.  

Based on the research results of McAfee Labs in their 
August 2014 quarterly threats report, malware is increasing on 
average 100 percent per year, and that trend is accelerating 
[1]. Malware developers have a lucrative market and are able 
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to sell their malware for Bitcoin or other currency. In 
comparison to the average $60,000 starting salary of a 
software engineer in the United States, and considering that 
there have been very few successful convictions on malware 
charges in the court system, illegal software engineering 
activities do not have strong enough deterrents to stop 
malware from being created. It is easy to see that ethics are the 
only thing stopping more people from making a career out of 
malware development. The writing of malware has gone from 
the curious and smart just wanting to see what they can do to 
organized criminals and nation-state actors with financial and 
political agendas offering advanced training and recruitment 
programs. Protecting power systems from these motivated and 
advanced sources is challenging, but we have the advantage 
when we design and engineer systems with protection 
capabilities that leverage the core attributes of the power 
system. 

III.  POWER SYSTEM ATTRIBUTES PERFECT  
FOR CYBERSECURITY 

Power system networks are not like corporate information 
technology networks because they have a unique set of 
attributes that make information technology (IT) cybersecurity 
technology an imperfect fit. Building a cybersecurity program 
around these unique attributes provides the long-term stability 
and core foundations that we can use to advance cybersecurity 
to new levels. The control systems operating power systems 
are engineered with a specific purpose and are built to the 
highest levels of reliability. Each piece of technology, 
communications session, and data set is implemented for a 
reason. Every device used on the power system is carefully 
engineered and has a specific task. Each task is carefully 
programmed and then, in most cases, left alone to run for 
many years. This provides a baseline behavior for the device 
(how long it takes to respond, the amount of data served, what 
other devices talk to it, or what other devices it responds to).  

Because the control system is built with M2M applications, 
baseline behaviors will not change unless the owner changes 
the services or devices on the system. These changes are rare 
in comparison to corporate IT infrastructures, so they can be 
managed with good change control policies and planned for in 
order to accept a new baseline. This level of understanding is 
the cybersecurity advantage. The best defense is to know the 
system, establish methods and means to monitor what is on 
the system, and react to undesired events. Instead of watching 
for bad code on the device, operators monitor and confirm that 
only approved devices and data are on the system. This 
provides the platform to protect against known and unknown 
malware. It also provides measurable success criteria for 
system uptime, reliability, and service provided, giving 
purpose to the engineers that operate the power systems on a 
daily basis. Baselining such as this results in metrics for asset 
management that inform operators what devices are approved 
on the system and that those devices are operating correctly. 
Communications outages are captured and unauthorized 
devices are logged. When systems are understood and 

monitored to this level, it is extremely difficult for attackers to 
hide their actions.  

Power systems consist of many control and monitoring 
devices that are application-specific technology or embedded 
devices. These embedded devices have a variety of 
microprocessor architectures and operating systems. With a 
whitelist malware protection approach, we have the device 
operations and communications that can be monitored to 
confirm the system is doing only what is desired by the asset 
owners.  

Even better, the operational and administrative 
management (OAM) costs are very low when technology 
applies safeguards in a whitelist architecture because it is 
locked in by the manufacturer. The only time the footprint 
changes is when a firmware upgrade is performed. There are 
no requirements for signature or patch updates as new 
malware is released. The devices are purpose-built, so the 
running of specific tasks and the communications are 
consistent. Specific protocols are enabled and turned on for a 
task and allowed to run continually for that task, enabling a 
communications baseline to be established. Control system 
devices on the power system measure the power at various 
distributed geographic locations, and any change in 
measurement will be seen by the operators or the automation 
schemes, triggering an event response action. 

Based on the native attributes, the power system is perfect 
for some of the most advanced cybersecurity ever seen. Two 
simple protection methods contribute to this level of 
cybersecurity: whitelisting and deny-by-default. A whitelist 
approach is the method used to ensure that only desired 
devices, communications, and data are present on the system. 
The keys to its success are knowing what is on the system and 
knowing what each device is doing (this is the baseline). The 
deny-by-default method requires each device and 
communication to be off unless explicitly turned on for a 
purpose. In power systems, the advantage goes to engineers 
and operators when they know their system, establish a known 
good baseline, and have methods to ensure that this baseline is 
preserved. 

