INEL-95/0454

Feo .o, £D September 1995
HOv 2 1 1995
OosTy
, Idaho
5”9",'\"2:3321 Version 1.00 Programmer’s Tools
Laboratory Used in Constructing the INEL

RML/Analytical Radiochemistry
Sample Tracking Database and its
User Interface

D. A. Femec

<= rlockheed

ldaho Technologies Company

DISTRIBUTION OF THIS DOCUMENT 1S UNLISMTED

INEL-95/0454

Version 1.00 Programmer’s Tools Used in
Constructing the INEL RML/Analytical Radiochemistry
Sample Tracking Database and its User Interface

D. A. Femec

Published September 1995

Idaho National Engineering Laboratory
Nuclear Engineering Department
Lockheed Idaho Technologies Company

‘ Idaho Falls, Idaho 83415-7111

Prepared for the
U.S. Department of Energy
Under DOE Idaho Field Office
Contract DE-AC07-94iD13223

DISTRAVTION UF TS LOCUERT 15 UHLBHTED o

ABSTRACT

: This report describes two code-generating tools used to speed design and implementation of
relational databases and user interfaces: CREATE_SCHEMA and BUILD_SCREEN. CREATE_SCHEMA
produces the SQL commands that actually create and define the database. BUILD_SCREEN takes
templates for data entry screens and generates the screen management system routine calls to display the
desired screen. Both tools also generate the related FORTRAN declaration statements and precompiled
SQL calls. Included with this report is the source code for a number of FORTRAN routines and functions
used by the user interface. This code is broadly applicable to a number of different databases.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible

electronic image products. Images are
produced from the best available original

document.

CONTENTS

L PUIPOSE .. e e e et e e 1

1.2 OVEIVIEW ettt ettt et e e e e et e e e 1

. 1.3 Definitions, Acronyms, and ABDIEVIBHONS+« « v o v s e s ee e 1
1.4 Registered Trademarks and Copyrights it eenenn. 1

. 2. DESIGN OF THE DATABASE i i ittt ieieeiaaaenns 2

2.1 BasicDescriptioncciiiiirinnnnnn e . 2

2.1.1 Tables and their Fields and Indexes for Sorting 2

2.1.2 bomains and Attributes L e 2

2.1.3 Storage Areas and Snapshot Files e 2

22 Speciﬁcs e e e e e et e 3

2.2.1 Names of Tables, Storage Areas, and Snapshot Files 3

2.2.2 Names and Descriptions of Domainsccuunn.. 3

2.2.3 Backing Up the Database R R R 4

224 Removal of Inacﬁve Entries from the Database et -5

3. DESIGNOFTHE USER INTERFACE ittt ittt 6

3.1 BasiCDesCrpOno ittt i it i e et e e e e 6

32 Specifics e, P 6

. 3.2.1 Data Storage Variables and Amaysot e ittt ittt 6
32.1.1 Storage of Datat 6

3.2.1.2 Conversion of Character Data to Numerical Data | 7

3213 EmorCheckingcciiiivniiiennnnn. e

32.13.1 "a" for ADYthiNG . « o v v v v e e eee e 7

32132 "d"forDate oo e i e 7
32133 "I"forLength00, 9
3.2.1.34 "t" for Time BT 9
3.2.1.3.5 "u" for Units Of TMEon... 9
32.1.3.6 " for QUESHONSttt e 9
3.2.2 Communication between the User Interface and the Database 9
3221 Formsof SQL Used L., 9
3.2.2.2 Commencing a Database Transaction 9
3223 AddaSample Entry it L 10
3.2.24 Searchfora Sample EOUYot oo eeiieeennnnns 11
3225 DueDate CheckSoiieiiin i iieenaenann. 12
3226 UpdateaSample Entry, 13
" 4. TOOLS USED IN DESIGNING THE DATABASE P 1'5
4.1 CREATE_SCHEMA ittt ittt tiianeennns 15
4.1.1 Purposeof theRoutinet nnnnnnnn. 15
4.1.2 Flow Description of the Routine 15
4.12.1 Creatingthe Domainso0tiiiienerennnn. 15
4122 Creatingthe Tables, 15

4123 Creatingthe Schema 16 -
4.1.2.4 Associating Attributes with Data Fields 16
413 Input Files it et et it e et 17
4131 ENTITY.PRN i ittt 17
4.1.3.2 SCREENPRN @ e et e 17

vi

414 OutputFiles e e 17

5. TOOLS USED IN DESIGNING THE USERINTERFACEccuviiuernnn 19
5.1 BUILD_SCREENttt tietineenineennnnnn ... 19
5.1.1 Purposeof theRoutine oo, 19

5.1.2 Flow Descriptionof the Routine 19

6. SOME SOURCE CODESttt ittt ininteerannnnnn 21
6.1 For Use in Displaying Sg;eens 21
6.1.1 DISPLY R R R R e et a e 21

6.1.1.1 Purpose oftheRoutine, 21

6.1.1.2 Flow Description of the Routine 21

6.1.2 TRMNTR i ettt ittt iee it 22

6.12.1 PurposeoftheRoutine 22

6.1.2.2 Flow Description of the Routine)

6.1.3 CHOOSE i i e iaieaaan 22

6.1.3.1 Purpose of theRoutineo, 22

6.1.3.2 Flow Descriptionof the Routine 23

6.14 KEYPAD ittt 23

6.14.1 PurposeoftheRoutineiconn.. 23

6.1.4.2 Flow Description of the Routine cee.. 23

6.2 For Use in Data Type CONVersionsc.c.ouottuuieeenerennenanenn 23
6.2.1 Character String-to-Numerical Value Conversions: RVALUE 23

6.2.1.1 Purpose of the Function @ e 23

6.2.1.2 Flow Descriptionof the Function

6.2.2 Numerical-to-Ch:..icter String Representation Conversions: CVALUE .. 24

6.2.2.1 Purposic oftheFunction R 24

6.2.2.2 Flow Description of the Function 24

6.2.3 Conversions between mmddyy Dates and Integer Date Counts 25

6.2.3.1 Purpose of the Functions 25

6.2.3.2 Flow Descriptionof the Routine 25

6.3 For Use in Constructing Searchesttt iinennnmeeenenenans 25
6.3.1 SRCBLDttt ittt e e 25

6.3.1.1 Purposé oftheRoutinec0.... e 25

6.3.1.2 Flow Description of the Routine e 25

632 APSTRG\ttt 26
6.32.1 Puirpose of the ROUHNE 26

6.3.2.2 Flow Description of the ROUNE - .+« + oo vve e ore e 26

7. REFERENCES it i i i et ettt c e iaas 27
APPENDIXES e et e e e e A-1
A. CREATE_SCHEMA ittt ittt i, A-1
B. LOTUS® 1-2-30 PRINT FILES e B-1
B.1. Entity-Sorted List i i i e B-1

B.2. Screen-Sorted List i B-6

C. EXECUTION OF CREATE_SCHEMA, e C-1
D. SQLINSTRUCTION SET ittt it e iane e D-1
E. BUILD_SCREEN ittt ittt ittt et E-1
F. SCREEN TEMPLATE FOR THE GROSS ALPHA-BETA ANALYSES F-1

viii

G.

BUILD_SCREEN OUTPUT it i iiieena e G-1

H. ARRAY AND SCALAR DECLARATIONSc.vviiiiiinneeennnnnn, H-1
I. DISPLY i ees et e ettt e I-1
Jo TRMNTR ..ottt et e e e e e e e e J-1
K. CHOOSE . . .ottt e ittt e e e e e K-1
L. KEYPAD . ..ottt e e e e e e L-1
M. RVALUE ...\ttt ettt et e e e e M-1
No CVALUE . ..ottt et ettt e e e e e e N-1
O. DAYCNT AND CHRDAT\ttt ittt et i 0-1
P. SROBLD .\ttt ettt e e e e ettt P-1
Q. APSTRG .« ottt e e e Q-1

TABLES

Table 1. Arrays and Scalars Used in Coding the User Interface.

1. INTRODUCTION
1.1 Purp_ose

This report presents the software tools developed for the construction of the RML/Analytical
Radiochemistry sample tracking database and portions of the code for its user interface. Chapters 2 and
3 are taken directly from Reference 1 and are included for completeness and to aid in understanding the
tools; keep in mind that notations in these chapters to Reference 2 are to latter portions of this document.

1.2 Overview

Two types of tools have been developed: those for design and constructing the database proper
and those for preparing code for the user interface. The starting points for the CREATE_SCHEMA tool
are data files prepared using a spreadsheet program; these files name and describe the various data fields
necessary for each database table. This tool then constructs an instruction listing for creating the database,
as well as FORTRAN declaration statements specifying the entities and attributes that correspond to the
various data entry fields and some FORTRAN code for accessing the database. For the tool
BUILD_SCREEN, the input is a programmer-prepared ASCII text file displaying how the data screen
should look. From this file, BUILD_SCREEN prepares declaration statements for use in preparing the
FORTRAN code for the VAX VMS screen management system routine calls used by the user interface.

1.3 Definitions, Acronyms, and Abbreviations

Terminology related to Digital Equipment Corporation’s VMS operating system, DECnet
communication protocol, DECwindows Motif graphical user interface, FORTRAN compiler, GKS
(Graphical Kemel System) plotting routines, Rdb relational database software, and SQL Fortran
precompiler, is desirable. Otherwise, this document explicitly defines technical terms as they are presented
and avoids unnecessary technical jargon for the sake of the general reader.

1.4 'Registered Trademarks and Copyrights

DEC, DECnet, DECwindows, GKS (Graphical Kemel System), Rdb, VAX, and VMS are
registered trademarks of Digital Equipment Corporation (DEC). Motif is a registered trademark of Open
Systems Foundation. Lotus and 123 are registered trademarks of Lotus Corporation.

2. DESIGN OF E DATABASE
2.1 Basic L-zscription

This database is a relational, multifile database. It is created and accessed using the Digital
Equipment Corporation’s Rdb/MS implementation of the industry standard Structured Query Language
(SQL). There is a separate file for each type of analyses and for basic sample information, tracking
information, and special instructions. The directory [RDB_DATABASES.SAMPLE_TRACKING] on the
user disk of the RML’s VAX 6000 mainframe computer contains the database files. The weekly user disk
backup includes the contents of these files (see Specifics, section 2.2).

The following subsections present a brief overview of the design of the database. The
corresponding subsections under Specifics (section 2.2 present more detail. The presentation assumes the
reader has some familiarity with relational database : “minology.

2.1.1 Tables and their Fi. :ds and Indexes for Sorting

A table (or entity) contains a number of named fields for data storage. The names of the tables
are as descriptive as possible while keeping the length of the name within the SQL-standard thirty-
character limit. , ,

Each field maps to only one data type (or domain). Appropriate fields serve as primary keys (for
uniquely identifying each entry in a table) and foreign keys (for connecting entries between tables). Fields
can have their own programmer-specified constraints (in addition to those of the corresponding domain)
and comments. For example, null entries can be forbidden for a given field, such as the field that serves
as the primary key.

A single field or a collection of fields serves as the primary key index for sorting each table. The
name of this index is of the form <storage area name>_PRIMARY_KEY_INDEX. Its size depends on
the fields which compose it. The comment for this index usually states the table for which it is the sorting
key. '

2.1.2 Domains and Attributes

A minimal set of data types, or domains, describes the space requirements for data in the database.
Associated with each data type are a default value, constraints on the acceptable values, and a comment,
all of which are programmer-specified.

Attributes are the data-containing fields within the database tables. Their names are as descriptive
as possible while keeping the length of the name within the SQL-standard thirty-character limit. Each
attribute’s data type maps to only one domain.

