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ABSTRACT

In modeling and simulating complex systems such as mobile ad-hoc networks (MANETS) in de-
fense communications, it is a major challenge to reconcile multiple important considerations: the
rapidity of unavoidable changes to the software (network layers and applications), the difficulty
of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger
scale scenarios, and the desire for faster simulations. Here we present our approach in success-
fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-
ecution framework that accurately lifts both the devices as well as the network communications
to a virtual time plane while retaining full fidelity. At the core of our framework is a scheduling
engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute
multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized
manner. In contrast to other related approaches that suffer from either speed or accuracy issues,
our framework provides MANET node-wise scalability, high fidelity of software behaviors, and
time-ordering accuracy. The design and development of this framework is presented, and an ac-
tual implementation based on the widely used Xen hypervisor system is described. Benchmarks
with synthetic and actual applications are used to identify the benefits of our approach. The time
inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate
execution of our framework verified by theoretically correct results expected from analytical
models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual
time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of
MANETS containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a
32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified application
executables, and user-controllable physical layer effects including inter-device wireless signal
strength, reachability, and connectivity.

1  INTRODUCTION

While the bulk of wireless networking research being conducted in academia and industry is fo-
cused on technologies such as cellular that have fixed infrastructure, the military has a require-
ment for robust mobile ad-hoc networks (MANETS). Although some aspects of cellular networks
carry through to MANETSs such as radio frequency (RF) propagation models, the commercial
and military technologies are distinct in many ways, with MANETSs posing unique challeng-
es. In MANETS, access points are mobile and coverage may vary widely within a region and
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across time. At times, the access points will cluster together, leaving parts of a geographic re-
gion with sparse coverage and other parts with compromised service due to competition for
available spectrum as communication channels become saturated. On the battlefield, relocating
network nodes to provide better coverage is difficult or nearly impossible. With the large in-
vestments the U.S. Department of Defense (DoD) is making in MANET programs such as the
Joint Tactical Radio System (JTRS), the Advanced Tactical Data Link (ATDL), and so on, it is
critical to understand the behavior of MANETSs under various conditions. The high cost of proto-
type hardware manufacturing makes detailed simulation a valuable tool for the development and
analysis of new MANET waveforms.

One distinction in predicting the performance of a MANET versus that of a wired network is the
simulation of interference in the physical layer. With many devices possibly sharing a common
communication channel, the calculation and accurate simulation of noise levels is very sensitive
to correct timing. For instance, if a distant transmitter is generating a signal during the same time
that another signal is being received, this noise must be taken into account during this period and
must be incorporated in the computation of the bit error rate (BER) for the received data. If the
hypervisor is unable to accurately provide timestamps to incoming packets, it is impossible to
accurately duplicate this behavior. The sharing of a physical CPU core by multiple virtual CPUs
under a traditional hypervisor will not provide the guest operating system (OS) with an accurate
snapshot of the spectrum usage during packet reception and calculation of signal-to-noise ratios.

1.1  Simulation Challenges and Conventional Approach

The simulated infrastructures of interest are characterized by detailed effects arising at multiple
layers, such as wireless signal propagation effects at the physical layer, channel control protocol
effects at the media access control layer, and complex ad-hoc routing dynamics at the next net-
work and transport layers. Equally or more importantly, the actual applications such as voice-
over-internet-protocol, video streaming, command-and-control state updates, and so on, are
themselves hard-to-model complex functionalities that need to be exercised and tested on top of
all the aforementioned layers.

The conventional simulation approach would develop models of the relevant components of each
layer, integrate the models in a simulation package, and execute them in a simulator. Thus, for
example, voice streaming applications of interest need to be modeled, and models of ad-hoc rout-
ing protocols need to be developed, and so on. For each variant of ad-hoc network routing algo-
rithm that is already available in software (e.g., as actual implemented network packages in
Linux, such as Adaptive Online Distance Vector routing, or Optimized Link State Routing), new
simulator-specific models need to be developed before they can be used in experimentation or
testing. Similarly, for every traffic source or destination, the application(s) need to be abstracted
and modeled.

However, a critical hurdle in this approach is that many of these functionalities are hard to model
because either they are in binary executable forms (e.g., malware codes, monitoring tools, and
third party vendor-supplied software packages), or they evolve too rapidly (e.g., new encoding
algorithms, new attack vectors, or new version releases), or their coded functionalities are ex-
tremely difficult or cost-prohibitive to duplicate via another effort (e.g., voice quality control al-
gorithms, hashing algorithms). For complex applications and protocols, this approach of devel-
oping models of actual implementations can thus be prohibitively expensive in some cases, and
simply be practically infeasible in others. Moreover, key features such as repeatability, determin-



ism, and speed of simulation are expected from simulation-based experiments despite the com-
plex interaction of components, which place additional demands on the simulation approach.

Consequently, the challenges for the next generation of emulators and simulators for testing and
evaluation of net-centric systems include (1) the need to capture important implementation-
specific behavioral detail, (2) the nearly impossible, very expensive, and time-consuming task of
developing merely abstracted models of complex, real-life software-dominant systems across the
network stack from physical up to application layers and overlay/peer-to-peer networks, and (3)
the need to retain determinism and repeatability of tested scenarios simulated using modern mul-
ti-core processing host platforms.

1.2 Benefits of our Approach

To help address the challenges in simulating complex communication networks like MANET,
here we present a new time-synchronized, virtual machine-based parallel simulation approach.
The approach presented in the rest of this paper makes it possible to use exactly the same subject
(net-centric) system(s) for the dual purposes of testing and evaluation as well as deployment,
with the following benefits: (a) assurance from having tested the actual system implementation
itself, (b) avoidance of unintentional or unknown disparities between tested and deployed sys-
tems, (c) significant cost savings from the elimination of a modeling phase, (d) increased rapidity
of the testing and evaluation process, thereby reaching actual deployments faster, (e) nearly elim-
inating the need for the testing personnel to have deep understanding of the actual systems being
deployed in great detail, except to the extent needed for actual testing, thereby increasing produc-
tivity and agility of deployment, and (f) minimizing the loss of accuracy of testing and evaluation
by avoiding the need for developing simplified abstractions of complex software components.