IV.  POWER SYSTEM ATTRIBUTES CHALLENGING  
FOR CYBERSECURITY 

The foundations of the control system architecture enable 
the industry to advance cybersecurity to greater levels than 
corporate networks, but there are specific challenges we must 
address to get there. Power systems are built with many 
embedded control and measurement devices. Embedded 
devices are not open computer platforms that allow the end 
user to install new software. The software running on these 
devices is produced by the manufacturer, and steps are taken 
to ensure that no new software can be installed. This is good 
and bad. The good part is that malware is software trying to 
install itself on these devices, so the architecture is already 
safeguarding against this. The bad part is that the end user has 
limited visibility of what software is running on the device. 
This is important for patch management procedures. The end 
user now has to establish monitoring processes for the 
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manufacturers they have purchased products from and rely on 
these manufacturers to not only alert them when security 
vulnerabilities are discovered but release the mitigations in a 
timely manner.  

Another challenge is the availability requirement for 
control systems. There is very little tolerance for downtime. 
Any reboot or decommissioning to take a product out of 
service for updates costs the company money and increases 
safety hazards. These updates need to be planned and tested 
well in advance, which will result in a slower deployment time 
between when security vulnerabilities are fixed and when they 
are deployed on the control system. The best mitigation to this 
is to select devices that accomplish the job they are intended 
to do with as small a code footprint as possible. These devices 
all work as a larger system, so many times when taking one 
device out of service for maintenance, the overall system 
suffers. 

It is good that these systems have many channels for 
monitoring, and that operators watching the system 
understand event response plans. The challenge comes with 
change control. When changes are made, alarms and logs 
generated by these changes need to be expected or operators 
will waste time investigating them, or worse, will get 
comfortable seeing alarms and not respond. Most importantly, 
these systems are built for reliability and use redundancy to 
meet extreme reliability requirements. The contingencies to 
any change must be planned and well understood before the 
change is applied. This mandates that lab testing and system 
validation testing be performed and that engineering standard 
documents inform work instructions to prevent any undesired 
operations. 

V.  MALWARE PROTECTION ARCHITECTURES 
 There are four common means of protecting a system from 

malware that we look at in this paper: blacklisting, 
whitelisting, mandatory access control (MAC), and rootkit 
prevention. 

A.  Blacklisting  
Blacklisting is the traditional approach used in corporate 

environments to protect computing resources. In this 
environment, systems change frequently to support corporate 
requirements. Blacklisting works well in these environments 
because updates are easily managed and automated. When 
new malware is detected, a signature is created and all of the 
clients receive the new signature. Blacklisting has a long 
history and has been shown to work reasonably well in many 
cases. The signatures are stored in large proprietary databases 
that are updated regularly with the newly detected signatures. 
Because new signatures are created regularly, a system with a 
recently updated signature database must scan all files and 
processes on the device in order to check for possible 
infections it did not previously know about. 

B.  Whitelisting 
 Whitelist anti-malware creates a signature for all of the 

allowed software on a system and assumes that the system 

will rarely change. This means that programs cannot be 
installed or modified without updates to the whitelist. 
Whitelist protection is fairly unexplored because it is difficult 
to manage in corporate environments. There are also two 
kinds of whitelist anti-malware. In some systems, the whitelist 
can be modified in the field by entering a password. This type 
of system is used in some corporate environments. The other 
way to use whitelist anti-malware is to cryptographically sign 
the files with a public and private key pair and keep the 
private key elsewhere. This type of system is more difficult to 
update because any updates have to be signed before they can 
be brought out into the field. It is more secure in the field 
because the secret protecting the whitelist security is not kept 
on the device being secured.  

C.  Mandatory Access Control 
MAC has a lot of support in the open source community 

and has a strong backer in the National Security Agency 
(NSA). MAC works by segregating applications into separate 
domains of execution with very specific permissions granted 
to those domains. This is in contrast to discretionary access 
control (DAC), which is the default system used by most 
operating systems. Fig. 1 shows that with DAC systems, 
permission levels lower on the list have access to anything 
above them. Kernel can access root and root can access 
anything user specific. While the kernel still has access to 
anything in user space with MAC, each user space application 
is segregated into separate domains that all have limited, 
specifically granted permissions to each other. This narrows 
the scope of an exploit, limiting its reach to only the 
permissions the original domain had. Before, if the root layer 
was compromised, the entire user space was compromised.  

 
Kernel

Root

User

User Space

DAC

Kernel

User Space

MAC

 
Fig. 1. DAC and MAC Protection Architectures 

D.  Rootkit Prevention 
Rootkit prevention is the newest and most unexplored area 

of malware protection. It works by attempting to ensure that 
drivers and kernel modules come from a trusted source and, if 
not, preventing their use entirely. Drivers and kernel modules 
can both circumvent many other security measures because of 
their access to the kernel or operating system. Some rootkit 
prevention systems also attempt to verify that system calls 
have not been modified or interfered with. Adding a hook, a 
piece of code that runs when another function is called, to a 
system call is a common means of getting a rootkit into the 
kernel, and it is exceptionally difficult to detect. 
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VI.  EVALUATING SECURITY OF MALWARE TECHNOLOGY 
Each of the previously described methods that are used to 

protect a system from malware has advantages and 
disadvantages. 