2.1.3 Storage Areas and Snapshot Flles

A separate storage area file contains each table and its definitions and constraints. The name of
a storage area file is of the form <storage area name>.RDA. Its initial size is determined by the amount
of data to be contained in a single entry to the table times an estimate of the number of entries that need
to be available in the working database. The storage areas (and snapshot) files are automatically increased

in size as needed by Rdb/VMS. (<storage area name> is a concatenation of the first two letters of each
underscore-separated part of the table’s name (and so can be computer-generated). For example, <storage
area name> for the table SAMPLE_INFORMATION is SAIN. The name of the table’s snapshot file is
of the form <storage area name>.SNP.)

2.2 Specifics

A listing of the SQL instruction set for creating this multifile database appears in Appendix A.

The CREATE_SCHEMA tool generated this instruction set. (The software tools used to design the

database are described in Reference 2. The examples presented in that report make use of this database.)

The Lotus® 1-2-3® print files,* containing the entity- (table-) and screen-sorted attribute description lists,

that serve as input to CREATE_SCHEMA appear in Appendix B. A recording of the terminal session

~ from the execution of CREATE_SCHEMA, specifying the programmer s input for this database, appears
in Appendix C.

The schema for this database is SAMPLE_TRACKING and so the name of the root file is
SAMPLE_TRACKING.RDB. The root file contains the complete set of domain and table definitions.

2.2.1 Names of Tables, Storage Areas, and Snapshot Files
The following are the table names, with the respective storage area names in parentheses:
« SAMPLE_INFORMATION (SAIN)
« for alpha analyses: ALPHA_URANIUM (ALUR), ALPHA_THORIUM (ALTH), AL-
PHA_PLUTONIUM (ALPL), ALPHA_AM241_SANS_PU239 (ALAMSAPU),
ALPHA_AM241_WITH_PU239 (ALAMWIPU), ALPHA_TOTAL_SPECTROMETRIC
(ALTOSP), and ALPHA_OTHER (ALOT)

. for gross alpha-beta analyses: GROSS_ALPHA_BETA_AIR_FILTERS (GRALBEAIFI) and
GROSS_ALPHA_ BETA AIR_OTHER (GRALBEOT)

« for beta analyses: BETA_STRONTIUM_90 (BEST90), BETA_STRONTIUM_89_AND_90
(BEST89AN90), BETA_TOTAL_STRONTIUM (BETOST), BETA_TRITIUM (BETR), and
BETA_OTHER (BEOT)

« for gamma analyses: GAMMA_SCREEN (GASC), GAMMA_FULL_ISOTOPIC (GAFUIS),
and GAMMA_OTHER (GAOT)

» SPECIAL_INSTRUCTIONS (SPIN) and
» for possessors: TRACKING (TR).
2.2.2 Names and Descriptions of Domains

The following lists the domains and their respective descriptions. Many of the names fully

a. The use of Lotus® 1-2-3® in constructing this database does not constitute an endorsement of Lotus® 1-2-
3®. Other spreadsheet programs could also be used to generate these output files.

3

describe the data type of the domain. For example, read "at most X alphanumerics” as the description
when "X_CHARACTERS" is the name of the domain. -

« CHARACTER_TIME_HH_MM (four or five numbers-plus-colon long and of the form hh:mm;
for recording times-of-day)

« CHARGE_NUMBERS (exactly nine alphanumerics long)
« FIFTY_CHARACTERS

* FLAGS (one character long; for Yes/No data)

* FORTY_CHARACTERS

. IDENTIFICATION_CODES (exactly twelve alphanumerics long and of the numerical form
mmddyyhhmmss; for the sample t:. :ing databas- identification code)

+ INTEGER_DATE_COUNT (date count start:: at January 1, 1990; for use in "Due Date
Check™) : _

« INTEGER_NUMBERS

+ NAMES (at most twenty-five alphanumerics long)

« PHONE_NUMBERS (at most twelve alphanumerics long)

+ REAL_NUMBERS

* RML_SPECTRAL_ID_CODES {«+actly fourteen alphanumerics long and of the form <save area
abbreviation of two characters in ~ :th>$<spectral identification code of ' 2n alphanumerics
in length>, for the location and * :ame of spectral data; see Reference :

+ SIXTEEN_CHARACTERS

» SIXTY_CHARACTERS

» TEN_CHARACTERS

« TWENTY_CHARACTERS

» UNITS (at most five alphanumerics long; for abbreviated units of measure such as H for hour,
M for minute, G for gram, and ML for milliliter; note the exclusive use of uppercase letters,
consistent with the user interface forcing all letters entered to uppercase)

+ USER_NAME (at most thirty alphanumerics long; for tracking who last modified an entry) and

» VMS_DATE_TIME (seventeen or eighteen alphanumerics long and of the form "dd-mmm-yy
hh:mm:ss"; for noting when a record was last modified).

2.2.3 Backing Up the Database

DCL BACKUP does not work correctly on the database files (the root file and storage area and
snapshot files), owing to their internal structure. These files are all marked for no backup using the DCL
command SET FILE /NOBACKUP. This way the weekly backup of the user disk on the VAX 6000
mainframe computer does not include these files.

The weekly backup includes the contents of the database storage area files, though. The routine
used by the RML operators to perform the backup contains code to do this (see Appendix D). The routine

(i) verifies the integrity of the database

(i) performs an RMU BACKUP on the database (this a creates file than can be correctly saved
and restored using DCL BACKUP

(iii) performs the DCL BACKUP

(iv) purges all but the two most recent versions of the file generated by RMU BACKUP and
(v) marks these files for no backup.

2.2.4 Removal of Inactlve Entries from the Database

An inactive entry is one for which all work has been completed, say, at least six months ago. The
inactive entries could be moved to a second, nearly identical version of the database. At a minimum, the
inactive database would differ from the active database in that it would contain the date the entry was
moved. The goal of removing inactive entries is to keep the active database as small as it needs to be;
unneeded entries slow down searches and retrievals. The actual moving of entries can be performed
automatically or by hand. It could be included as part of the backup procedure (see Backing Up the
Database). Inactive entries could be made accessible to the user interface by allowing the user to specify
the active or inactive database as the one to use. This capability does not exist with version 1.00 of the
sample tracking database.

3. DESIGN OF THE USER INTERFACE

3.1 Basic Descripticn

Except for informational messages, the interface makes relating to the database transparent to the
user. After selecting the desired option (Add a Sample Entry, Update a Sample Entry, . . .), the user fills
in screen-displayed forms. The interface then constructs and executes the appropriate SQL calls. Screen
management system routines are used for constructing the screen-displayed forms, reading data from them,
and flagging entry errors and missing-yet-required information.

Owing to the case-sensitive nature of SQL searches, all alphabetic input to the interface program
is forced to uppercase. Numerical input to data fields can be in the form of integer, real, or exponential
numbers; the interface chooses the most complete and concise representation for displaying numerical data
retrieved from the database.

3.2 Specifics

The software tools described in Reference 2 were used in preparing portions of code, such as
declaration statements. They were also used to generate most of the dynamic SQL calls and related
FORTRAN declaration and data-type conversion statements for the user interface. The examples presented
in that report make use of this database.

The following subsections provide more detail on how the user interface stores data, converts data
types, and performs error checking on entered data. It also describes the types of SQL calls the user
~ interface uses and how, using SQL calls, it communicates with the database in performing insertions (for
adding a sample entry), cursor declarations and fetches (for searching for a sample entry and due date
checks), and modifications (for updating a sample entry). The routines and functions mentioned in the
following subsections are described in more retail in Reference 2.

3.2.1 Data Storage Variables and Arrays

. The array and scalar declaration statements (and some source code) related to the screen
management routines are contained in the include file FLDDEF.INC (see Appendix E). These statements
were generated using the tools BUILD_SCREEN and CREATE_SCHEMA,; the screen templates submitted
to BUILD_SCREEN are presented in Appendix F (see Reference 2).

3.2.1.1 Storage of Data. For ease of use with screen management routines, all information
for a given screen is saved in a character array (composed of eighty-character-long elements) assigned to
- that screen. Since SQL calls cannot make use of arrays (and variable names over six characters long are
discouraged in Rdb/VMS), the arrays are equivalenced to a set of scalar variables that are of the required
length for the appropriate domains. A character array’s name is of the form fidat<first letter of the
screen’s name>; for example, for the Main screen the array’s name is fidatM.

BUILD_SCREEN creates a set of scalar variables using a generic naming scheme that only
identifies the screen. For example, scalar variables for the main screen’s data fields are named fliM<n>,
where <n> is the sequential number of the field within the screen. For clarity, the names of the scalar
variables were changed to include some relation to the appropriate attribute.

The new names of the scalar variables begin with f<first letter of the screen’s name>. The

remaining four letters, at most, of each name are constructed in a fashion similar to how storage area
names are constructed (see Storage Areas and Snapshot Files, section 2.1.3) but using only the first letter
of each underscore-separated part of the respective attribute. For example, for the main screen’s sample
tracking identification code (attribute name SAMPLE_TRACKING_ID) the scalar variable is named
fMSTI (Main screen, then SAMPLE, then TRACKING, then ID). (Some hand modifications were
‘required to eliminate duplicate names).

3.2.1.2 Conversion of Character Data to Numerical Data. If the database requires a
number for a given attribute, the appropriate translation of character-to-integer or character-to-real is
performed. (The result is stored in a scalar variable the name of which begins with an "i" instead of an
"f* for integer data and with an "r" instead of an "f" for real data). The reverse translatxon is performed
for numerical data retrieved from the database and to be displayed via screen management routines. These
‘conversions are handled by the FORTRAN functions RVALUE (for character string-to-real number
conversions) and CVALUE (for real number-to-character string conversions). . The codes for these
functions, again, are presented in Reference 2. :

The arrays containing labels for the fields have names of the form field<first letter of the screen’s
name>, The arrays containing the names of the entities and attribute corresponding to the screen fields
have names of the form atrbt<first letter of the screen’s name>, There are no scalar equivalents for these
arrays. Other arrays and scalars used in the screen management calls are similarly constructed; Table 1
lists all the arrays associated with any screen.. (Note that from here on and in the table "<first letter of
the screen’s name>" is abbreviated "<.")

Some of these arrays will be discussed in more detail later, in the following subsection on error
checking for example. The implementation of these arrays, and the coding for the error checking, is found
in the FORTRAN routine DISPLY (see Reference 2).

3.2.1.3 Error Checking. The user interface checks for three types of errors. First, is the data
entered short enough to fit into the appropriate field? Each data field has a maximum number of
alphanumerics that can be entered into it, mxnoc<>. Second, is the data required? If the field is rendered
in bold print, an entry must be made into the data field before the user can leave that screen. Also, an
entry can be required in a field because an entry has been made in a related field: if an entry appears in
the "Date Completed” field, for example, an entry would be required in the "Results report citation” field.
Third, is the data entered of the type specified by the fityp<> array? While data entered into a field is
read into a FORTRAN CHARACTER variable, a real number may be needed for the corresponding attrib-
ute in the database. The following data types, as implemented in the FORTRAN routine DISPLY, are
presently available.

3.2.1.3.1 "a" for Anything - Any combination of alphanumerics, spaces included and
up to the specified maximum length, is allowed.

3.2.1.3.2 ""d" for Date - A date in the integer form mmddyy is allowed. The entry will
be converted into an integer date count (that is, how many days have elapsed between the specified date
and December 31, 1989) for storage in the database. Integer date counts make due date checks easier to
perform, for instance. Conversions are accomplished using the FORTRAN functions DAYCNT (character
mmddyy-to-integer date count) and CHRDAT (integer date count-to-character mmddyy).

An entry of this type must be composed of exactly six integers (leading and trailing zeros must
be included). The first two digits, mm, represent the month and must fall in the range 01 to 12 (inclu-
sive). The second two digits, dd, repreésent the day of the month. The last two digits, yy, represent the

Table 1. Arrays and Scalars Used in Coding the Use: -erface.