1.3 VM-based Simulation Platform

Virtual machines (VM) are useful for high-fidelity cyber-infrastructure simulations because of a
wide range of significant advantages they offer. Any OS with its implementation of entire com-
munication protocol stack could be put under simulation test without abstraction and re-
implementations of the protocols. New distributed applications or protocols could be developed
and tested on any target OS. Furthermore, the software used as a model in testing can be directly
ported to real systems with little modifications. This direct use of simulation models as replicas
of the complex software systems offers greater fidelity in comparison with abstracted and mod-
eler-implemented simulation systems. The actual time involved in developing a cyber-
infrastructure simulation study is also reduced drastically as software is reutilized for dual pur-
poses of simulation as well as deployment. Given these advantages it is natural for cyber-
infrastructure simulation community to actively pursue research in VM-based cyber infrastruc-
ture simulation platforms. However, as demonstrated in [21], most of the VM-based simula-
tion/emulation platforms have ignored some of the key distinctions between the real and virtual
systems, and thus have compromised the correctness of the simulation/emulation models.

Real vs. Virtual Operation: Figure 1 shows the key distinctions between cyber-infrastructure
and its simulation model developed using VM-based technologies. There are two key differ-
ences: (a) real host versus virtual host, and (b) real network versus virtual network. These core
distinctions also define the concepts of real time and virtual time.
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Figure 1 Differentiating the computational infrastructure between system under investiga-
tion and its VM-based simulation model

In contrast to an OS instance running directly on the hardware, an OS running on VM platforms
does not have exclusive access to hardware. Instead, the physical hardware is shared among
multiple hosted OS instances. Hence, an OS instance hosted on the VM platform only interacts
with the software-based virtual components rather than the physical hardware. The VM platform
or the hypervisor multiplexes multiple virtual components onto the physical hardware compo-
nents based on some principle of resource sharing. While this distinction between the cyber-
infrastructures operating on real-hardware and the simulations using VM-based platform is rela-
tively simple, its implications are subtle on the notions of real time and virtual time when the
CPU resources are shared. A mismatch between virtual time and real time arises even in case of
one-to-one mapping from physical to virtual resources, and gets accentuated on larger multiplex-
ing ratios. Thus, the problem is fundamental in nature, impacting the correctness of the simula-
tion.

Similarly, the distinction between the virtual network and the physical network (ad-hoc network)
needs to be carefully considered. The VM platform only provides the essential soft-
ware/hardware-assisted infrastructure support for the VMs hosted on the hypervisor to com-
municate and interact with OS-hosted applications of VMs. A simple setup to ensure interaction
between VMs on a single physical node is through a software bridge. Every VM connected to
this software bridge is visible to other connected VMs all the time, which is in complete contrast
with the ad-hoc networks, where the nodes get connected and disconnected based on their posi-
tion in space, which changes in time. Hence, it is necessary to accommodate ad-hoc behavior of
the physical network into the all visible virtual network.

Real time vs. Virtual time: The real time corresponds to the actual wall-clock time consumed
by a set of the real-hardware and real-network operations. Since, the physical resources are
shared in the VM platforms, the virtual time corresponding to a VM is only the aggregate time-
periods through which the VM actually engages the physical compute-resource. These distinc-
tions are to be understood clearly in order to effectively utilize VMs for cyber-infrastructure
simulations/emulations.



Most of the published work on the cyber-infrastructure simulation/emulation models are tightly
coupled with the real time. The most common approach used in the development of VM-based
network simulation/emulation has been to interface actual applications executing on VMs with
network simulators, and ensuring that the network simulations execute in (or faster than) real
time. This approach makes the fundamental assumption that the VMs operate in real time.
However, this assumption cannot be supported even when there exists a 1:1 mapping between
the physical compute resources and virtual compute resources.

To understand the incorrectness in this assumption, first the composition of the simulation time
in the VM-based simulation model should be understood. The simulation time can be broadly
divided into (a) computation time (b) idle time. The computation time is the number of CPU cy-
cles utilized by the virtual CPU (VCPU), which is accounted by all the VMs. The idle time is
the time the CPU spends without doing any useful work. The idle time is not captured by the
VM platforms since the physical resources are shared; hence, when no useful work is being per-
formed by a VM, its VCPU is swapped out and replaced with another VCPU. Note that this
functional behavior is unique to VMs and does not apply to actual physical devices being mod-
eled. This functional sharing aspect of the VM platform make conventional real time-based
simulation/emulation models unreliable for cyber-infrastructure simulation/emulation.

Further, by using real time, the ordering sequence of operations in distributed applications exe-
cuting over VMs gets affected. This is because CPU resource multiplexing entity in the hypervi-
sor is agnostic to any notion of time and hence this results in time-order errors in real time based
cyber-infrastructure simulations.

Hence, to ensure the correctness of the cyber-infrastructure simulation it is essential to: (a) move
away from reliance on real time in VM-based simulations/emulations (b) account for both com-
pute time and idle time during simulation/emulation (c) provide a simulation time awareness to
the resource scheduler in the hypervisor, so that simulation time-order errors are controlled or
eliminated, and (d) provide a simulation time-ordered communication of inter-VM packets
among the VMs simulating the cyber-infrastructure.

Here, we describe our new approach to track, maintain and evolve in virtual time of the VMs in a
virtual time-order manner. We refer to our approach as VM-based simulations even though ex-
act implementation of the software components are used. This is because we utilize virtual time
of VMs as the simulation time, and ensure simulation time-ordered execution in our simulations.
We also account the idle time to derive the simulation time, as discussed in Section 2.2. Since
virtual time of the VMs determines the simulation time, in this paper, the virtual time and the
simulation time are synonymously used.