A.  Blacklisting Benefits and Drawbacks 
Blacklisting is a reactive approach. It suffers from zero-day 

vulnerabilities because of this, but it does have the advantage 
of experience. It also benefits from the fact that specific 
attacks can be countered once a new signature is created. The 
biggest disadvantage, however, comes from the requirement to 
update the blacklist antivirus signature database on a regular 
basis in order to maintain its effectiveness. This is a poor 
design in an embedded system where updates are costly and 
infrequent. As mentioned previously, when a signature 
database is updated, a scan of the system must be performed to 
ensure that an infection that was previously undetectable is 
now detectable. The problem, though, is that embedded 
systems generally perform a specific task, often with real-time 
constraints. They are generally not engineered with occasional 
central processing unit (CPU) spikes and I/O-intensive disk 
scans in mind. This means that simply updating the signature 
database could degrade the ability of an embedded system to 
perform its main function for a period after the install. These 
limitations make blacklist anti-malware unsuitable for use in 
embedded systems. 

B.  Whitelisting Benefits and Drawbacks 
Whitelist anti-malware maximizes safeguards while 

minimizing the administrative overhead in purpose-built M2M 
infrastructures. Whitelist malware protection is optimized for 
control systems instead of corporate information systems 
because of the reduced change management requirements on 
control systems. When there are frequent changes in what 
each devices does, whitelist malware protections become 
administratively burdensome. Each time an update is made to 
the system, an update must be made to the whitelist signature 
database as well. This is cost prohibitive in corporate 
environments, where updates to software are frequent. 
However, in an embedded system, updates to software are 
infrequent and it is not infeasible to include updates to the 
whitelist signature database when updates are made. In fact, it 
is often the case that updates to software in an embedded 
system are done via firmware image updates that can include 
the whitelist signature updates as well. The strong suit of 
whitelist anti-malware is that it does not require periodic 
updates to keep up with recent malware activity and does not 
suffer from zero-day exploits, except those against the 
whitelist anti-malware software itself.  

Another weakness of whitelist anti-malware is that it 
cannot perform checks on running software. Once a piece of 
software has been loaded into memory, whitelist anti-malware 
can no longer say anything meaningful about its integrity. 
This means that a whitelist anti-malware solution cannot 
protect against malware that exploits things like buffer 
overflows, except to contain the exploit to only the running 

process that was exploited. Whitelist anti-malware does 
prevent an infection that has been persisted to disk from 
running. 

C.  MAC Benefits and Drawbacks 
MAC takes a different approach to security than that of 

either whitelist or blacklist anti-malware. Instead of 
attempting to block the execution of a program, it attempts to 
constrain the reach of running software. All resources on a 
system are placed in a predefined domain and domains are 
then given specific access to other domains.  

There are many MAC implementations, but the most 
common MAC systems are AppArmor and Security-Enhanced 
Linux (SELinux), both of which provide a similar result when 
properly configured. Individual executables are limited to the 
minimum set of permissions they need to do their job. This 
means that an exploited process will have limited reach and 
will be less likely to corrupt a system or prevent it from 
performing its primary function.  

The downside to MAC is that it is very difficult to 
configure correctly, and mistakes in the configuration may not 
be detectable without a significant design effort. Fortunately, 
the effort of setting up MAC for an embedded system falls to 
the company creating the firmware, and they generally have 
the information required to correctly configure MAC. In the 
corporate environment, MAC is much more difficult to 
configure because small changes in the system can be difficult 
to adapt to in the MAC policy. Another problem with MAC is 
that it makes no attempt to verify the integrity of the process 
being placed into a domain. This means that an exploit that 
can modify the file system can persist its infection and perhaps 
spread by infecting other executables on the system, 
increasing its reach over time. 

D.  Rootkit Prevention Benefits and Drawbacks 
Rootkit prevention provides yet another approach to 

securing a system. Generally speaking, operating systems are 
divided into two segments: the user space and the kernel 
space. User space tools are kept secure largely by software 
running in kernel space. Requests for access to all resources 
on a device go through the kernel, so it is the logical place to 
provide security. However, the kernel can be compromised, so 
a layer of security to attempt to detect these types of attacks, 
called rootkits, is needed.  