Array Name Description Scalar Letter for
Equivalent? Equivalent
field<> contents of the description field N -
fidat<> contains error-free data (or is null) from the Y f
_ data field _
atrbt<> table (entity) and attribute names conespondmg N -
: to the screen field
varbl<> contains the names of scalar variables equiva- N -
lenced to fidat<> and to the respective if-null
indicator
fityp<> allowed data tvpe for the data field ("a" for N -
alphanumeri: . 2.)
fdlen<> length of the description-ﬁeld N -
fdrow<> row number for display of the description and N -
data fields
fdcol<> starting column number for display of the N -
description field
ficol<> starting column number for display of the data N -
field :
mxnoc<> maximum number of alphanumerics allowed in Y 1
the data field (length of data field) (for length)
fdmd< rendition of the description field (normal if N -
~yptional, bold if required, reverse video if
fixed)
fimd<> rendition of the data field N -
ilul< if-null indicator: -1 if the data ficld is empty Y n
(null), 0 otherwise (for null)
ifrgd<> entry into the current data field required if data N -
field number ifrqd<> is not empty
idito<> "ditto" transfers contents of data field number N -
idito<> into the current data field
ifmod<> if-modified indicator: true if the data field’s Y m
value has been changed (during Update), false (for modified)

otherwise

year and are interpreted a:

iows: if yy is between 90 and 99, the year is 19yy; if yy is between 00 and

79, the year is 20yy. Entries between 80 and 89 are not allowed as they should be interpreted as 20yy,
yet the resulting integer date count would be too large to fit into a FORTRAN INTEGER*4 variable and
hence into the respective database attribute.

3.2.1.3.3 "I" for Length - Here the entry must be exactly mxnoc<> alphanumerics long.
There are no restriction as to the alphanumerics used. One instance in which "1" is used is the charge
number to be billed for performing the analyses. All charge numbers are exactly nine alphanumerics long,
so a shorter or longer entry is invalid.

3.2.1.3.4 "t" for Time - The format of the entry allowed here is either "h:mm" or
"hh:mm." h or hh represents the hour as an integer. A leading zero is not necessary because the colon
can be used to delineate the hour portion of the entry from the minute portion. mm represents the number
of minutes. '

3.2.1.3.5 "u" for Units of Time - In instances such as the units for the duration of the
spectral acquisition, an entry of either H for hours or M for minutes is allowed. "u" covers only units of
time (duration); it does not cover sample size units, for example.

3.2.1.3.6 "?" for Questions needing a Yes-or-No Answer - The only allowed
entries here are "Y" for yes and "N" for no. This data type is used for flags such as whether a certain
type of analysis is to be performed.

3.2.2 Communication between the User Interface and the Database

SQL calls are used to transfer data between the user interface and the database. These calls are
either hard-coded into the user interface (precompiled SQL) or are constructed by it (dynamic SQL).

3.2.2.1 Forms of SQL Used. Both precompiled SQL and dynamic SQL calls are used.
Precompiled SQL calls are completely known by the user interface before they are executed. Such calls
include inserting all attributes of an entry into the database. An EXEC SQL preface marks these calls as
precompiled SQL statements rather than as statements in the host program’s language.

Dynamic SQL calls can only be composed during execution of the user interface. Instances of
these include requesting the tables needed for the current transaction. The instruction set for a dynamic
SQL call is constructed as a FORTRAN CHARACTER variable and is executed from the main routine
using EXEC SQL EXECUTE IMMEDIATE. To minimize the length of the character string, a FORTRAN
routine APSTRG (APpend character STRinG) fills the character variable with each additional portion of
the SQL call passed to it.

Modular SQL, in which calls are made from the main routine to SQL routines constructed in a
single and separate file, is not used. The main routine of the user interface is larger than might seem
prudent for ease of code development because of the Rdb/VMS requirement that all precompiled SQL
statements reside in the same routine.

3.2.2.2 Commencing a Database Transaction. Communications with the database occur
_ within transactions. The transaction definition (SET TRANSACTION) specifies the tables of the database
the user needs and the type of access required. For example, for adding an entry to the database, the
sample coordinator needs exclusive write access to all of the tables for the requested analyses. No one
else should be able to access these tables in any fashion until the addition is completed. The construction
of the SET TRANSACTION call depends on the application (for example, sce Add a Sample Entry,

section 3.2.2.3).

At present, all SET TRANSACTION calls will wait at most sixty seconds for the requested tables
to become available. To minimize conflicts (lock conditions resulting from two users wanting the same
table at the same time and in incompatible fashions), database transactions last only as long as necessary.
Any database transaction starts only as soon as all the requisite information is available. Again using the
example of adding an entry, the database transaction does not begin until all of the appropriate screens
are filled by the user. And, accordingly, each transaction is closed - either committed, that is, saved, or
rolled back, that is, undone - upon completion.

3.2.2.3 Add a Sample Entry. The addition (insertion) of a sample entry to the database occurs
via the SQL. INSERT command. Here the main routine constructs the SET TRANSACTION command
(using the FORTRAN routine APSTRG mentioned above in Forms of SQL Used), and then executes it
as a dynamic SQL call (EXECUTE IMMEDIATE). Again, dynamic SQL is used since all of the tables
that will be needed are generally not known until it is time for the addition to occur. All tables needed
are included in a single SET TRANSACTION command because violations of constraints are better
managed within a single transaction than over a series of transactions. A constraint, for example, may
require that an entry for sample identification code exists in the sample information table before an entry
for that same identification code can be made into an analysis table. A typical sequence of calls to
APSTRG, followed by execution of the SET TRANSACTION call, would be

call apstrg(comndl,lcmndl, (’set transaction read write wait 60'//
. ' reserving SAMPLE_INFORMATION for exclusive write, ‘), .true.)
if(ifgros(l))then
if(ifgros(2}))call apstrg(comndl lcrondl,
' GROSS_ALPHA_BETA_AIR_FILTERS for exclusive write,’,.false.)

endif

call apstrg(comndl, lcmndl,
(* SPECIAL_INSTRUCTIONS for exclusive write,’//
. ' TRACKING for exclusive write’),.false.)

exec sql execute immediate :comndl

The next SQL calls are precompiled SQL calls and insert the data provided by the sample
coordinator into the database:

exec sqgl insert into SAMPLE_INFORMATION values(
: fMSTI :nMSTI, : iIMDSE:nMDSE, : iMDAWC : nMDAWC, : £MCST:nMCSI,
: iMRNBD : nMRNBD, : £MCPN: nMCPN, : £MWCN : nMWCN, : £MCSN: nMCSN,
: fMST:nMST, : rMSS:nMSS, : fMSSU:nMSSU, : iMSCD:nMSCD,
: fMSCT :nMSCT, : £MASTI :nMAST, : £MSHS : nMSHS, : rMSHSA :nMSHSA,
: EMSSN :nMSSN, : £MSSPN:nMSSPN, : £MSSA :nMSSA, : fMTCN: nMTCN,
: EMTCPN : nMTCPN, : fMTCA : nMTCA, : EMSRTN :nnMSRTN, : fMSRTP : nMSRTP,
: EMSRTA : nMSRTA, : £MSPBN : nMSPRBN, : £MSPBP:nMSPBP, : fMSPBA :nMSPBA,
: EMNGAB : nMNGAB, : fMNA : nMNA, : fMNB: nMNB, : £MNG : nMNG, :

10

:nxinst:ifnnxi, :nxpssr:ifnnxp, : fGNGS:nGNGS, : £GNGFI :nGNGFI,

: £GNGO : nGNGO, : fCNGAF : nCNGAF, : fCNGAO: nCNGAQ, : £BNBSr : nBNBSr,

: EBNBSC:nBNBSC, : £BNBST :nBNBST, : £BNBT : nBNBT, : £EBNBO:nBNBO,
:fANAU:nANAU,:fANATh:nANATh,:fANAPu:nANAPu,:fANASP:nANASP,

: LANAWP : nANAWP, : FANATS : nANATS, : fANAQO: nANAO, USER, : today:notnul,
: EMCOCN : nMCOCN)

The values are passed in the form :<scalar equivalent of data field>:<scalar equivalent of if-null indicator>.
The colon preceding each variable name tells the SQL precompiler that what follows is a variable in the
user interface’s native language, not an SQL variable or key word.

What about fields into which no entry was made? Recall that there is an if-null indicator array.
If a field is left blank, that field’s if-null indicator is set (to a value of -1). When this if-null indicator is
passed to the database (with a value of -1), the attribute in the database entry is marked NULL. (The if-
null indicator could be used to specify which attributes are to be passed to a table. Dynamic SQL would
be used in place of precompiled SQL in this case. Pointers to variables are required in place of variables
for dynamic SQL, though.)

3.2.2.4 Search for a Sample Entry. This is another instance where dynamic SQL calls could
be used; this time they are, in conjunction with the APSTRG routine and the atrbt<> and fidat<> arrays.
To perform a search, the user fills in all the fields necessary to describe the entry or entries desired. The
if-null indicator is used to indicate the fields to be included in the search command. The user is to leave
blank those fields for which no information is known or for which the information may vary among the
desired entries.

Recall that the atrbt<> arrays contain the name of the table (entity) and attribute that correspond
to a given screen field. The search command is constructed using the atrbt<> arrays and the values
~contained in the fidat<> arrays. If a data field contains an entry (and so its if-null indicator is not set),
the appropriate elements from atrbt<> and the entry are used in constructing the dynamic SQL search call
via APSTRG. These portions of the search command are constructed in the FORTRAN routine SRCBLD
LEARCH BUILD).

Searches are conducted using cursors and fetches from cursors. A cursor can be thought of as a
virtual table containing only the specified entries (EXEC SQL DECLARE . . . CURSOR for <statement
name>; EXEC SQL PREPARE <statement name> from <search command>). Data from a cursor can be
retrieved into native language variables (EXEC SQL FETCH . . . INTO . ..). A typical portion of the
main routine’s code for constructing the search command and executing the search and retrieval is

call apstrg{comndl, lcmndl,
("select distinct SAMPLE_INFORMATION.SAMPLE_TRACKING_ID,'//
? SAMPLE_INFORMATION.CUSTOMER_SAMPLE_ID,'//
‘ SAMPLE_INFORMATION.CUSTOMER_SAMPLE_NAME' //
* from SAMPLE_INFORMATION'), .true.)
call apstrg(comnd2, lcmnd2,’ where’,.true.)

call srcbld{comndl, lcmndl, comnd2, lcmnd2, numfdM, fidatM, mxnocM,
fitypM, atrbtM)

if(ifgama(l))call srcbld(comndl, lcmndl, comnd2, lcmnd2, numfda,

fidatG,mxnocG, fitypG, atrbtG)

call apstrg(comndl, lcmndl, (comnd2 (1:1lcmnd2)//
' order by SAMPLE_INFORMATION.SAM:-LE_TRACKING_ID asc’),.false.)

exec sqgl declare SEARCH_cursor cursor for SEARCH_statement
exec sql prepare SEARCH_statement from comndl

exec sqgl open SEARCH_cursor . ’

exec sqgl whenever not found goto 704

702
exec sqgl fetch SEARCH_cursor into :smplid, :custid, :csname

goto 702

exec sgl close Si "CH_cursor

Note that two character == :gs are input to the routine APSTRG. For each non-null data field,
a call to SRCBLD transfers the2 of the respective entity alone to the first string (if it does not already
appear there) and, to the second string, the entity (table) name, the attribute name, and the value contained
in the data field. The second string is appended to the first string prior to the search. Finally, the search
is performed as the cursor is declared (defined), opened (much as a file is opened), and read from (via
FETCH) until the last entry is found (watched for by WHENEVER NOT FOUND . . .). The data
retrieved can be displayed as it is found and stored for future reference. After all the data is retrieved
from the cursor, the cursor is closed.