Real vs. Virtual Network: To model the real ad-hoc network using the virtual network where all
VMs are visible/connected to each other, we need methodologies to model (a) Varying network
connectivity between VMs, (b) Varying network bandwidth and packet drops between VMs, (c)
Varying latency between VMs. Modeling these would be sufficient because the change in posi-
tion over time can impact MANET network only in terms of connectivity, bandwidth, packet-
drop and latency. By varying the network connectivity among the VMs, we can model the
movement of nodes in MANET as shown in Figure 2, in which the network effects due to mobil-
ity are modeled in terms of dynamic changes to connectivity at the link (level 2 media access)
layer. Once the connectivity is established, the quality of communication between any pair of
nodes is determined by the physical media model and the distance between the mobile nodes.



By varying the communication bandwidth, packet drop rates and latency, we can closely repli-
cate effects of the physical media or the distance between the connected mobile nodes in the vir-

tual network.
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Figure 2 Modeling ad-hoc network of MANET

Hence, it is necessary for the MANET simulation platform to provide a means to alter the con-
nectivity, bandwidth, packet-drop and latency parameters on demand. We can expect higher-
accuracy of MANET simulation for lower resolution of this period. Further, all the periodic up-
dating instrumentation is required to happen with minimal or no-interference to the simulation
execution, while ardently following the simulation time-order during execution. In this paper,
we describe our approach to model the ad-hoc network behavior in the VMs virtual network us-
ing various networking sub-systems.

1.4  Xen Hypervisor

All the methodology and techniques described in this article were implemented and experiment-
ed with our prototype network simulation system named NetWarp, which is a high-fidelity net-
work simulator built over virtual machines and virtual networks. For virtualization support in
NetWarp, we use the Xen hypervisor [1] (in para-virtualization mode). Xen refers to VMs as
Guest Domains or DOMs. Each DOM is identified by its DOM-ID. The Control-VM referred to
as “DOM-0,” affords special hardware privileges and its service is utilized to provide networking
and I/O support among VMs. Control-VM is also used to launch, manage and monitor VMs.
Each VM has its own set of virtual devices, including virtual multi-processors called virtual
CPUs (VCPUs). The credit-based scheduler (CSX) is the default Xen scheduler, which sched-
ules VCPUs onto physical CPU-cores (PCPUs) based on the fair-sharing principle. CSX uses
credits for every VM these credits are expended as the VM’s VCPUs are scheduled for execu-
tion.

1.5 Related Work

Simulations and emulations are useful in the analysis of networked systems of various kinds.
Analytical models and network simulation tools such as NS2 or NS3 [2] and OPNET [3] can be
categorized as network-centric simulation models in which abstractions of the end-nodes and the
network for modeling offers good scaling, speed, and accuracy. Very large scale simulations are
enabled via parallel computing in simulators such as GTNets [4], SSFNet [5], GloMoSim [6],
PDNS [7]. In all these simulation tools, the simulation time is completely different from real
time or wall-clock time. On the other hand, emulation tools rely on real time (essentially equat-
ing virtual time and real time) to incorporate network behaviors at very high fidelity. Tools such



as Dummy-net [8], ENTRAPID [9], ModelNet [10], Emulab [11], and ROSENET [12] fall in
this category. To differentiate them from simulators, they have been largely referred to as net-
work emulation tools or emulation test-beds in the literature.

The concept of time dilation [13] was introduced in emulations with goals similar to ours but for
older uni-core processor platforms. In time dilation, any desired bandwidth or latency character-
istics of a modeled (simulated) network could be emulated over a physical (simulator) network
that has higher or lower bandwidth or latency. This is achieved by simply scaling up/down the
host processor clock rate and manipulating the time query points of the end-nodes/operating sys-
tems. This was also referred to as time virtualization in subsequent literature. Using resource
virtualization from conventional hypervisors, augmented with time virtualization from time dila-
tion, various network emulation systems have been proposed, such as V-eM [14], DieCast [15],
VENICE [16], dONE [17] and Time-Jails [18], allowing flexibility in configuring the emulation
setup. Note that although time dilation alters the perception of time for the end nodes, the simula-
tion pacing is still real time-based. We categorize these and similar [19] type of VM-based mod-
els, where real time reliance is necessary as VM based emulations. There are other set of VM-
based models, where the model maintains its own simulation time and is not polluted by real
time, like, NetWarp [20] [21] [22], SliceTime [23] and OpenVZ based virtual time systems [24],
we refer to these VM-based realizations as VM based simulations.

MANET specific emulation tools such as the Extensible Mobile Ad-hoc Network Emulator
(EMANE) from DRS Cengen [25] have also been recently developed. EMANE contains a num-
ber of wireless network emulation modules (NEM) that model the physical (PHY) and layer2 or
MAC layers of the network stack. For high fidelity and ease of modeling, EMANE applications
are hosted on VMs [26]. The EMANE application highjacks the communication packets from
VM network interfaces and passes them through virtual physical and MAC layers to enforce the
mobility characteristics. To enforce emulated network conditions, the path loss information is
periodically communicated to the relevant EMANE modules. Since, EMANE uses real time as
the simulation time, the two notions of time pollute each other. Virtual time periods get added to
real time for scheduling network activity into future (e.g., virtual wireless link latency added to
current real time to determine the receipt time at destination). Moreover, in addition to EMANE
objects, there are multiple independent components that are communicating in real time, which
are artificial instrumentations that do not exist in realistic scenario and their asynchronous com-
putational effects incorrectly perturb the emulation timing. The virtual time-ordered framework
described here avoids these pitfalls by clearly separating the virtual time and real time for com-
putation and by separating the virtual network from real network.

1.6 Contributions

This paper is a consolidation and a significant extension to work reported in our previous confer-
ence publications [20] [21] [22]. Our previous publications on VM-based network simulations
introduced the basic concepts and sub-system prototypes necessary to realize time synchronized
execution of VM-based simulations. This paper presents a complete solution specific to
MANET operation and needs. While the basic approach, concepts and prototypes are borrowed
from our previous conference articles, the following are new in this journal article: application to
ad-hoc networking, integrated execution of virtual scheduler and virtual network sub-system, a
new, analytically tractable benchmark with analysis to derive theoretical solution verify correct-
ness, a new variant of our previous cyber security benchmark customized for the MANET envi-



ronment, an entirely new set of benchmark runs, experimental results, and their corresponding
analyses.