Rootkit prevention is difficult at best because there is no 
other layer managing and monitoring the kernel, so the kernel 
must attempt to monitor itself. There are two common kinds 
of rootkit preventions. The first one attempts to verify that 
syscalls from user space to the kernel are not tampered with 
and the other attempts to verify that drivers and kernel 
modules that are loaded into the system are not malicious. The 
second kind is a form of whitelist anti-malware for drivers and 
kernel modules. Something similar is already implemented in 
Microsoft® Windows® systems, but not in Linux® systems, by 
default. The first type, however, is more difficult and is the 
subject of current research.  
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VII.  LAYERING MALWARE PREVENTION TECHNOLOGIES 
All of the malware prevention technologies we analyzed 

have strengths and weaknesses. A solution we identified to 
prevent the weaknesses from being exploited is to layer 
malware prevention technologies. As mentioned, a whitelist 
antivirus system cannot prevent runtime exploitation of things 
like buffer overflows. Layering on MAC to limit the scope of 
access that an exploited running application has is a good 
solution. MAC has no concept of integrity when placing a 
particular binary into a domain and granting it the permissions 
associated with that domain, so whitelist anti-malware should 
be layered on to prevent modified binaries from loading. 
Neither whitelisting nor MAC can detect a compromised 
kernel, so rootkit prevention technology should be added as 
another layer to mitigate these vulnerabilities.  

By layering these technologies, we found that a secure 
system that is compatible with an embedded environment can 
be provided. This solution provides the best level of integrity 
of the software running on the embedded system, and the 
reach of attacks can be minimized. Also, the layered solution 
provides ample warning of attempted infections so additional 
measures can be taken outside of the embedded system. If an 
attack is detected against an embedded system, the network 
firewall can be hardened to stop that attack in particular and 
then forensic data can be gathered on the attack and the 
affected systems can be patched and updated. 

VIII.  LONG-TERM ADMINISTRATION 
Long-term administration of an embedded system running 

blacklist anti-malware requires frequent signature updates. 
Regular updates must be pushed to the embedded system and 
regular scans must be made to ensure infections do not already 
exist that were not previously known about. Device burden is 
also a large problem. As previously mentioned, regular system 
scans must be performed. These scans create a large, irregular 
burden to disk I/O and to the CPU. Recent measurements 
show that up to 95 percent of the CPU processing power can 
be consumed during a scan. 

Long-term administration of a system using whitelist 
antivirus depends on the environment. In a corporate 
environment, where software is updated very regularly, the 
administration of whitelist anti-malware would be time- and 
cost-prohibitive. However, in an embedded system, 
administration is minimized and only needs to be done when 
the embedded system itself is updated, which is generally not 
often. Additionally, the maintenance of the whitelist generally 
would fall to the firmware provider, therefore decreasing the 
required maintenance further. An embedded system running 
whitelist anti-malware should require no intervention between 
firmware updates for a device owner. 

Another consideration in long-term administration is 
burden to the system. The whitelist anti-malware system we 
tested saw a 15 percent increase to system boot time but only 
had a 0.5 percent increase in the time to complete a task 
during runtime. The reason for a large impact to boot time but 
a smaller impact to general running time is that the whitelist 
anti-malware we tested uses cryptographic signatures to verify 

integrity but also caches integrity lookups. This means that at 
first boot, the system must run cryptographic analysis on 
every executable, but after an initial check has been done, the 
CPU burden decreases. In our tests, SELinux showed only a 
0.5 percent increased burden overall. SELinux has no 
cryptographic security, so it adds little burden. The rootkit 
prevention software we tested, a variation of the program 
described in [2], showed an overall 5 percent increased 
runtime burden. All told, this provided a system with about 
20 percent increased boot time and 6 percent increased 
runtime burden. Because all of these times are constant, they 
are easy to account for in an embedded system in contrast to 
blacklist anti-malware, which has inconsistent burden on a 
system. 

IX.  CONFIGURATION MANAGEMENT 
Another interesting benefit of whitelist anti-malware is that 

it can be used to protect system configuration. Any embedded 
system will have configuration files that are not modified in 
the field. Things such as boot order and the disk to be 
mounted are set up in the firmware and never modified by the 
end user. By modifying the system binaries that use those 
configuration files and having them request integrity scans of 
their configuration files, the configuration integrity can be 
guaranteed. We call this voluntary scanning. Because the 
individual executables have had their integrity verified, it can 
be guaranteed that they will voluntarily scan their 
configuration. Then, all that must be done is to create 
signatures for the various unchanging configuration files on 
the system, and the same whitelist anti-malware that protects 
the system executables and libraries can be extended to protect 
configuration and scripts.  