3.2.2.5 Due Date Checks. Due date checks are a form of search where the same, specific
attributes in the various tables are always interrogated, namely the date-completed fields. The sample
coordinator states how many days ahead should be checked for analyses and reports which will be due.
The user interface calculates the integer date count for the current day, and adds to it the number of days
ahead to be checked. A search is then preformed for all entries having due dates the integer date count
for which is less than or equal to the above sum (IDUCNT) and for which the specified work has not been
completed (that is, for which the DATE ALL_WORK_COMPLETED field is nuil). The codmg for one
such search is

exec sql declare BEST90 due _Cursor cursor for
select
BETA_STRONTIUM_90.SAMPLE_TRACKING_ID,
SAMPLE_INFORMATION.CUSTOMER_SAMPLE_ID,
SAMPLE_INFORMATION.CUSTOMER_SAMPLE_NAME,
BETA_STRONTIUM_90.RESULTS_NEEDED_BY_ DATE
from BETA_STRONTIUM_ 90, SAMPLE_INFORMATION
where BETA_STRONTIUM_90.RESULTS_NEEDED_BY DATE<=:iducnt and
BETA_STRONTIUM_90.DATE_ALIL_WORK_COMPLETED is NULL and
BETA_STRONTIUM_90.SAMPLE_TRACKING_ID=
SAMPLE_INFORMATION.SAMPLE_TRACKING_ID
order by BETA_STRONTIUM_ 90.SAMPLE_TRACKING_ID asc

12

exec sql open BEST90_due_ cursor

exec¢ sql whenever not found goto 836
834 exec sgl fetch BESTY90_due_cursor into :smplid,:custid, :csname,
. :duedat

goto 834
836 . . .)
exec sgl close BEST90_due cursor

- - -

3.2.2.6 Update a Sample Entry. This final mode of communication uses the techniques
described above. First, data for the specified entry is fetched from the database via a cursor:

exec sql declare ALUR_cursor cursor for
. select
ALPHA_URANIUM. SAMPLE TRACKING_ID,
SAMPLE_INFORMATION.CUSTOMER_SAMPLE_NAME,
ALPHA_URANIUM.RESULTS_NEEDED_BY_DATE,
ALPHA_ URANIUM.DATE_ALL_WORK_COMPLETED,
. ALPHA_URANIUM.RESULTS_REPORT_CITATION,
. ALPHA URANIUM.ANY SPECIAL_INSTRUCTIONS
. from ALPHA_URANIUM, SAMPLE_INFORMATION
. where ALPHA_URANIUM.SAMPLE_TRACKING_ID=:smplid and
. ALPHA_URANIUM.SAMPLE_TRACKING_ID=
. SAMPLE_INFORMATION.SAMPLE_TRACKING_ID
. order by ALPHA_URANIUM.SAMPLE_TRACKING_ID desc

« e s e

exec sgl open ALUR_cursor

- - .

exec sqgl fetch ALUR_cursor into
. : fASTI:nASTI, : fACSN:nACSN, : 1ARNB1 :nARNBE1, : iADAW1 : nADAW],
. : fARRC1 :nARRC1, : £AAST1:nAAST]

exec sqgl close ALUR_cursor

. . .

The retrieved data is then displayed for the sample coordinator to update. Once the updating of the
screens is completed, the entire database entry is updated (modified) if any changes have been made
within the screens. ‘

The if-modified indicator plays a role different from that the if-null indicator plays in searching
for a sample entry. If any of the if-modified indicators for a table’s fields are true, the entire entry is
updated if it previously existed in the database. If the entry is new to the database, the entry is added to
the database: '

13

‘falph(2).and. (mARNB1.or .mADAW1.or .mARRC1l.0r.mAASI1))then

£(ifalp0(2))then 'Use update to change the entry.
exec sl update ALPHA_URANIUM set
RESULTS_NEEDED_BY_DATE=:3iARNBI :nARNB1,
DATE_ALL_WORK_COMPLETED=:iADAW] : nADAW]1,
RESULTS_REPORT_CITATION::fARRCl:nARRCl,
ANY_ SPECIAL_INSTRUCTIONS=:fAASI1:nAASI1,
USER_CREATING_OR_MODIFYING=USER,
DATE_CREATED_OR_MODIFIED=:today:notnul
where SAMPLE_ TRACKING_ID=:smplid
else !Use insert since it was not there before.
exec sgl insert into ALPHA_URANIUM values/(
: fASTI:nASTI, : 1ARNB1:nARNB1, : iADAW1 :nADAW]1,
: fARET1 :nARRC1. “AASI1:nAASI1,USER, :today:notnul)
endif
endif

14

4. TOOLS USED IN DESIGNING THE DATABASE
4.1 CREATE_SCHEMA

4.1.1 Purpose of the Routine

CREATE_SCHEMA generates the SQL commands for creating the database and its associated
definitions (the schema). It prepares FORTRAN declaration statements for variables that allow a data
entry field to be related to the correct entity and attribute. It also generates the precompiled SQL code
(for FORTRAN) necessary to access the database in a number of ways, such as UPDATE and FETCH,
INSERT and CURSOR. '

ACREATE_SCHEMA asks questions of the programmer as it runs, and so it should be executed
interactively. To do so, type

@CREATE_SCHEMA

at the DCL prompt. There are no command line parameters to be specified. Appendix C records the
interactive execution of CREATE_SCHEMA used to create the sample tracking database’s schema.

4.1.2 Flow Description of the Routine

The DCL code for CREATE_SCHEMA is presented in Appendix A and is summarized here.
There are no declaration statements in DCL; numbers can be stored only as integers, and character strings
are distinguished from numbers by enclosing the value in quotation marks. After initializing some
counters, CREATE_SCHEMA opens the two Lotus® 1-2-3® print files, ENTITY.PRN and
SCREEN.PRN; these files are presented in Appendix B and described in detail below under Input Files,
section 4.1.3. '

After obtaining the name of the schema to be created from .t‘he programmer, CREATE_SCHEMA
opens a number of temporary output files and writes appropriate comments to them. These files will later
be concatenated and rearranged to yield the final output files, described below under Output Files, section
4.14. ' '

4.1.2.1 Creating the Domains. The first set of SQL commands to be generated create the
various domains (or data types) for use within the database. The statements to create two domains,
USER_NAME and VMS_DATE_TIME, are automatically written to file by CREATE. SCHEMA. The
descriptions of the rest of the domains are provided interactively by the programmer. CREATE_SCHEMA
reads through the ENTITY.PRN file until it finds the alphabetic list of unique domains. It then reads one
of these at a time, and presents each to the programmer for definition. The programmer can assign the
domain to one of four generic data types: character, date, integer, or real. Default values and comments
* can also be assigned. CREATE_SCHEMA keeps track of the names of the domains and their respective
sizes in bytes for later use. From all of this information, CREATE_SCHEMA writes to file the
appropriate SQL statements. '

4.1.2.2 Creating the Tables. The second set of SQL commands that CREATE_SCHEMA
generates create the various entities or tables described in ENTITY.PRN. Starting over at the top of
ENTITY.PRN, CREATE_SCHEMA reads the attribute listings for a given entity one at a time. For each
entity (or table), an abbreviated name is constructed for later use. The abbreviation is constructed as
described above in Storage Areas and Snapshot Files, section 2.1.3. For each new table encountered,

15

CREATE_SCHEMA writes the = "<t part of a number of precompiled SQL calls (cursor declarations,
fetches from the database, inser:. s into the database, . . .).

Each attribute listing spe<:fies thie name of the attribute, what type of key, if any, the attribute is,
and the domain to which the aitribute is to be associated. From the domain, for instance, CRE-
ATE_SCHEMA determines how many more bytes of storage space per record will be needed as each
attribute is added. (Remember that CREATE_SCHEMA recorded the number of bytes needed for each
domain earlier.) If the attribute is labeled as the primary key for the table, CREATE_SCHEMA records
this; if multiple attributes make up a table’s primary key, CREATE_SCHEMA properly constructs the
necessary key description, including the total number of bytes needed for the primary key.-

Special handling is needed for those attributes which will contain integer or real numbers in the
database. The screen management routines that present the data for the user to see can only make use of
- characters strings, and so character representations need to be'created for numerical data. In these cases,
CREATE_SCHEMA generates the appropriate integer or real FORTRAN declaration statements and the
code or function calls necessary to convert between numeric and character representations.

Once the end of a table (entity) i+ ~=ached, CREATE_SCHEMA calculates the size of the storage
area for the table and its snapshot file. - . NISHED_WITH_TABLE is the subroutine that handles these
calculations and the generation of the appropriate SQL commands to create the table. The subroutine also
completes the precompiled SQL calls that have been growing with each new attribute.

4.1.2.3 Creating the Schema. After all of the statements for creating all of the tables have
been generated, CREATE_SCHEMA now has enough information to write the first part of the statements
that actually create the schema. The main piece of needed information that was unknown until all of the
tables were dealt with is the size of the largest table. Associated with the schema is a buffer, the size of
which depends on the size of the largest table.

In should be clear at this point why a number of temporary output files will be put together to
arrive at the final output files. Consider just the statement for creating the schema. Rather than forcing
a second or even third pass through the print files, CREATE_SCHEMA writes to a file called
CREATE_SCHEMA_SECOND.SQL the statements for credting the tables as the tables are found. The
first part of the statements cannot be written until later, and so they are written to another file,
CREATE_SCHEMA_FIRST.SQL. The final cutput file, CREATE_<name of the schema>.SQL, is created
by concatenating CREATE_SCHEMA_SECOND.SQL to the end of CREATE_SCHEMA_FIRST.SQL.

A similar approach is taken in dealing with the precompiled SQL statements and the associated
representation conversions, and is then taken a step further. In the instance of the precompiled SQL
statements that handle the cursor declarations, the contents of one of the files needs to be reordered.
Fragments of the precompiled SQL statement are intermingled with the internal write statements that are
used to effect the number-to-character representation conversions, and so the file is read through and the
appropriate pieces culled out to new temporary files. These new temporary files are then used in the final
concatenation in place of their parent file.

4.1.2.4 Assoclating Attributes with Data Fields. The last portion of CREATE_SCHEMA
makes use of the SCREEN.PRN Lotus® 1-2-3® print file. It generates the FORTRAN declaration
stai= - :nts that associate the data fields within a screen with the appropriate attributes. It also generates
the = ciaration statements that associate the data fields with the scalar variables that contain the value
eni: 4 into that field (see Storage of Data, section 3.2.1.1).

16

Each attribute listing includes a screen (identified using the one-letter abbreviations used by
BUILD_SCREEN, section 5.1) and the number of the data field within that screen with which the attribute
is to be associated. This information, along with the domain, allows CREATE_SCHEMA to generate the
proper declaration statements.

4.1.3 Input Files

4.1.3.1 ENTITY.PRN. Appendix B.1 contains a listing of the ENTITY .PRN file used to create
the schema for the sample tracking database. Attribute lists for different entities are separated from each
other by a 30-character-long dashed line. Because duplicate "keys" (see below) have not been removed
from the listings, a change in entity name does not necessarily signal the beginning of a new entity.

For the majority of the file there are six columns that contain information about each attribute.
The first column, labeled "Entity,” contains the name of the entity (or table) in which the attribute can be
found. The second column, labeled "Attribute,” contains the name of the attribute. (Note that there is
actually a one-character-wide column preceding "Attribute.” This column contains only a period and was
added for readability.) '

The third column is labeled "Key" and in many instances is left blank. The only notations made
here have to do with whether the attribute is the table’s primary key (and so is marked with a p) or part
of the table’s primary key (marked p<n>, n an integer). A duplicate "key" is marked with a d; this
indicates that this attribute is actually from another table and should not be included in size calculations
for the current table. The fourth column, labeled "Screens,” contains the one-letter abbreviation for the
screen in which the attribute appears. The fifth column, labeled "#," gives the sequential number of the
data field with which the attribute is associated.