1.7  Organization

The rest of the article is organized as follows. Section 2 describes the design and implementa-
tion of our simulation framework. In Section 3, we present the benchmark applications, and
analyses of controlled benchmark configurations for theoretically correct results. In Section 4, a
performance study is presented with results from execution of the benchmark scenarios demon-
strating the low variability and significantly higher accuracy of our approach. We identify our
future work and conclude in Section 5.

2 DESIGN AND IMPLEMENTATION

To effectively model and simulate a MANET operations using VMs, we require (a) Virtual time
tracking, maintenance and evolution, (b) Virtual time-ordered execution, (¢) Virtual time-ordered
communication, and (d) Ad-hoc networking and mobility feature support

2.1  Virtual Time Tracking, Accounting, and Advancing

To address the challenge of tracking, accounting, and advancing virtual time of VMs, we de-
signed a scheme of maintaining a virtual clock for each VCPU core that advances based on the
VCPU core utilization. This essentially results in multiple virtual timelines corresponding to the
number of VCPU cores supported by the VM. For the purpose of network simulation, these mul-
tiple VCPU core timelines must be consolidated to a single VM timeline of a single MANET
node. Similarly, single global simulation timeline must be consolidated from the multiple VM
timelines on the simulator host node.

~--» Network Simulator @

Figure 3 Virtual time accounting: a virtual clock per VCPU, per DOM, and per node

In Figure 3, the three conceptual timelines are shown as clocks in VCPUs, VMs and hypervisor.
Each clock represents a distinct virtual timeline; the hypervisor scheduler performs synchroniza-
tion across the timelines.

1. Local Virtual Time (LVT): Timeline corresponding to each VCPU that advances in discrete
time instants as VCPU consumes PCPU cycles (measured in the units of ticks).

2. VM LVT (VM_LVT): Timeline corresponding to each VM that is calculated using the LVTs
corresponding to its VCPUs and advanced in discrete time as its corresponding VCPU LVTs
advance.



3. System or Node LVT (SYS_LVT): Global timeline corresponding to the entire simulation,
with the VMs as the end nodes connected through the controlled virtual network of the hy-
pervisor environment.

2.2  Virtual Time-ordered Execution

As previously mentioned, the strategy in hypervisor scheduling used for compute resource shar-
ing among the VMs is fair share-based and is performed without any notion of time-ordering
principle. However, the simulations need to progress in the order of their simulation time, violat-
ing which leads to time-order errors (events of the future in one VM incorrectly affecting the
events in the past of other VMs). To simulate a network behavior without time-order errors, it is
essential that the events (such as packet arrival and departure events) be processed in simulation-
time-order, using the previously defined timelines. Simulation time-ordered scheduling of the
VCPUs onto the physical CPU-cores (PCPU) of the physical host can achieve time-ordered exe-
cution of all the VMs. The multiplexing time granularity of the VMs can be made as fine as nec-
essary to achieve any desired degree of accuracy (e.g., in practice, even a scheduling time unit in
the microsecond range can dramatically reduce or eliminate errors). Hence, we replaced the de-
fault fair-share based hypervisor scheduler with Least-LVT-First (LLF) scheduler. Figure 4
shows the SMP schedulers using the run-queues for each PCPU to schedule the VCPUs on to
PCPUs. The SMP schedulers pick the lowest VCPU _LVT value from the local run-queue and
check for any VCPUs lower VCPU LVT in the peer run-queues before picking a VCPU for
scheduling.
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Figure 4 Virtual time-ordered scheduling

Another significant aspect of this design is that it accounts for the idle cycles of the VCPUs in
the simulation time without losing actual CPU cycles in the process. Note that, when the VCPUs
are idle, their VCPU_LVT values remain unchanged and their VCPU _LVT values increase as
they utilize PCPU cycles. This results in a staggering of LVT values for different VCPUs within
the same VM as shown in the Figure 5. The hypervisor scheduler’s LLF policy ensures that the
VCPU with the least VCPU_LVT value is always picked. If the VCPU_LVTs were to lag with
respect to others, it is just because they were idle for a significant period. By pulling the
VCPU_LVTs periodically to the maximum of VCPU-LVTs, we can account for the idle time in



our simulation time. This synchronization in our MANET simulation is performed by the
Further, details on the implementa-
tions of the NetWarp hypervisor scheduler for Xen (NSX) can be found in [20].

NetWarp Network Control, discussed in the next section.

VCPU1l lost cycles
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Figure 5 Accounting for idle time

2.3  Virtual Time-ordered Communication

The hypervisors provide a variety of means to setup a virtual network to support the interaction
across the hosted VMs. We use a private bridge that isolates the VMs involved in the simulation
from the privileged VM (control-VM). By controlling the network, we would have the capabil-
ity to introduce any simulated delay on any transiting packet based on its source and destination
be delivered to its destination. This
enables us to enforce virtual time order. The virtual network control is intended to provide the

addresses as required, and we dictate when a packet should

following:

a. Introduce a virtual delay without making a (byte-)copy
transiting packets from kernel to user space

b. Introduce virtual time delays that may be varied on a per-packet basis; the delay specification
may be static (e.g., for wireline networks) or dynamic (e.g., for mobile ad-hoc networks)

of the packet buffer, or moving the

c. Minimal overhead while processing the trapped transiting packets
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Figure 6 Virtual time-ordered network control




NetWarp Network Control: The NetWarp Network Control (NNC) is a multi-threaded module
built using Netfilter[27] library. Multiple Netfilter queues (NFQ) along with their corresponding
service-threads, equaling the number of VMs (specific to the simulation scenario) are used in
NNC. The iptables [28] rules in the control-VM are set such that all the transiting packets are
routed to a single NFQ, with 0 queue identifier (qid). In Figure 6, this functionality is schemati-
cally presented using directional pointers suggesting the path of packet movement from a VM
application to the front-end network device and, then to its back-end counterpart before being
enqueued in the NFQ with gid=0. The corresponding thread (service-thread-0) determines and
marks the packet with the emit time before setting a NF QUEUE verdict on the packet that re-
sults the enqueuing of the packet into a NFQ, with gid=1 (the next higher queue identifier). The
first service-thread performs only this operation, and hence, it continuously processes the arriv-
ing packets without introducing any additional delay other than the processing itself.