Fig. 2 shows the general flow of whitelist integrity 
verification and voluntary scanning. An executable is loaded 
into memory from disk at the request of another process or 
user. The whitelist anti-malware automatically scans the 
executable to verify its integrity before it is allowed to be 
placed into executable memory. Once the application has 
loaded, it then attempts to load its configuration files. Because 
it has been modified to include voluntary scanning by the 
whitelist anti-malware system, it first requests that the 
whitelist system scan the configuration file to verify its 
integrity. If the configuration file has integrity, the executable 
is notified and continues to load its configuration. 

Shell Executable Whitelist Anti-Malware

Load Executable
Automatic Scan

Allow

Load

Voluntary Scan

Allow

 
Fig. 2. Whitelist Integrity Verification and Voluntary Scanning 
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X.  COMPLIANCE CONSIDERATIONS FOR NERC CIP 
VERSIONS 3 AND 5 

NERC CIP from its inception recognized that devices need 
to have malware protections in place. The specific technology 
is not mandated, but the need for it is and the policies and 
procedures to keep the technology updated are mandated. 
NERC CIP Version 3 is specific to the device and states that 
every critical cyber asset (CCA) needs malware protection, 
and if the device cannot provide this, a technical feasibility 
exception (TFE) must be submitted. This was a huge 
generator for TFEs because many of these devices were 
embedded, so the end user could not install malware 
protection software. 

NERC CIP Version 5 also requires malware protection and 
the procedures to keep it updated, but applies it to the system 
instead of the individual devices. This allows more freedom in 
the type of technology to select, and network-based 
technology can cover clients that do not have the capabilities 
to run malware protection. 

For embedded devices, it is up to the manufacturer to 
provide the solution, either in the device or the system 
solution recommendations. When the whitelist malware 
protections discussed in this paper are implemented, the 
compliance to NERC CIP is accomplished. A small number of 
update procedures are required, keeping the operational costs 
low. 

XI.  CONCLUSION  
Control systems are a very important area of focus for 

cybersecurity, and current malware protection technologies 
are not ideal in that environment. However, with the proper 
application of various anti-malware techniques such as 
whitelisting and deny-by-default, a control system can be 
reliably secured. This paper shows that control systems are an 
ideal candidate for cybersecurity.  

Future research is still needed into rootkit protection to find 
ways to secure the kernel further and constrain exploits to the 
smallest area possible. 

Control system owners reduce the total cost of ownership 
and improve cybersecurity by selecting technology from 
manufacturers investing in anti-malware solutions with 
whitelist architectures. 
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Implementing a vertically hardened ICS/SCADA control stack:

from kernel to application runtime
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Architectural summary

The primary principle of our study was to implement vertical integration of security measures: a set of
features distributed across the systems components and supporting each other to implement a security
policy operating from the kernel boot time to throughout the control application’s runtime.

In particular, we combined the intra-process ABI-based memory protection technology, ELFbac, the
input-validation assurance methodology of LangSec (both originally developed by us), with the proven Gr-
security/PaX Linux kernel hardening.

Each of these technologies can be applied independently, but they work best in concert. ELFbac enforces
programmer intent with respect to data flows between the application’s intra-memory code and data units
on the ABI level, whereas Grsecurity/PaX’s UDEREF feature enforces such intent between the kernel and
the userspace. In turn, the LangSec methodology of application design ensures that the security-critical
units that handle input validation can be properly separated to take the best advantage of ELFbac policies
to mitigate potential exploits targeting these units via crafted inputs.

In order to showcase the composition of these approaches, we built a Linux-based filtering proxy for the
DNP3 protocol. This proxy applies exhaustive inspection of the DNP3 frames before passing them between
an outstation and a master controller; by this we mean full inspection of all syntactic elements of the protocol,
such as headers and objects, and all relationships between them specified by the protocol documentation
than can be expressed in the form of a grammar. This methodology brings the absolute majority of the
DNP3 frame validity checks forward, into the input-checking unit we call the recognizer; this unit is then
isolated by an ELFbac policy from the rest of the processing.

The choice of the filtering proxy as the test application for the stack policies was made with the view
towards generality: our proxy code is meant to be extensible to other applications that act on DNP3, such
as rewriting proxies and adapters to other protocols. Such extensions would replace the processing part but
keep the input-validating, parsing part of our code.

Working with a prototype that nevertheless implemented over 70-80% of the underlying complex protocol
specification in a functional, testable way gave us a complex enough structure to test our security policies.
The summary of lessons learned follows.