The sixth column contains the domain, the data type for the attribute. - At the beginning of the file
there are actually two columns labeled "Domain." The second one contains the alphabetically ordered
listing of all of the unique domains. The sorting is performed within Lotus® 1-2-3®.

4.1.3.2 SCREEN.PRN. Appendix B.2 contains a listing of the SCREEN.PRN file that is related
to the above ENTITY.PRN file. Here the attributes are sorted on the basis of the screen with which they
are associated, in order of increasing data field number. A change in the contents of the column "Screen"”
signals the start of a new screen. The columns are identical to those in ENTITY.PRN, except for the
absence of the second "Domain” column; CREATE_SCHEMA, having read ENTITY.PRN before reading
SCREEN.PRN, already knows the unique set of domains it will encounter.

The creation of this screen-sorted listing logically precedes the creation of the above entity-sorted
listing. Within Lotus® 1-2-3®, the screen-sorted listing can be sorted by entity and attribute to give the
entity-sorted listing. ‘

4.1.4 Output Flles

One output file from the CREATE_SCHEMA tool, CREATE_<name of the schema>.SQL,
contains the SQL commands necessary to construct the specified database. A listing of the instruction set
used to create the sample tracking database is found in Appendix D.

The remaining output files contain precompiled SQL statements to be included in the FORTRAN

- code for the user interface. Examples of code similar to that generated can be found above in Design of
the User Interface, section 3. The main difference is in the naming of the scalar variables; the default

17

names have been replace: 1 abbreviations that reflect the name of the associated attribute (see Storage
of Data, section 3.2.1.1} '

18

5. TOOLS USED IN DESIGNING THE USER INTERFACE
5.1 BUILD_SCREEN

5.1.1 Purpose of the Routine

The data screens could be constructed using a series of VAX VMS screen management system
routine calls, each of which contains the complete description for an individual data field. Or the calls
could be executed in a loop, the descriptions for the fields coming from the appropriate arrays. Preferring
to keep data separate from code within the user interface program, the latter method is used here.
BUILD_SCREEN constructs the needed arrays, along with the associated declaration statements.
BUILD_SCREEN is run once for each data screen, and a separate output file is created for each data
screen. The output files for all of the data screens can then be concatenated together into a single field
definitions file (FLDDEF.INC) that is INCLUDEd in the source code for the user interface.

BUILD_SCREEN does not ask any questions of the programmer, and so it can be executed as a
spawned process. To execute it as a spawned process, enter, for example, '

SPAWN/NOWAIT @BUILD_SCREEN MAINM Y

at the DCL prompt (the user-specified parameters that follow @BUILD_SCREEN are described below
under Flow Description of the Routine, section 5.1.2). To execute BUILD_SCREEN interactively, simply
enter

@BUILD_SCREEN MAINM Y
at the DCL prompt.
5.1.2 Flow Description of the Routine

The DCL code for BUILD_SCREEN appears in Appendix E. Again, there are no declaration
statements in DCL; numbers can be stored only as integers, and character strings are distinguished from
numbers by enclosing the value in quotation marks.

» Up to three user-specified parameters can be included in the command line when invoking
BUILD_SCREEN. The first, pl, identifies the input file. An input file should have a name of the form
<pl>_SCREEN.DAT; <p1> could be MAIN for the main data screen, for instance. The second, p2, is
a one-letter abbreviation for the data screen - M for main. This letter is used in constructing the names
- of the arrays to ensure that unique names are created for any data screen. The third parameter, p3, is
optional, and tells BUILD_SCREEN whether to include some declarations needed for the user interface
but that are not directly related to any screen.

First, the input file is opened. This file contains a picture of how the data screen should look,
minus the field renditions (normal text, bold, . . .). The programmer constructs the input file using a full
screen editor; an example is presented in Appendix F. The numbers across the top and down the left-hand
- side are part of the file and are included for reference. There are 20 lines and 78 columns available for
data fields; the remaining two columns and two of the remaining three lines are used to draw a box around
the screen. The twenty-first line is used to display some reminders about common keystrokes.

Six temporary output files are then opened. FIELDS.DAT will contain the FORTRAN code for

19

filling the arrays that will describe the data fields; declaration statements are not used to do this so that
all of the information for a given field can be grouped together in one place. To SCRDEC.DAT will be
written the FORTRAN declaration statements for the arrays, with sizes appropriate for the number of
fields in the data screen. A short bit of code for setting initial default values for the field renditions will
be written to DEFFLD.DAT. The last three files, CHARAC.DAT, LOGICA.DAT, and EQUIVA.DAT,
will contain the scalar versions of the contents of the data field description, the logical-like if-null-indicator
arrays, and the equivalence statements that connect the scalar variables to the appropriate array elements,
respectively. Appropriate comments are written to these last three files immediately after they are opened.

After initializing counters for the line number currently being scanned for fields (LINMBR) and
for the number of data fields found so far (NUMFLD), the input file is read one line at a time. The first
line of the input file contains column numbers and so is not scanned for data fields. As each subsequent
line is read, LINMBR is incremented by one. If a blank line is encountered in the input file, it is treated
as a numbered line but not scanned for fields.

Each non-null line is scanned, one character at a time, for fields. The beginning of a field is
signaled by an alphanumeric character (FIRSTC) must appear in column one, or in a later column (at most
up to column 63 - MAXNFC) but preceded by a blank. The field’s alphanumeric descriptor is expected
to precede a series of underscores; the underscores indicate the maximum-allowed length for the data to
be’ entered.

The descriptor, FIELD, is all of the characters from the first one detected up to but not including
the first underscore, minus any trailing blanks. The column in which a new data field description begins
is saved in FDSCOL. From FDSCOL, the line is scanned until an underscore is encountered; the column
in which the first underscore appears is saved in FINCOL. The length of the data entry field, MAXNOC,
is the number of underscores found. With a completely described data field in hand, the number of data
fields found, NUMFLD, is incremented by one, and the appropriate field-specific statements are written
to the output files FIELDS.DAT, CHARAC.DAT, EQUIVA.DAT, and LOGICA.DAT.

Starting at the column after the last underscore, BUILD_SCREEN looks for another data field in
the same line. If none are found, the next line is read and scanning starts again at column one. Once all
of the lines have been scanned, the FORTRAN declaration statements for the various arrays can be
written, along with the bit of code to initialize the field renditions. The six temporary output files are then
concatenated into a single file, <pl>_SCREEN.FOR. Appendix G contains the single output file that
results from the processing of the input file found in Appendix F. The temporary output files are deleted
before the routine exits to the DCL prompt. The only hand-editing that needs to be performed on the
output file involves specifying the field renditions to be used for each field.

Once BUILD_SCREEN is executed for all of the data screens, the individual output files can be
concatenated together and rearranged into a single field definitions file, call it FLDDEF.INC. Appendix
H contains the FLDDEF.INC file for the user interface to the sample tracking database. This file is
INCLUDEA in the source code for the user interface. Keeping these definitions in a separate include file
reduces the size of the file containing the rest of the source code for the user interface. For the sample
tracking database, FLDDEF.INC takes up more lines than the rest of the source code.

20

6. SOME SOURCE CODES WITH BROAD APPLICATION IN
DATABASE USER INTERFACES

6.1 For Use in Displaying Screens

6.1.1 DISPLY

6.1.1.1 Purpose of the Routine. The source code for the FORTRAN subroutine DISPLY
is presented in Appendix I. This routine makes use of VAX VMS screen management (SMG) system
routines to display the various screens of the user interface on the user’s monitor. In particular, these
system routines allow the user interface to place text in the precise location desired on the user’s monitor.
" Further, the text can be rendered in a number of ways: normal, bold, reverse video, and blinking.

The routine handles the initial data entry functions. It also confirms that the appropnate type of
data has been entered into each field. It will flag those fields that are in error and keep the user from
moving on to another screen until the errors are corrected.

6.1.1.2 Flow Description of the Routine. The calling routine passes to DISPLY all of the
information needed to describe the fields to be displayed on the user’s monitor. This includes what text
is to be printed, the rendition in which it is to be printed, the type of data to be entered into each field,
and any special relationships that exist between data fields. Declaration statements for the variables to
contain this information follow, along with the necessary screen management system routine include files.

The first step is to assure that the virtual keyboard (where the user’s input is coming from) is
established correctly. This is done by first deleting any existing virtual keyboard (SMG$DELETE_VIR-
TUAL_KEYBOARD), and then creating a new one (SMG$CREATE_VIRTUAL_KEYBOARD). Once
this is done the various fields can be displayed. '

Calls to SMGS$PUT_CHARS place the fields in their proper locations. The renditions used are
field-dependent: if an entry in this field is required, render the field in bold; if the entry is already fixed
and cannot be changed, render the field in reverse video. (These renditions are specified by hand-editing
the output file from BUILD_SCREEN. See Flow Description of the Routine, section 5.1.2.) All data
input fields are rendered as underlined (FINPUT); this makes the screen look like a fill-in-the-blank form.
Additional calls to SMG$PUT_CHARS add comments and key stroke reminders.

Beginning at the field IBEGIN, DISPLY waits for user input. This may be directives for moving
the cursor (such as the arrow keys), or data entered into a data field. All input is accepted via
SMGS$READ_STRING and then interpreted appropriately. DISPLY directly handles the special function
keys PF1 (for aborting execution), PF2 or Help (for displaying the special function key mapping via the
KEYPAD routine - see Keypad, section 6.1.4), and "Insert Here" to ditto data from a connected field into
the current field.

Other special function keys are acted upon after the contents of the current data field are checked
against the requirements for the kind of information needed in that field. Dates should be given as
mmddyy (all integers); numbers can be real, integer, or exponential; and so on. If the type of information
given is not correct, DISPLY marks the field as being in error by setting its attribute as blinking in
addition to the original setting. The user must correct the errant data before DISPLY will move on to
another field. Once the error is corrected, DISPLY retums the rendition of the field to its original setting.

Once valid data is entered into a field, DISPLY calls the routine TRMNTR (see TRMNTR, sect:
6.1.2) for any further action on the keystroke used to terminate the data field entry. If the user sign.
the interface that there are no more data fields to be filled in (by striking "Do" or ctrl-Z), DISPLY sc::
through all of the fields on the screen for fields left blank that need to be filled in. Fields that need i
be filled in are treated as if they contained errant data (see above), and the user must again strike "Do"
or ctrl-Z after having filled in the field correctly. After all of the required fields are filled in and any
errant data corrected, DISPLY renews the virtual keyboard (as explained above) before returning to the
calling routine.

If the user has requested that the cursor move to another field, TRMNTR retumns the number of
the next possibly accessible field. DISPLY then starts at one field before the field retumed by TRMNTR
- and moves ahead one field at a time until an accessible (i.e., non-fixed) field is found. Note that when
the initial field IBEGIN is passed from the callmg routine, DISPLY decrements it by one before starting
to look for the next accessible field.

6.1.2 TRMNTR

6.1.2.1 Purpose of the Routine. The source code for this FORTRAN subroutine is present:
in Appendix J. TRMNTR acts on the terminator received by SMGSREAD_STRING; recall th..
SMGS$READ_STRING is used in DISPLY to read user input to a data screen.

6.1.2.2 Flow Description of the Routine. The calling routine passes to TRMNTR most of
the information needed to describe the fields to be displayed on the user’s monitor. This includes what
text is to be printed, the rendition in which it is to be printed, and where it is to be printed. Declaration
statements for the variables to contain this information follow, along with the necessary screen
management system routine include files.

Some of the actions taken by TRMNTR have no immediate impact. For example, if the user
strikes PF4 (Advance) or PF5 (Reverse), TRMNTR remembers that the user has specified a direction to
be used with any subsequent "Next" keypad keys (all of which move the cursor to the next field).
TRMNTR acts on most of the other terminators to specify the next field to which DISPLY should try to
move. For example, striking the up-arrow key causes TRMNTR to scan backwards through the locations
of the fields until it reaches one which is on a line above the current field. TRMNTR is set up to treat
the data screen as a sphere; for example, striking the down-arrow key from the bottom line initially moves
the cursor to the top line.