Apart from service-thread-0, all the other service-threads (corresponding to the other NFQs) on
receiving the packet query for the simulation time and checks if it is greater than (emit time —
INT DELAY) value. If it is equal or greater then the packet is released from the NNC subsys-
tem by issuing NF© ACCEPT verdict, as shown by the third service thread. If the destination
VM’s virtual time has not advanced to the emit time yet, then the corresponding service-thread
generates an event with an event time of (simulation time + INT _DELAY), inserts the event to
the eventlist and, then blocks itself waiting on a signal from the scheduler-thread. In Figure 6
the solid-line represents the service-thread receiving and subsequently processing of the transit-
ing packet, while, the thin dotted-line represents service-thread waiting for a signal from its peer.
The INT _DELAY mentioned previously refers to intermediate-delay and is computed as

MAX _DELAY
NUM _DOMs -1

where, MIN DELAY is a constant and MAX DELAY is the maximum of the range of delays to
be enforced by NNC on a transiting packet. With segmented intermediate delays we ensure that
a transiting packet is released from NNC before it reaches the last NFQ and, it also ensures that
the specified delay is introduced in its transit. Also, note that all delays are enforced in terms of
simulation time.

INT _DELAY = MIN _DELAY + ceil(

The scheduler-thread continuously processes the events in event time-order and, signals the re-
spective thread when the simulation time advances to the event time and waits for the signal from
the signaled service-thread before processing with next event. On receiving the signal from the
scheduler thread the service-thread enqueues the packet into a NFQ with next higher gid, using
the NF QUEUE verdict. Thus, at every NFQ, the service thread either releases the packet or in-
troduces a virtual time delay of INT DELAY. Further NNC also performs the simulation time
synchronization across all VMs to the latest packet emit time and this results a leap in simulation
time. More details on the design and implementation of NNC can be found in [22].

2.4  Ad-hoc Networking and Mobility Support

In MANET, the mobile nodes establish or break communication links with their peers as they
move, without relying on any infrastructural support to perform such actions. To model the
movement of nodes in MANETS, a mechanism is necessary to introduce mobility behavior into
the VM-based simulation. Further, the inter-node distance effects are reflected in terms of vary-
ing the bandwidth, latency and packet drop parameters of the connected nodes. Since the connec-
tivity and link parameters change over the course the simulation, this inter-VM virtual network



information needs to be periodically updated in simulation time across all the VMs. On obtain-
ing such information, each VM can locally enforce the communication model via iptables rules.
To enforce the ad-hoc networking support, the optimized link state routing OLSR’s[29] opti-
mized implementation (OLSRD [30]) was used. Since, the VM can host an entire OS, the ad-
hoc network support daemon (OLSRD) was installed on the OSs hosted of each of the VMs.
When the new connectivity/bandwidth/packet-drop/latency information is enforced (using ip-
tables rules) the OLSRD executing on each VM, MANET adapts to these changes by changing
the inter-node network connections dynamically. In this way, an actual implementation of the
OLSR was used to simulate the dynamic route adapting behavior amongst the VM-based
MANET nodes.

Network Connectivity Model: In order to model MANET scenario-specific connectivity, an in-
put file was used to provide the Radio Frequency (RF) signal bandwidth between every pair of
MANET nodes. An empirically-specified low bandwidth was used as a cut-off value to demar-
cate the existence or absence of connectivity between any pair of MANET nodes. The multi-hop
network was achieved by (a) communicating the connectivity information to VMs and (b) en-
forcing connectivity at the VM network interfaces.

To communicate the connectivity information to the VMs, a single bit (0 or 1) per pair represent-
ing the existence of connectivity between all pairs of MANET nodes was written in Xenstore.
This data in the Xenstore is visible to all hosted VMs and, hence can be read by all the VMs that
represent the MANET nodes. To enforce the user-specified connectivity among the virtual net-
work interfaces, every VM at boot time reads the Xenstore, and executes the necessary iptables
rules specifying either to accept or drop the packets originating from peer network interfaces.

To support simulation of mobility, we developed a mobility daemon executing in the Control
VM (DOMO) that refreshed connectivity (based on physical positions) information of MANET
nodes at periodic virtual time intervals. Hosting this in DOMO helps eliminate virtual time per-
turbation on the DOMs hosting the MANET nodes. The mobility daemon updates the Xenstore
periodically with the connectivity information (at every ¢; sec), and the VMs representing the
simulated MANET nodes read the Xenstore periodically (at every ¢, sec) and update their ip-
tables rules to reflect the MANET connectivity. For correct operation, we ensure ¢,>¢..

Network Bandwidth Model: Between any pair of connected MANET nodes, inter-node band-
width is controlled by dropping packets at the receiver from its peer when a user-specified arrival
rate threshold is about to be exceeded. This threshold was enforced by the VMs using iptables
rules using the /imit module. Similarly, nodes simply drop packets from peers with whom there
is no connectivity in the simulated MANET. Thus, the VMs running as MANET nodes enforced
these iptables rules based on the connectivity information read from the Xenstore. Figure 7, lists
the necessary iptables rules that were used for this purpose. Note that this drop-based model
does not perturb the traffic in the modeled scenario because the VMs are on a private software
bridge whose broadcasting burden is excluded from the virtual time charged to the VMs.