Recommendations for commercial development

The ELFbac model is recommended for the industry developers who seek to leverage both the existing Linux
ecosystem and the best-of-breed Linux kernel self-protection of Grsecurity/PaX, while remaining compatible
with the standard C/C++ ABI and its build chain. ELFbac is complementary to the mandatory access
controls (MAC) such SELinux, which operate at the granularity level of an entire process, and can be
combined with an ELFbac intra-process policy without any additional costs.

More specifically, SELinux policies apply to system calls issued by a process entirely based on the process’
SELinux identity label, regardless of the order of issue or of the particular code executing in the process at
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the time of the system call. For example, an allowed system call can be issued either by the main executable
or any of its loaded libraries, at any stage of the process’ timeline; it is all the same to SELinux.1

In short, SELinux and other MAC schemes do not concern themselves with the order of system calls
not with the order of memory accesses that happen inside a process. For control processes that naturally
contain distinct phases of operation, this level of control is clearly not expressing the programmer’s intended
operation of the process.

ELFbac is the only policy of its kind that allows the developer to enforce the intra-process access control
between the structural units of a program at its runtime—such as between libraries loaded into the process
and their sensitive data to which these libraries are intended to have exclusive access. Further, ELFbac’s
intra-process policies isolate sensitive code units from accidentally operating on untrusted, un-validated,
potentially maliciously crafted data, and the sensitive data units from being accessed or operated upon code
units not intended to do so.

Thus we recommend the ELFbac protections for any front-end ICS/SCADA systems facing untrusted
data. Although an ELFbac policy requires knowledge of programmer intent of the program’s units, such
as the sequence in which these units are expected to execute and the kinds of data they are supposed to
execute on, these intents are typically easily observable at the development time and well-understood by the
programmers.

An explicit enforcement mechanism for these intents will both help the programmer catch errors and
help communicate these actual intents to Unix runtime, where they are currently almost entirely ignored.
This ELFbac achieves at the cost of at most few lines per compilation and scoping units of a program what
modern programming languages strove to achieve via new language semantics means: an enforcement of
existing and clear intent at runtime—while, unlike most of them, maintaining compatibility with the core
C/C++ ABI, binary OS utilities, and the build chain tools.

Lessons learned

Modifying programs to support ELFbac policies. Our DNP3 proxy code was developed with a view
towards being deployed under an ELFbac policy, but was functionally completed and unit-tested separately
from the kernel work. This was a deliberate choice, because we wanted to apply the policy to an existing,
functional application and thus observe the integration effects and challenges.

The resulting integration effort required, besides including one-line ELFbac unit policy annotations per
unit, several small modifications to the application’s memory allocation code. In particular, the original
code performed all of its allocation from the common heap, including the raw input buffers.

Since ELFbac policies specifically enforce such relations as intended exclusive access to raw input buffers
only by the parser—the rest of the program should only consume validated, well-typed objects created by
the parser—we changed the allocation of the raw input buffers to a separate static arena labeled for ELFBac.
The change was minimal, and applied to the proxy “driver”2 code only (since the underlying Hammer parser
construction kit we used works with externally provided buffers).

We also noted that the Hammer kit and therefore the parsers derived from it can also work with externally
provided allocators, which, unlike many other such tools, allows separation of the parser’s own scratch space
from the rest of the program’s memory objects involved in processing, affording another degree of protection
from the parser’s potential weaknesses.

In all, the amount of code changes to the application to enforce intended separation of its input-validating
front end from its proxy back-end was small and trivial, and did not apply to either the parsing or processing
logic, but rather to the overall “driver” code.3

1For this reason, SELinux permission policies are colloquially described as a “bag of permissions”, per process.
2I.e., code unit containing its main() function.
3We also derived a non-trivial observation from refining this policy to isolating not just the raw buffers from the rest of the

program to the parser’s exclusive access, but also isolating the parser’s own “scratch space” from the validated objects that
it prepared. Namely, validating parsers that must backtrack (a necessity for protocols with context-sensitive syntax elements
such as DNP3) need an additional deep-copy step to gather the parsed elements—and only those elements—into a “ready zone”
that alone is exposed to the rest of the program. This happens because a backtracking parser cannot know when allocating an
element whether that element will be taken up in the final parse or discarded during a backtracking step. This is an argument
for simpler parsers with unambiguous grammars that do not need to backtrack.
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Synchronous vs asynchronous I/O: the trade-offs. Synchronous Unix-style I/O is the easiest to
read and write and thus the easiest to adopt. It also fills the need of protective traffic proxying in many
circumstances. However, we also want adoption of our framework by those who need performant servers
serving many connections at once—and this means asynchronous I/O, even though its overall code structure
is less transparent.