Other actions performed by TRMNTR include those special cases DISPLY handles directly (the
main routine also calls TRMNTR, for example). It can also erase the contents of a data field when
directed to do so by either "Remove" or one of the "Delete” keypad keys. And if it does not recognize
the terminator, TRMNTR does not move the cursor. Note that the tab key is not a terminator. The VMS .
default set of terminators recognized by the screen management routines does not include the tab key.
The programmer can construct a set of terminators that includes the tab key for use in the SMGSREAD_-
STRING calls.

6.1.3 CHOOSE

6.1.3.1 Purpose of the Routine. The source code for the FORTRAN subroutine CHOOS:
is presented in Appendix K. This routine makes use of VAX VMS screen management system routine:
to overlay a second screen on top of the data entry screen. This overlaid screen provides the user witi:
some choices for a field (or series of fields) to be filled in. For this user interface, CHOOSE is used to

22

display a list of known sample possessors to speed the updating of sample entries. It performs as a scaled-
down version of DISPLY, calling TRMNTR as is needed.

6.1.3.2 Flow Description of the Routine. The calling routine passes to CHOOSE all of the
information needed to describe the fields to be displayed in the overlaid screen. Declaration statements
for the variables to contain this information follow, along with the necessary screen management system
routine include files.

After creating (SMG$CREATE_VIRTUAL_DISPLAY) and pasting (SMG$PASTE_VIRTUAL _-
DISPLAY) the overlaid screen, CHOOSE renews the virtual keyboard as does DISPLY. It then displays
the list, and waits for the user to either select the current item in the list or move to another. To select
an item in the list, the user need only put some character in the corresponding field. Once the user strikes
"Do" or ctrl-Z, CHOOSE determines which item, if any, the user selected by searching for the first field
_ filled in. The number of the item selected is returned to the calling routine; the calling routine then fills
in the field(s) appropriately.

Before returning to the calling routine, CHOOSE removes the overlaid screen (SMG$ERASE_DIS-
PLAY, followed by SMGSUNPASTE_VIRTUAL DISPLAY) and, once again, renews the virtual
keyboard.

6.1.4 KEYPAD

6.1.4.1 Purpose of the Routine. The source code for the FORTRAN subroutine KEYPAD
is presented in Appendix L. This routine makes use of VAX VMS screen management system routines
to display the mappings of the special function and keypad keys. This mapplng is presented as an overlaid
screen, much as CHOOSE does.

6.1.4.2 Flow Description of the Routine. The calling routine passes no arguments to

KEYPAD. Declaration statements for the variables to contain the information needed to describe the

overlaid screen follow, along with the necessary screen management system routine include files.
' KEYPAD then creates and pastes into place the overlaid screen.

As with DISPLY, TRMNTR, and CHOOSE, KEYPAD renews the virtual keypad. KEYPAD
removes the overlaid screen as soon as any key is struck. TRMNTR is not called, nor does KEYPAD
handle any special function keys itself. After removing the overlaid screen, KEYPAD renews the virtual
keyboard and returns to the calling routine.

6.2 For Use in Data Type Conversions

6.2.1 Character String-to-Numerical Value Conversions: RVALUE

6.2.1.1 Purpose of the Function. The source code for the: FORTRAN real function
RVALUE is presented in Appendix M. This function attempts to convert the data represented in the
character string passed to it into a real number. The converted data is for insertion into the database. The
data can represent an integer, real, or exponential number. , y

6.2.1.2 Flow Description of the Function. After declaring the few variables needed,
RVALUE determines whether the data represents an integer by looking for a decimal point. If it does not

23

find a decimal point, the characters passed to it are assumed to represent an integer. Since DISPLY has
already confirmed that the corresponding field does contain something that looks like 2 number, a failure
of the internal read used to effect the conversion is assumed to be fz:al to further execution. Once the
intemnal read into an integer variable is performed, RVALUE converts the mteger value to a real value,
then exits.

If a decimal point is found, an internal read is performed to obtain the real number directly. Note
that the format used for the intemnal read works for real numbers in exponential notation as well as for real
numbers without an exponent.

6.2.2 Numerical-to-Character String Representation Conversions: CVALUE
6.2.2.1 Purpose of the Function. The source code for this FORTRAN function, the

functional inverse of RVALUE, is presented in Appendix N. As the inverse of RVALUE, CVALUE
attempts to convert the ~**! number passed to it into a character represeniation; the conversion o7 teger

values is performed i .c calling outine since only an intenal write is requ 2d. The ¢, racter
representation is for us: : displayiz:. e data from the database using screer :anagemen: -’stem
routines.

A separate routine was prepared to handle real numbers so that the conversion effected (using
FORTRAN F or E format) would generate the most complete character representation that will fit in the
allowed field. For example, consider a field that is only eight characters long. The number to be
presented in that field is 0.000000123. Using an F format, the character representation would be 0.000000
- likely not a very good representation. ' If the leading zero were dropped, the F format would only allow
for .0000001. But if an E format was used, the representation would be 1.23E07, a much more complete
representation.

6.2.2.2 Flow Description of the Function. Following the few variable declarations needed,
CVALUE first tries to represent the number using an F format. The first F format attempted places as
many digits as possible after the decimal point. As in the above example, thls is generally the best F
format to begin witz.

If an error occurs during the internal write, it likely means that there are not enough digits before
the decimal point to represent the number. CVALUE then effectively moves one character from after the
decimal point to before it by respecifying the F format. If an error again occurs during the internal write,
another character is moved. This will continue until 2 successful-internal write is performed or there are’
no more characters to be moved (in which case an E format will surely be needed).

If an internal write using an F format is successful, CVALUE then calls RVALUE to obtain the
real number represented by the conversion. (It is possible that the real number represented by the
conversion does not have the same value as the original real number.) CVALUE then attempts to generate
the best E format representation in a fashion identical to that used for generating the best F format
representation. Once a successful internal write is achieved using an E format representation, the real
number corresponding to the representation is again obtained using RVALUE (i.e., a back translation is
performed).

Finally CVALUE decides w: soresentation should be returned to the calling routine. If one
of the conversions failed (i.e., none - -siternal writes succeeded), then CVALUE returns the result of
the other conversion. If both conv: = =3 fail, the character representation returned is 0.0. If both
conversions succeeded, CVALUE co:: :res the results of the two back translations to the original value.

24

The back-translated value closest to the original value is the-one retumned to the calling routine.
6.2.3 Conversions between mmddyy Dates and Integer Date Counts

6.2.3.1 Purpose of the Functions. The source code for the FORTRAN functions DAYCNT
and CHRDAT are presented in Appendix O. These functions are used to convert dates of the mtegcr form -
mmddyy to the day count from January 1, 1990 (day count 1) and vise versa.

6.2.3.2 Flow Description of the Routlne. A smau number of variables are first declared in
both functions. Then the appropriate mappings are performed.

DAYCNT uses the fbllowing FORTRAN expression to directly relate an mmddyy date to a day
count:

daycnt = (year-1990)*365 + int((year-1989)/4) + edamnt(mm) + dd,

where the first term gives the number of days from fully elapsed years since 1990, the second term
corrects for leap years, the second term represents an array (EDAMNT) that contains.the number of days
fully elapsed up to the mm-th month, and the fourth term is simply the date of the month. If yy is less
than 90, the date is assumed to be in the 2000s; otherwise the date is assumed to be in the 1900s, and year
is determined appropriately. The leap year correction is valid for the next 100+ years; recall that years
evenly divisible by 100 are not leap years unless they are also evenly divisible by 400, which the year
2000 is.

CHRDAT, the inverse of DAYCNT, does not directly obtain the mmddyy date from the day count.
First it makes a rough guess at the year by dividing the day count sent to it by 365. Then, based on the
rough guess, CHRDAT corrects for the number of leap years that have elapsed since 1990 to determine
the correct year. With the correct year in hand, CHRDAT calculates how many days remain after all of
the fully elapsed years are subtracted from the total. The month is determined by subtracting the number
of days in each month from the remnant; once a negative value is obtained, CHRDAT knows that the
correct month is the prior one. The final remnant is the date of the month.

6.3 For Use in Constructing Searches

6.3.1 SRCBLD

6.3.1.1 Purpose of the Routine. The source code for the FORTRAN subroutine SRCBLD
is presented in Appendix P. Given the variability of searches, and that the user interface cannot know a
user-specified search before it is constructed, the appropriate SQL call needs to be prepared on the fly and
executed as dynamic SQL. SRCBLD constructs the SQL call, compiling the attribute and domain names
and the associated values into a character string (via APSTRG) with as few extra blanks as possible. The
current limit for the length of the character string is 6000 characters, split evenly between the "WHE
clause and the rest of the cursor declaration call.

6.3.1.2 Flow Description of the Routine. The calling routine passes to SRCBLD the values
of all of the fields for a data entry screen, along with the array containing the name of the appropriate
attribute(s) and domains (ATRBUT). These variables are all defined in the declaration statements, along
with the two pieces of the character string.

25

SRCBLD the: .ns through all of the fields to find out which ones have been filled in. Only
those that have been fii: = in are included in the SQL call that performs the search. Once a filled-in field
is found, SRCBLD add: ' name of the appropriate attribute to the "FROM" clause of the SQL call. The
"FROM" clause is fou . at the end of the first piece of the character string. For the sample tracking
database, the domain sAMPLE_TRACKING_ID serves as the primary or foreign key for the various
database files. To ensure that the search finds only those entries for which all of the specified information
applies fully to each entry, SRCBLD automatically includes the condition that all of the SAM-
PLE_TRACKING_IDs from a single successful hit match. Again, the actual tacking on of the attribute
name to the existing string takes place in the subroutine APSTRG (sece APSTRG, section 6.3.2).

The attribute, domain, and field value are then all added to the second piece of the character string
in the form <attribute>.<domain>=<field value>. This version of SRCBLD only allows for exact
equalities; wildcards, ranges, and "sort of like"s have not yet been implemented.

6.3.2 APSTRG

6.3.2.1 Purpose of the Routine. The source code for this FOF :N subroutine: “zsented
in Appendix Q. APSTRG "appends” new character strings to an existing "Appends" i: totally
accurate, though; APSTRG does not perform a concatenation. Rather, APS . i keepstrack ¢~ many
characters are in the existing string, and then puts the contents of the new siring in after tha: - . This
requires that the existing string have enough room for all of the new strings to be included wiihin it.

6.3.2.2 Flow Description of the Routine. The calling routine passes to APSTRG the existing
character string, the number of characters in the existing string, the new string to be added, and a flag that
tells APSTRG whether the existing string should be started afresh and so contain only the new string upon
retum to the calling routine. These variables are all defined in the declaration statements.

If the existing string is to be started afresh, APSTRG starts by resetting the number of characters
filled in in the existing string to zero. APSTRG then assumes that all of the characters passed in the new
string are to be included in the existing one. "Since the length of the new string can vary, APSTRG
determines this length using the FORTRAN intrinsic function LEN. The new string is then copied into
the existing one, the length of the new string added to the prior length of the existing string, and ti=a
APSTRG returns to the calling routine.

26

7. REFERENCES

1. D. A. Femec, User’s and Reference Guide to the INEL RML/Analytical Radiochemistry Sample
Tracking Database Version 1.00, INEL-95/0455, September 1995.

This document.

RORORGRGEGEGREORORD] U N P nrnnnnrntnnnnnnnnnnnnnrnnntntnnnnnnnnnnnnnannnnn o nngnn

APPENDIXES

A. CREATE_SCHEMA - A ROUTINE FOR CONSTRUCTING AN
INSTRUCTION SET FOR CREATING A DATABASE

! Routine to generate an .SQL file for creating a schema from a Lotus
! entity.prn file. The storage areas for the tables are calculated,

t and the tables, domains, and cursors are defined. The attributes

! marked with a "d* (for duplicate) in the Key field of the entity.prn
t file are to be included in the cursors but excluded from the tables,
i
]
]
1
3

! Version 1 completed March 26, 1991 by D. A. Femec.
Set the maximum page size at zero to start, and define a string of
! thirty blanks to work with later in tabbing.