#iptables rule to ensure no connectivity with mac address XXX
iptables -A INPUT -m mac --mac-source XXX -j DROP

#iptables rule for bandwidth controlled connectivity with mac address XXX
iptables -I INPUT 1 -m limit --limit PKT PER_SEC/sec -m mac --mac-source XXX -j ACCEPT
iptables -I INPUT 2 -m mac --mac-source XXX -j DROP

Figure 7 iptables rules enforcing connectivity and bandwidth




Network Latency Model: The NNC previously discussed in Section 2.3 is used to enforce delay
on packets transiting from one MANET node to another. The NNC executing in DOMO utilizes
iptables rules to trap the inter-VM packets and redirect them to NNC. Additionally, with MA-
NETs, the dynamic connectivity of the mobile nodes are enabled via periodic exchange of
broadcast packets (hello messages) between the nodes as per OLSR protocol. For performance
reasons we do not redirect the broadcast packets to NNC and hence, only the application specific
packets passed through NNC. Figure 8 illustrates the set of iptables rules enforced in DOMO for
this purpose.

#iptables rule deleting the default rule of Xen for DOMO
iptables -D FORWARD -m physdev --physdev-in vifXXX —j ACCEPT

#iptables adding rule to accept the broadcast packets
iptables -A FORWARD -m physdev --physdev-in vifXXX -j —d 192.168.X.255 -j ACCEPT

#iptables rule to redirect the other non-broadcast packets to NNC
iptables —t mangle —A FORWARD -m physdev --physdev-in vifXXX -j —d !192.168.X.255 -j
NFQUEUE --queue-num 0

Figure 8 iptables rules for NNC
3 BENCHMARK APPLICATIONS
3.1 Experimental MANET Scenario
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For experimentation purposes, we simulate a network connectivity based on a star topology cen-
tered on coordinates of 39.70°N, 111.22°W, located in Utah. The RF propagation path loss was
computed using the Longley-Rice algorithm with a cut-off value of -94 dB, the resulting network
is used in our performance study. The MANET network layout shown in Figure 9 is very similar
to our test MANET network on which we had earlier reported performance results from Voice
over Internet Protocol (VOIP) experiments in [21].

The MANET configuration with node 61 static at a position shown by the blue-shaded circle
(around 61) is referred to as the “static MANET” setup in the rest of the paper. In the mobile
MANET setup, the node 61 represents a circulating unmanned airborne vehicle (UAV) that re-
volves around other static MANET nodes anti-clockwise as shown in Figure 9. This UAV mobil-
ity results in the formation and tearing down of connections dynamically with the peripheral
nodes in regular virtual time intervals.

Two benchmarks namely, (a) Constant Network Delay (CND), and (b) Cyber-security, are used
to evaluate the functional correctness of the MANET simulations. Being theoretically tractable
to derive the receive-order and relative message receive-time or receive pattern, the CND
benchmark is used to measure and compare the simulation time-order errors with theoretical ex-
pectations and with default VM platforms results (lacking virtual time-order execution and net-
work control). The cyber-security benchmark is used to verify the mobility feature of the
MANET network, and to compare the infection spread rate and pattern in the static and mobile
MANET scenarios.

3.2  Constant Network Delay Benchmark

In CND, the MANET nodes are numbered by ranks from 0 to m-1, where m is the number of
MANET nodes. Node rank m-1 initiates m-2 commands (C; to C,.;) one after the other, destined
to node rank 0. Each of these commands is routed via a single intermediate node before node
hosting rank 0 is reached. Command C; goes from node rank m-/ via node rank i to node rank 0.
Thus, the first command would hop on node rank 1, the second command would hop on node
rank 2 process and so on up to node rank m-2. This simple benchmark verifies the correctness
and measured the errors in eunits using the command actual receive order and the expected re-
ceive-order as

1 n m
E =_EE‘XU _Oij‘
o
where, n is the number of replicated runs, m is the number of nodes, .Xj; is the expected identifier
of the ;™ command in the /" run, and Oy is the observed identifier of the /™ command in the /"

run.

Note that CND is described under the notion that every command make exactly one logical hop
before reaching the target. For MANET experimentation with CND benchmark, we use the stat-
ic MANET setup, as shown in Figure 9. Hence, a single logical hop of a command at the appli-
cation level is not always equal to number of physical hops taken by the command in a MANET
network. The number of physical hops is actually dependent on the shortest distance between
the source and destination nodes. For example from Figure 9, even though the first message
passing from node 64 (rank 63) to node 1 (rank 0) logically makes a hop at node 2 (rank 1), the
message actually makes 3 physical hops to reach node 2 from node 64, and a single hop from
node 2 to node 1. In this particular example the message actually takes 4 physical hops to fulfill



a logical hop. Due to this mismatch between logical and physical hops, the message receive or-
der might be different than the sent order. Hence to evaluate the correctness, we should first de-
termine the correct receive order of messages arriving at rank 0.
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Figure 10 CND functional diagram

The CND application benchmark uses blocking MPI [31] calls for implementing the logical mes-
saging pattern. Hence, the MPI Send routine would not return until the message sent is buffered
at the destination host, as shown in Figure 10. Recall that a single logical hop in a MANET can
correspond to multiple physical hops across VMs over the wireless links. Hence, the actual de-
lay for every logical hop is proportional to the shortest path distance between the source-target
pair. Using the shortest-path distances between the nodes, the correct receive order for the de-
terministic CND benchmark can be estimated. Further, the relative time of packet arrivals at the
lowest rank can also be determined.

Let Tif correspond to the first logical hop taken by the i message to reach the i ranked process

and 7] correspond to the second logical hop taken from the i"™ ranked process to the lowest rank
(rank0). Then the reception time of the packet y; for any i"™ packet can be determined as,

vi=T +7, 1 =it vi = Sk T A T

r{ a shortestPathDistance(highestRank, i), T} a shortestPathDistance(i, lowestRank)

Note here that Tl-f is the summation of all previous first logical hop times. This is because we
used blocking MPI routine to send out the message and hence every generation of consecutive
message suffers from this delay. Note 7] does not incur any additional overheads. The number
of physical hops in the shortest-path distance required to perform one logical hop is used to de-
termine the receive order and to calculate the relative receive time of the arriving packets.