The lesson we learned after considering a number of designs was that the parser should be decoupled
from the I/O model (blocking on non-blocking event loops), as well as from the thread/process models.
More specifically, it must support non-blocking, chunk-wise processing. This is the design that finally
implemented.

For parsers that serve as front-ends to non-trivial semantic actions on the parsed objects—such as adap-
tors to different protocols, or rewriting DNP3 normalizers—the most natural parser design is to queue
semantic action, including output operations. In particular, our interface for both message pretty-printing
and rewriting uses queued write callbacks, which are called when a recognition verdict is rendered by the
parser code.

This decouples our parser from the specific I/O and concurrency models at a negligible complexity cost.

ELFbac’s additional guarantee: control over pointer dereferencing. Dereferencing pointers in the
wrong context is a known security concern. One additional power of ELFbac is that, even though it does
not control the passing of pointers to system calls and program units, it will trap attempts by wrong code
units to dereference these pointers if they point to an ELFbac-labeled data section (if the dereference means
an access against the policy).

For example, the proxy’s “driver” code that coordinates the parser never dereferences pointers to the
buffers it gets back; it passes them to system calls unchanged.

Since ELFbac also allows its policies to reduce the system calls made by each code unit4, an ELFbac
policy can and should reduce the parts capable of making syscalls. Such parts should act a bridge to the OS,
decoupled from the main computation and possessing least memory access privileges.

Our application is constructed as just such a bridge.

Filtering vs transforming traffic. Our additional lesson is that although a per-message pass/fail decision
structure of the code for a proxy might seem simple, it is not actually so in practice. In fact, a structure
suited to transforming the messages is actually a simpler even for pure filtering purposes and a more sound
choice to implement. In a nutshell, an abstract parser API should support protocol normalization (ours
does).

This is because rendering a pass-fail decision would require the parser to be aware of the network session
and context, especially when the desired behavior is to drop only some messages selectively, not the entire
connection. This is precisely what happens in a DNP3 TCP session shared by several endpoints.

Handling simultaneous connections, multiple endpoints on a single stream reminiscent of another stack
on top of TCP is in fact typical for ICS/SCADA, and is naturally accommodated by our design.

Validation and resource control. Small payloads in DNP3 (and other ICS protocols) can result in
construction of large objects, consuming resources on the receiving endpoint. Thus a resilient application
must resist resource consumption attacks.

From testing our application both via fuzzing and know-bad payload scenarios, we concluded that building
the parser as a modular structure allows flexibility w.r.t. semantic object representation (which may be
resource-intensive). Creation of these representations must be explicitly a part of the semantic actions,
separate from the recognizer.

This encourages moving all possible checks that logically precede the creation of an object into the
recognizer—which is where it really belongs, since no objects should be constructed (or acted upon) until
the incoming data that describes them is validated.

4and even by the process state, of which several different states may correspond to the same code unit, differently reached.
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Applying the LangSec methodology to DNP3: a deeper understanding of the protocol. LangSec
is a mission-assurance methodology for software that must handle inputs safely. In a nutshell, LangSec posits
that the design of the input-handling software must start with analyzing the grammar of the protocol, gath-
ering all syntactic validity requirements under this grammar, and writing the parsing/validating code to
resemble this grammar as closely as possible. The latter is best achieved by employing the parser combi-
nator approach, which has been implemented for a variety of production languages, including C++, Java,
Python, etc.

LangSec further posits that more syntactically complex protocols are liable to lead to buggy and ex-
ploitable implementations. When the nature of validity checks for protocol messages is unclear, the likelihood
of the implementation actually failing to check what the subsequent code assumes it had checked increases—
indeed, becomes very hard to avoid and consistently eliminate, as the example of SSL/TLS implementations
shows across the board.

Therefore, LangSec recommends syntactically simpler formats that stay within the regular or context-free
classes of languages.5 On the contrary, syntactic elements of a protocol that introduce context-sensitivity
must be avoided and handled with utmost care—and, if possible, filtered out from the language. A LangSec
analysis of a protocol tends to point out these elements as pitfalls; a large set of famous vulnerabilities
upholds this analysis.

We applied this analysis to DNP3, coming up with the grammar for its frames based on the protocol
specification, and extending this grammar with the specification’s requirements wherever these requirements
touched on mutual co-occurrence or relationships between elements. In doing so, we found a number of
problem spots, which, not unexpectedly, corresponded to many vulnerabilities found in DNP3 parsers by
previous fuzzing efforts (see below).