I
maximum_page_size = 0

thirty_blanks = * “
number_of_integers = 0 .
number_of_reals = 0

1

! See that entity.prn exists, opening it if it does.

]

open entity entity.prn /read

open screen screen.prn /read

1

! Obtain the name of the schema to be created.

]

get_schema_name:
write sys$output * *
inquire schema "Enter the name of the schema to be created*
if schema .egs. "* then goto get_schema_name

]

! Open the .SQL and other code files.

i .

open sqgl_first create_schema_first.sgl /write

open sql_second create_schema_second.sgl /write

write sql_second "!*

write sql_second *! Create the storage areas.*

write sql_second "!*

open sql_third create_schema_third.sql /write

open cursor_first cursor_first.for /write

open cursor_second cursor_second. for /write

open cursor_third cursor_third.for /write

open cursor_fourth cursor_fourth.for /write

open insert_first insert_first.for /write

open ingert_second insert_second.for /write

open insert_third insert_third.for /write

open insert_fourth insert_fourth.for /write

open insert_fifth insert_fifth.for /write

write insert_fifth *C*

write insert_fifth *C Database table and attribute names for due * -

+ *date checking."

write insert_£fifth "C*

write insert_fifth * data datatr/*

open insert_gixth insert_sixth.for /write

write insert_sixth *C*)

write insert_sixth *C Program variable {(value and null indicator) *-

+ *"names for due date checking.*

write insert_sixth *C*

write insert_sixth * data datvar/*"

open delete_tables delete.for /write

open update_tables update.for /write

i

! Get the domains, including the defaults, constraints, and comments.
1
write sgl_third *!*
write sq@l_third *! Create the domains, including defaults, * -
+ "constraints, and comments.*)

A-1

O RO RO R ROR G ROE R EG X VY Ay x4 nrrnr Uy 0 Uy 2 U A VNN vrin e Ur U U 0 U 2 2 2 0 0 U O O 0 O 0 O 0 O 0 -4 e

write sqgl_third "
write sqgl_third *create domain USER_NAME char (30)*
write sqgl_third * default NULL;*
write sqgli_third "
write sql_third *comment on domain USER_NAME"
write sql_third * is ’Domain for user name.’;*"
write sqgl_third * *
write sqgl_third “create domain VMS_DATE_TIME char(18)"
write sqgl_third * default NULL;"
write sql_third *
write sql_third *comment on domain VMS_DATE_TIME"
write sqgl_third * is ‘Domain for VMS date (dd-mmm-yy) and time (hh:mm:ss).’;"
write sq@l_third * *
domaing = "*
domain_types = "**
domain_sizes_byteg = "*
number_of_domains = 0
create_domains:
read entity line /end_of_file=premature_eof
if fSextract(108,1,1line) .nes. *** then goto create_domains
read entity line /end_of_file=premature_eof
read entity line /end_of_Ziie=premature_eof
read entity line /end_of_filie=premature_eof
domain = f$edit(f$extract(108,30,line),*trim,upcase")
get_domain_type:
write sys$output * *
write sys$Soutput *For domain ‘’domain’:*
write sys$output * *
inquire domain_type -
Enter the data type for this domain (char/date/int/real)"
if domain_type .nes. "C* then goto date_check
get_char_length:
write sys$output * *
inquire char_length " Enter the length of the character domain*
if char_length .le. 0 then goto get_char_length
domain_type = *"char(" + f$string{char_length) + ")*
if domain_sizes_bytes .nes. "* then domain_sizes_bytes = -
domain_sizes_bytes + "/*
domain_sizes_bytes = domain_sizes_bytes + f$string(char_length)
goto print_domain
date_check:
if domain_type .nes. *D" then goto int_check
domain_type = "date"
if domain_sizes_bytes .nes. "" then domain_sizes_bytes
domain_sizes_bytes + */"
domain_sizes_bytes = domain_sizes_bytes + *8*
goto print_domain

int_check:
if domain_type .nes. *"I* then goto real_check
domain_type = *integer*

if domain_gizes_bytes .nes. "" then domain_sizes_bytes
domain_sizes_bytes + */*)

domain_sizes_bytes = domain_sizes_bytes + "4°*

goto print_domain

real_check:

if domain_type .nes. *R" then goto get_domain_type

domain_type = "real*

if domain_sizes_bvtes .nes. "* then domain_sizes_bytes
domain_scizes_bytes + "/*

domain_sizes_bytes = domain_sizes_bytes + *4*

print_domain:

if domains .nes. "* then domains = domains + "/"

domaing = domains + domain

if domain_types .nes. ** then domain_types = domain_types + */*"

domain_types = domain_types + domain_type

number_of_domains = number_of_domains + 1

write sqgl_third "create domain ’‘domain’ ’‘domain_type’*

write sys$output * *

ingquire default * Enter the default value (return says NULL)*

if (default .nes. "*) .and. ((fSextract(0,4,domain_type) .eqs. *char") -
.or. (fSextract(0,4,domain_type) .eqgs. "date")) then -

default = *’* + default + *’* .
if (default .nes. **) .and. (f$extract(0,4,domain_type) .egs. "“real®) -

A-2

Ly L U Ur Uy U U Urin “Ur Ur A Uy U Y O Uy Ux U U Uy U U U U U1 U U2 U U U O3 O U O U U2 U U U O U A0 O U 0 O O U U U Y U O U O O 0 U O U O U

then default = default + "EO" _
if default .egs. "" then default = “NULL"
write sgl_third * default ‘’default’;*
write sql_third * *
get_comment :
write sys$output * *
inquire domain_comment * Enter any desired comment*®
if domain_comment .eqgs. "* then goto next_domain
write sql_third "comment on domain ‘‘domain’*
write sql_third * ig * + "/ 4 domaln comment + ";“
write sqgl_third * * B
next_domain:
read entity line /end_of_file=create_tables
domain = fsedit(fSextract(108,30,line),"trim,upcase")
if domain .nes. "" then goto get_domain_type

i

! Begin rereading the entity file and construct the appropriate
! statements for creating tables.
] .

create_tables:
close entity
open entity entity.prn /read
if number_of_domains .eq. 0 then goto no domalns
read_next_line:
read entity line /end_of_file=premature_eof
if fSextract(0,6,line) .nes. "Entity*® then goto read_next_line
read entity line /end_of_file=premature_eocf
table = f$edit (fSextract(0,30,1ine),*trim,upcase*)
write sqgl_third "!*
write sqgl_third *! Create tables.*
write sqgl_third =i

Prepare to create a new table.

'
1
!
prepare_new_table:
|
! Construct an abbreviated table name for the primary key index since
! the full table name is probably too long to allow a 30-alphanumeric
! index name to be constructed.
{
abbreviated_table = f$extract(0,2,table)
under_bar = 0
next_under_bar:
under_bar = under_bar + 1
fragment = fS$element {(under_bar,"_*,table)
if fragment .egs. "_* then goto abbreviated_table_complete
abbreviated_table = abbreviated_table + fSextract (0,2, fragment)
goto next_under_bar
abbreviated_table_complete:
write sgl_third "create table ’’table’ ("
write cursor_£first *C*
write cursor_first "C Declare a cursor for the contents of " -
+ “"table ’*table’.*
write cursor_first 'C'

write cursor_first exec sgl declare * -
+ "'’abbreviated_ table _cursor cursor for®
write cursor_first . select*
write cursor_third *c* : }
write cursor_third *C Declare a cursor for the due dates in * -
L

+ “table ‘rtable’
write cursor_third *C*

write cursor_third * exec sql declare " -
+ *’’abbreviated_table’_due_cursor cursor for"
write cursor_third * . select ’‘table’.SAMPLE.TRACKING_ID*
write cursor_third * . from ‘‘table’*
write cursor_third * . where
write cursor_second *C*
write cursor_second *C Open the cursor for the contents of * -

+ "table ‘’table’
write cursor_second *C*

write cursor_second " exec sql open ‘’abbreviated_table’_ cursor®
write cursor_second "C*
write cursor_second "C Close the cursor for the contents of * -

A-3

R72] wr W

LN NN rntn-nnt e B NNV Ve n Ly N Uy 4 EOROEORH RG] Uy U U o “r vrvn vrnr W

+ "table ’‘’table’."
write cursor_second *C*

write cursor_second * - exec sql close ‘‘abbrev -zed_table’_cursor*
writ= cursor_second "C*

write cursor_second *C Fetch a row from cursor for the table ’‘‘table’."
write cursor_second "C Perform the regquisite internal writes " -

+ "to transfer from noncharacter fields.*

write cursor_second *C*

write cursor_second " exec sql fetch ’'abbreviated_table’_cursor* -
+ * into*

write cursor_fourth *C*

write cursor_fourth *C Open the cursor for the due dates in * -
+ "table ’‘table’.*

write cursor_fourth *C*

write cursor_fourth * exec sgl open "abbreviated_table;_due_pursor"
write cursor_fourth "C* ,
write cursor_fourth *C Close the cursor for the due dates in * -

+ "table ’'‘’table’."
write cursor_fourth *C*

write cursor_fourth * exec sqgl close ‘‘’abbreviated_table’_due_cursor*®
write cursor_fourth *C*

write cursor_fourth *C Fetch a row from cursor for the table ’‘table’."
write cursor_fourth *C Perform the requisite internal writes " -

+ *to transfer from noncharacter fields.*

write cursor_fourth *C*

write cursor_£fourth * exec sql fetch ’‘’abbreviated_table’_due_cursor* -
+ * into"

wrire insert_second *C*"

write insert_second "C Perform the requisite internal reads " -

+ "to transfer into noncharacter fields.*
write insert_second *C Insert the row into table '’table’.*
write insert_second *C*
write insert_second * exec sql insert into ’‘table’ values(*®
write delete_tables *C*®
write delete_tables *C Delete the entry from table ‘’table’.*
write delete_tables *C*
write delete_tables * exec sql delete from ‘‘table’*

write update_tables "C"
write update_tables *C Update the entry in table ’’table’.*
write update_tables *C*
write update_tables * exec sql update ‘‘table’ set*
primary _key = **
primary_key_found = *F*
foreign_key_found = "%*
primary_key_size_byt-: = 0
primary_key_size_ats iutes = 0
column_constraint = *
row_size_bytes = 48 tAccount for USER_NAME (30 bytes) and
number_of_attributes = 2 ''VMS_DATE_TIME (18 bytes).
cursor_where_first = **
cursor_where_second = **
cursor_where_third = **
cursor_order_by_first = **
cursor_order_by_second = "*
cursor_order_by_third = **
cursor_from = **
write sys$output * *
write gys$output "For table ‘’table’:*
write gys$output * *
inquire table_comment * Enter any desired comment®*
get_attribute: :
attribute = f$edit (f$extract(31,30,line),*trim,upcase") .
table_current = f$edit (f$extract(0,30,1line),"trim,upcase*)
if (f$locate(table_current,cursor_from) .eqs. f$length(cursor_from)) -
.and. (cursor_from .nes. "") then cursor_from = cursor_from -
+ ", " + table_current
if cursor_from .eqgs. *" then cursor_from = table_current
domain = fSedit (f$extract(78,30,1line),"trim,upcase")
element = fSedit (fSextract(66,1,1line}, "upcase") + "{* -
+ fSedit (fSextract(75,2,1line}, "trim") + ")*"
serial = f$Sedit(f$extract(66,1,line), "upcase") -
+ fSedit{f$extract(75,2,1ine),"trim*)
domain_number = 0

A-4

“r “r Uy “y N rUr NN nNnrwrrintnnnnnnnnnnn

wvrnnnnnnnn ARG RDEGEGEGEGEGEGEG EOEGEHEGED] n

check_next_domain: .
if domain .egs. fS$element(domain_number,"/",domains) then goto domain_found
domain_number = domain_number + 1
if f$element (domain_number,*/*,domains) .egs. "/" then goto no_domain_found
goto check_next_domain

domain_found:

]

! If this is a duplicate attribute, skip the following so as to not

! include the attribute in the table, and read the next line.