In addition to the receive order, an estimation of the receive time and hence the receive pattern
can be obtained from this benchmark. These metrics of the CND benchmark were utilized for
verification of correctness in the static MANET setup scenario.

3.3  Cyber Security Benchmark

This benchmark emulates the behavior of a worm infection and its subsequent propagation
across the hosts in an interacting multi-server and multi-client scenario. The worm propagation
in the system proceeds as a simple instance of the well-known Susceptible-Infected “SI” model.
The experiment involves a Vulnerable Services (VS), which listens to the requests from legiti-



mate or non-malicious clients, referred to as Legitimate Clients (LC). Upon receiving a request
from any LC, a VS responds by spawning a service thread that would subsequently transfer data
of uniform-randomly distributed size ranging from 1 to 10KB. Every LC generates requests to
randomly selected service hosts, with a random inter-request interval ranging from 10ms to
100ms.

Each VM node involved in the experiment hosts a single instance of VS and LC. The experi-
ment starts with a single infected VS. This infected VS spawns a Shooting Agent (SA) executa-
ble. This SA process is exactly similar to LC in its operation. It picks a next-hop VS to infect
and makes a request similar to an LC. In addition to the LC’s normal data-transfer behavior, the
malicious request from SA initiates a process that opens a backdoor-port for worm payload trans-
fer, as shown in Figure 11. The payload file (4 KB) transfer makes the VS host infected. The
newly spawned SA starts infecting its peers, similar to the infected (seed) VS. In this way, the
worm infects the all the VSs.
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Figure 11 Worm infection and propagation

Note that the infection spread in this benchmark happens in two phases. In the initial phase, the
worm infects the VS hosted on its next-hop nodes and this results in opening of the backdoor
socket on the infected node. In the final phase the worm transfers payload to the already infected
service. Note that the same infected node might not be responsible for both initial and final
phase infections. After the initial infection the SA tries multiple times to connect to the back-
door and transfer the payload; in event of failure to connect, it moves on to infect the next node.
However, if the backdoor is already open, some other SA from a different node might complete
the final phase of infection with the payload transfer.

We conducted the experiments on 64 VMs and each VM starts up an instance of VS and LC. All
LCs and the very first SA spawned by the seed VS are delayed by a 5-second sleep at their
startup, to ensure all VSs are ready to accept requests. The mobility is triggered at the start of
simulation by the benchmark application. This is accomplished by the initially infected service
node, which uses the Xenstore to inform the mobility daemon about the simulator readiness.
Where, the readiness is a state, when all the services reach a barrier after their corresponding ini-
tial setups.



4 PERFORMANCE EVALUATION

4.1 Hardware and Software

The experiments were performed on a Mac-Pro with two hex-core Intel® Xeon processors at
2.66 GHz, 6.4 GT/s processor interconnect speed with 32G of memory. With hyper-threading
enabled, Xen perceives 24 cores. With Xen creating 24 PCPUs to handle this, all our experi-
ments view this system as a 24-core machine. OpenSUSE 11.1 executing over Xen-3.4.2 (built
from source) was used on this hardware. The guest OSs hosted by VM were also OpenSUSE-
11.1 distribution of Linux. We used the OpenMPI v1.4.3 distribution of MPI to implement our
test programs, in order to realize controlled point-to-point communications, for ease of experi-
ment initiation, termination, statistics gathering, and to facilitate reusability.

The CSX setup was configured to use 4-VCPUs in Control-VM and each the weight of Control-
VM processors were 10 times larger than the weights of other VCPUs. During scheduling each
VCPU was assigned a time-slice of 100us. While, the bandwidth restriction of 300 packets/sec
per peer network device was enforced on all CSX runs, no latency was introduced (which is in
favor of CSX). For the mobile scenarios a wall clock delay of 1 second was used for the mobile
node (node 61) to hop from one peripheral node to another as shown in Figure 9. Scaled wall

clock time is used as the simulation time for the CSX runs and the scaling factor was determined
number of PCPUs _ 24

number of VCPUs 64

by the ratio of

Similarly, the NSX setup was also configured to use 4 VCPUs in DOMO. To significantly favor
the accuracy of CSX, the time slices for DOMO0O VCPUs were increased by 10 fold in comparison
with other VCPUs that used a 100us time slice. The bandwidth restriction same as CSX was en-
forced in NSX setup and the NNC was used to ensure latency control. A 10ms delay was en-
forced on every (non-broadcast) transiting packet. The virtual time was collected through the
Xenstore interface using libxcutil library. A virtual time equal to one second was enforced for
the mobile node (node 61) to hop from one peripheral node to another.

4.2 CND Benchmark Results

Figure 12 (left), compares the message receive pattern (relative message receive-time) at the VM
hosting the lowest-rank MPI process. To obtain the normalized message receive-time, the re-
ceive time of each of the message is negated by the receive-time of the first received message
and divided by the receive-time of the last received message. To obtain the theoretical curve, the
weight for each in the MANET was set to unity and the shortest-paths taken by the messages
were used to estimate the receive time of the message arrivals. As observed, the NSX-STATIC,
i.e., the NSX runs for the static MANET scenario have a very close correspondence to the theo-
retically derived result, and in contrast the CSX runs show irregular pattern highly differing from
expectations.

The errors measured from NSX and CSX runs in terms of eunits are presented in Figure 12
(right). Increase in time order errors (in eunits) with increase in number of VMs in the experi-
ment was observed with CSX setup, and for the same experiment, almost no errors were ob-
served in the NSX setup. In Figure 13 (left), the variability of the CSX and NSX packet-receive
simulation times with 95% confidence intervals are presented. A high variability in CSX and
almost none in NSX runs can be observed.
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Figure 12 CSX and NSX receive-pattern comparison with theoretical expectations (left).
CSX and NSX errors in eunits (right)
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Figure 13 CSX and NSX simulation time in static MANET (left) and mobile MANET
(right) scenarios with 95% CI (left).