Our DNP3 parser was built according to this grammar, utilizing the Hammer parser construction kit, to
which we added several combinators needed for DNP3 specifically.

We plan to publish a series on articles on the syntactic pitfalls of the DNP3 specification—and, therefore,
of its implementations. We also identified a simpler subset of DNP3 that has much more easily parseable
syntax, to be described in a separate publication; we recommend using this safer subset for future protocol
development.

Leveraging Grsecurity/PaX, a state-of-the-art kernel hardening technology. Grsecurity/PaX is
the industry’s leading kernel hardening technology. Meant for general-purpose systems, the Grsecurity/PaX
patch is sufficiently more complex than it needs to be for control systems that do not need, e.g., to support
just-in-time compilation (JIT) at runtime and can place other restrictions on the applications as a matter
of policy.

A version of Grsecurity/PaX offering a cohesive subset of its protective features has been ported by the
Grsecurity/PaX team for the ARM platform of our project.

We integrated our ELFbac kernel mechanism with it without conflict, thus leveraging the strongest
practical kernel self-protection mitigations in industry into our prototype hardened stack.

Challenge: Separating allocation of address space from the allocation of memory is a useful
design pattern. Finally, the ELFbac approach favors arena-based memory allocations rather using the
same genetic heap and malloc() for all allocations.

This should not, in theory, present a problem on Unix systems, since physical memory pages are only
committed on a page fault; but in reality the Linux kernel does not favor preallocations of large blocks, as
these run afoul of the ulimit and other memory limiting checks for processes, fixed by internal parameters—so
preallocation should be tested and these limits adjusted from stock kernel defaults accordingly.

Robustness evaluation

We subjected the proxy to fuzz-testing by both the Aegis specialized DNP3 fuzzer developed by Adam
Crain and Chris Sistrunk—with which they demonstrated that most commercial DNP3 implementations

5Such as those that can be fully parsed by an anchored regular expression or a pushdown automaton, respectively; JSON is
an example of the latter.
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were vulnerable to attacks via crafted inputs—and with the American Fuzzy Lop fuzzer from Google’s Micha
Zalewski, a state-of-the-art fuzzer that learns from source code.

Despite vigorous testing, our application did not reveal any bugs beyond the classic resource-exhaustion
attack that we subsequently fixed. Although we hoped for exactly this result due to our parser construction
methodology, we note that few commercial implementations approached it in Crain’s and Sistrunk’s testing—
and those that did, unlike ours, implemented small and restrictive subsets of the DNP3 protocol.

Validation methodologies

While fuzz-testing described above provides an empirical evaluation of the system’s overall robustness, the
individual components must have their respective unit-testing and validation methodologies that can be
applied to them in isolation. The following describes how our designs provide for it.

ELFbac policies. An ELFbac policy is essentially meant to contravene any accesses by code units to data
units not allowed by the policy. Since both code and data units are, in fact, ABI units of the executable,
the relative positions of either the reference or the referent within their respective units do not matter, so
long as these are placed within their boundaries.

Consequently, the easiest and most comprehensive way to test an ELFbac policy’s efficacy is to insert
memory references to disallowed sections into its code units, and assert the resulting memory traps.

Representing the policy’s allowed accesses as a bipartite labeled graph between the code sections and
the data sections of an executable, the exhaustive test is easily derived as the complement of that graph.
For each specific edge of this complement graph, a unit test for the policy’s intended rejection of it is easily
constructed by placing a violating access instruction at the top of the particular code section.

LangSec parsers. The LangSec methodology for constructing input-validating parsers lends itself to ex-
haustive unit-testing by design. Namely, under this methodology, parsers for the whole protocol messages
are constructed from the parsers for their simpler parts, and so on, down to the simplest elements such as
integer and string fields. Consequently, for every protocol unit from the primitive types up, a definitive
function that validates these elements and these elements alone exits, and can be tested independently of all
others.

In other words, the structural units of the parser correspond to the structural units of the grammar
correspond to natural unit tests for the functions implementing their parsing and validation.

Conclusion

We demonstrated that ABI-based intra-memory protection policies that do not place a considerable burden
on the programmers so long as they follow reasonable design practices are feasible for control applications
receiving and filtering the DNP3 protocol. The resulting implementation was robust and withstood vigorous
fuzz-testing with state-of-the-art tools.

We also demonstrated that our approach composes with the state-of-the-art Linux kernel hardening
technology, Grsecurity/PaX. A cohesive set of protection features has been adopted and reviewed for our
project’s ARM platform by the Grsecurity team.
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