For the static MANET scenario, we could theoretically derive correct receive order and receive-
pattern. However, similar theoretical derivation for determining the receive order and receive-
pattern is extremely difficult for the mobile MANET scenario. This is because of the physical
path uncertainty between source-destination pair, which makes it relatively harder to predict the
exact number of physical hops a message could take to reach its destination at any given instance
of simulation time. Hence, for the mobile scenario, only the CSX and NSX packet-receive simu-
lation time with 95% confidence intervals are presented. Figure 13 (right) shows very low varia-
bility in the packet-receive simulation time with NSX setup. Further, in NSX we observe low



variance for internal MANET nodes, while slightly higher variance is observed at the peripheral
nodes, as they are affected by the mobility of node 61. However with CSX setup, the highly ir-
regular and variable packet-receive simulation times are observed.

4.3 Cyber Security Benchmark Results

With the cyber security benchmark results from the runs using NSX setup, we verify the correct-
ness of mobility feature of the MANET scenario. . As mentioned in Section 3.3, the worm in
the cyber security benchmark infects only the next-hop nodes. Hence, in the static MANET sce-
nario, it is expected that the worm from the vulnerable service (node 61), to infect its only neigh-
bor (node 45), from which all other nodes get infected. This exactly is observed in the worm
propagation graph, as shown in Figure 14 (left).

Similarly, in the mobile MANET scenario, where the mobile node 61 revolves around the pe-
riphery of the MANET network, it is expected that the node 61 infects other peripheral nodes
other than node 45. This exactly is observed in Figure 14 (right), the node 61 not only infects
node 45 but also infects node 59, node 56, node 53, node 52, node 50 and node 62. This verifies
the correctness of the mobility feature in mobile MANET scenario.

Figure 14 Worm spread from node 61 in static (left) and mobile (right) MANET scenarios

In Figure 15, we plot the virtual time of infection across number of VMs for both static and mo-
bile MANET scenarios, with 95% confidence intervals. This graph also shows the worm propa-
gation trend in static and mobile scenarios. In analyzing the plots, it should be noted that the in-
fection propagates only through one-hop neighbors and the infection propagation itself is in two
phases. Further, only after the second phase (after payload transfer) the infected node actively
infects others. Hence, if a MANET node has fewer neighbors, the parent node aggressively tries
and quickly converts its neighbor into an infected, worm-propagating node. However, if the
MANET node is mobile, it might not be able to completely infect its neighbor as it moves along.
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Figure 15 Worm spread dynamics in static and mobile MANET scenarios

In the left plot of Figure 14, we see that the infection starts from node 61, and infects all. The
lack of mobility in this scenario helps for quick rate of initial infection propagation as seen in
Figure 15. In contrast, the right plot in Figure 14 shows that node 61is not able to infect all its
visited neighbors successfully. However, even with lower number of infected nodes (seven out
of 16 visited neighbors) the infection rate in the mobile scenario picks up at later stages of the
simulation as shown in Figure 15. Hence, the infection propagation rate is actually dependent on
the ability of the mobile node to successfully convert its neighbors to worm propagators.

S  CONCLUSION AND FUTURE WORK

An important benefit of virtual time synchronized execution of virtual machines is in its ability
to increase the level of determinism and repeatability across multiple test runs of even the most
complex distributed algorithms and their actual implementations. We presented a virtual time
synchronized approach to employing virtual machines for modeling and simulating complex
software-controlled net-centric systems, such as MANETS in defense communications, reconcil-
ing the challenging constraints of modeling effort, fidelity, scale, speed. Our prototype realized
in the Xen hypervisor is observed to provide excellent repeatability and accuracy, verified via
multiple benchmarks. Based on this feasibility, a useful alternative arises in defense network
modeling, namely, the use of actual, unmodified software implementations for the dual purposes
of simulation-based experiments as well as actual deployment.

While most traditional approaches can be classified as either a simulation or an emulation, the
approach presented here is neither alone but in fact is a combination. It retains the desirable fea-
tures of high fidelity, and time accuracy while overcoming limitations in scale, bias, and non-
repeatability of free-running emulations based on virtual machines. Because the virtualized net-
work under NetWarp is synchronized by virtual time rather than real time, NetWarp’s compo-
nents can be time-synchronously executed with external tools such as signal strength simulators
for accuracy at the physical layer, or for satellite link functionality with complex frame/bit pro-
cessing state machines. Further, our simple synthetic benchmark, with a theoretically derived



analytic solution, and our method of measuring time-order errors serve as a correctness-gauge
for any VM based MANET emulator and/or simulator.

Additional work, however, is needed to test the highest limits of temporal resolution at which the
scheduling can be realized, although, theoretically, any amount of instrumentation may be insert-
ed with minimal perturbation to the MANET systems being tested. Future work also includes
investigation of additional schemes for realizing inter-node connectivity, multi-node synchroni-
zation, wire-line network integration, and mobile operating system support.

Regarding inter-node connectivity, the approach used here is best for scenarios with rapidly
changing inter-VM signal reachability. Our scheme based on IP tables at the receivers provides
an efficient, low-overhead mechanism for implementing reachability dynamically. However, for
slow-changing or mostly-static interconnectivity, it may be possible to improve speed by allocat-
ing pair-wise software bridges that minimize broadcast traffic in the virtual network devices of
all the VMs.

To further increase the scale of scenarios, multiple nodes would be needed to host a larger num-
ber of VMs. In this case, the hypervisor scheduler functionality needs to be augmented with in-
ter-node time synchronization. Additional work is needed to design a new inter-node synchroni-
zation algorithm that provides globally virtual time-ordered VM execution by interfacing with
multiple instances of the intra-node scheduler (one on each node) described here. Finally, it is
conceivable to apply this approach to civilian applications by supporting newer mobile operating
systems such as Android in simulating additional device types and networked behaviors.
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