[]

duplicate_attribute = f$extract(6l,1,line) .egs. *"d*
if duplicate_attribute then goto next_line
row_size_bytes = row_size_bytes -
+ fsinteger{fSelement (domain_number,*/",domain_sizes_bytes))
number_of_attributes = number_of_attributes + 1

Check if this attribute has been specified as a primary key (or as
part of one).

if fS$locate("p", f$extract(61,5,1ine)) .eq. 5 then goto check_foreign_key
if prlmary_key_found then primary_key = primary_key + *, *

prlmary key = primary_key + attribute ~

primary_key_size_bytes = primary_key_size_bytes -

+ fSinteger(fSelement (domain_number, */"*,domain_sizes_bytes))
primary_key_size_attributes = primary_key_size_attributes + 1
column_constraint = f$extract{0, {(31-f$length{domain)},thirty_blanks) -

+ " not null,*)
primary_key_found = *T*
if (cursor _where_first .nes. *"*) .and. (cursor_where_ second .nes. "*) then -

cursor_where_third = table + ".* + attribute + "=:..
if (cursor_where_first .nes. **) .and. {cursor_where_; second .egs. **) then -

cursor_where_second = table + ".* + attribute + "*=:...*
if cursor_where_ flrst .egs. "* then cursor_where_ flrst = table + *."* -

+ attribute + "=:..
if (cursor_order_by_ flrst .nes. **) .and. -

(cursor_order_by_second .nesg. "") then cursor_order_by_: second -

= cursor_order_by_second + ","
if (cursor_order_by_first .nes. **) .and. -

(curgsor_order_by_second .nes. "*) then cursor_order_by_third = table -

+ "." + attribute + * desc* ’
if (cursor_order_by_first .nes. "*) .and. -

{cursor_order_by_second .egs. *") then cursor order_by_first -

= cursor_order_by_first + *,6¥
if {(cursor_order_by_ first .nes. "*) .and. -

(cursor_order_by_second .egs. "*) then cursor_order_by._second = table -

+ *.* + attribute + " desc"
if cursor_order_by_first .egs. "* then cursor_order_by_first = table -

+ *.* + attribute + " desc"

i
! Check if this attribute has been gpecified as the foreign key.
! Obtain the appropriate reference table and column if it has.

!

check_foreign_key: :

if foreign_key_found then goto next_line

if f$locate("f",fSextract(61,5,1line)) .eq. 5 then goto next_line
write syssoutput ..

write sys$output * For foreign key ’‘'attribute’:"

write sys$output * *

inquire reference_table * Enter the reference table"
write sys$output * *
inquire reference_column * Enter the reference column*

foreign_key = attribute

column_constraint = f$extract(0, (31-f$length(domain)},thirty_blanks) -
+ * not null,*

foreign_key_found = *T*

] .

! Read the next line from the entity.prn file.

1

next_line:

read entity line /end_of_file=done

if f$edit(f$extract(0,108,1line),*trim*) .eqs. "* then goto next_line

if fSextract(0,1,line) .egs. "-* then goto dashed_line

print_attribute:

A-5

RO RGRGRG RO RO RN EGRGEGEOE R r U R23 v vr Oy Ux wr “r Uy Ur Uy N an Uy

w4 x “r Ay L An Ur U wr Ly Y Ur N

A iy

Print the cursor declaration and open/fetch statements.

write cursor_firsc * ’’table_current’.’’attribute’,*
if fSextract (0,1, f$element(dor«;n number, */*,domain_types)) .neg. *i* -
then goto check_lf_real
if domain .eqs. "INTEGER_DATE_COUNT* then write cursor_third -
’'table_current’.’’attribute’, "
number_ of _integere = number_of_integers + 1
wrlte cursor_second -
:intg’ ‘number_of_integers’:ifn’’serial’,*
write cursor second * if(ifn’’serial’.eq.~1)intg’ 'number_of_integers’=0*
write cursor_second * write(fld’’serial’,* -
+ "fmt=’ {i<mxnoc’ ‘element’>)’)intg’ ‘number_of_integers’*
1f domain .eqgs. "INTEGER_DATE_COUNT" then write cursor fourth -
:intg’ ‘number_of_integers’:ifn’’serial’,)
if dupllcate attribute then goto get_attribute
write ingert_second -
* :intg’ ‘number_of_integers’:ifn’’serial’,*

write 1nsert _second * if(ifn’’serial’ =q.-1)then
write insert_second * intg’’nu -rr_of_integers’'=0*
write insert_second * alsge*
write insert_second * read(flc :rial’,* -
+ "fmt='(i<mxnoc’‘element’>)’)intg’ ‘number_: .ntegers’"
write insert_second * endif*

wrlte update_tables -
'7attribute’=:1intg’’'number_of_integers’:ifn’’serial’,*
goto prlnt attribute_to_sql
check_if_real:
if fSextract (0,1, fSelement (domain_number,*/*,domain_types)) .nes. "r* -
then goto character_of_sorts
number_of_reals = number_of_reals + 1

write cursor_second * . :real ' 'number_cf_reals’*

+ *:ifn’’serial’,*
write cursor_second * if(ifn’’serial’.eq.-1)real’’'number_of_reals’=0.0"
write cursor_second * write(fld’ ‘serial’," -

+ "fmt=' (f<mxnoc’’element’-2>.1))real’ ‘number_of_reals’"
if duplicate_attribute then goto get_attribute
write insert_second -

. :real’ 'number_of_reals’:ifn’’serial’,"
write 1nsert _second * 1f(1fn"serial’.eq.—l)then
write insert_second * real ' ‘number_of_reals’=0.0"
write insert_gsecond * else”
write insert_second * read{fld’'’serial’," -
+ "fmt=’ (f<mxnoc’’element’-2>.1)")real’ 'number_of_reals’*
write insert_second * endif*
write update_tables * . 'rattribute’=:real’ ‘number_of_- ER

+ ":ifn’’serial’, "
goto print_attribute_to_sql
character_of_sorts:
wrlte cursor_second -
:f1d’ ‘serial’:ifn’’serial’,"
if dupllcate attribute then goto get_: attrlbute
write insert_second -
* :£1d’ 'serial’:ifn’’serial’,"
wrlte update tables -
'tfattribute’=:£fl1d’’'serial’:ifn’’'serial’,"
prlnt_attrlbute_to_sql
write sql_third * *rattribute’ ’’fSextract(0, -
{31-f$length{attribute)),thirty_blanks)’ ‘’domain’’column_constraint’*
column _constraint = *,"
goto get_attribute

.dashed_line:

read entity line /end_of_file=done
if fSedit(f$extract(0,108,1line),*trim"*) .eqgs. "* then goto dashed_line
table next = fSedit(f$extract(0,30,1line),"trim,upcase")

! Fi :h "creation of table* instructions.
}

gosub finizi 7 _with_table

write sqgql_=- . -nd * *

! Prepare to crzate a new table.

nunnnrnunranrnnrnnnnnnrtnnnntintntntnnunrnnnnnnnnnann “r wrn RO RORO RGO RN RGERORGEGEORGEGEG R R EHENEH R R

goto prepare_new_table
]

! Normal termination.
1

done:

{

! Finish create schema instruction.
1 .
gosub finished_with_table
write sql_second * P
write sgl_second " *

Write the create schema command - waited until now so .that the
buffer size (maximum page size from the storage areas) would be
known.

buffer_size = 3 * maximum_page_size
write sql_first *! SQL commands for creating ’‘’schema’ schema.*®
write sqgl_first "t
write sqgl_first *! Define the data and snapshot file location * -
+ *logical names."
write sgl_first *i*
write sql_first *$ define/system/nolog/translation_attributes=concealed * -
+ “rdb_data Suser:([femec.database.tracking.]"
write sql_first *$ define/system/nolog/translation_attributes=concealed * -
+ “rdb_snap $user:[femec.database.tracking.l"
write sql_first *ti*
write gqgl_first *! Create the schema."
write sql_first *!*
write sql_first *create schema*
write sql_first * filename **’‘’schema’***
write sqgl_first * buffer size is ‘’'buffer_size’"
write sql_first * *
1 N
! Commit the schema creation then exit.
1
- write sqgl_third *commit;*
write sql_third * *
write sql_third “exit;*

! Include declaration statements for real and integer attribute storage.

write insert_first *C"

write insert_first *C Declaration statements."”

write insert_first *C* :
real_number = 1

write ingsert_first * real*4 *
next_real:
write insert_first " . real’’real_number’,"*

real_number = real_number + 1
if real_number .lt. number_of_reals then goto next_real

write insert_first * . Yeal’’real_number’*
integer_number = 1

write insert_first * integer*4 *
next_integer:

write insert_first * . intg’‘’integer_number’,*

integer number = integer_number + 1

if integer_nuimber .lt. number_of_integers then goto next_integer
write insert_first * . intg’’integer_number’*

type sys$input

Execution has successfully completed. The create_schema.sgl and cursor

and insert files will be closed and retained. The entity and screen
files will also be closed and retained.

Please wait while certain sections of the cursor and insert files are

rearranged; this may take a few minutes.

“rnrinn

close sql_first

close sgl_second

close sgl_third

copy/concatenate create_schema_first.sql + create_schema_second.sgl -

A-7

+ create_schema_third.sql create_’schema.sql

Reorder the contents of cursor_second so that the internal write
statements occur after the respective fetch.

close cursor_first
close cursor_second
close cursor_third
close cursor_fourth .
open cursor_second cursor_second.for /read «
open cursor_second_a cursor_second. for /write ’
open cursor_second_b cursor_second_b.for /write
read cursor_second line /end_of_file=end_of_cursor_second
echo_comments_to_cursor_second:
write cursor_second_a line
read cursor_second line /end_of_file=end_of_cursor_second
write cursor_second_a line
read cursor_second line /end_of_file=end_of_ _cursor_second
write cursor_second_a line
read cursor_second line /end_of_file=end_of_cursor_second
write cursor_second_a line .
read cursor_second line /end_of_file=end_of_cursor_second
write cursor_second_a line
read cursor_second line /end_cf_file=end of_cursor_second
write cursor_second_a line
read cursor_second line /end_of_file=end_of_cursor_second
write cursor_second_a line
read cursor_second line /end_of_file=end_of_cursor_second
write cursor_second_a line
read cursor_second line /end_of_file=end_of_cursor_second
write cursor_second_a line
read cursor_second line /end_of_file=end_of_cursor_second
write cursor_second_a line
read cursor_second line /end_of_file=end_of_cursor_second
write cursor_second_a line
read cursor_second line /end_of_file=end_of_cursor_second
write cursor_second_a line
read_from_cursor_second:
read cursor_second line /end_of file=end_of_cursor_second
if fSextract(0,1,line) .egs. "C* then goto new_cursor
if fSextract(9,6,line) .nes., “if(ifn* then write cursor_second_a line
if f$extract(9,6,line) .nes. "if(ifn" then goto read_from_cursor_second
write cursor_second_b line
read cursor_second line /end_of_file=end_of_cursor_second
write cursor_second_b line
goto read_from_cursor_second
new_cursor:
close cursor_second_a
close cursor_second_b
copy/concatenate cursor_second.for + cursor_second_b.for -
cursor_sgsecond. for
delete cursor_second_b.for;
open cursor_second_a cursor_second. for /append
open cursor_second_b cursor_second_b.for /write
goto echo_comments_to_cursor_second
end_of_cursor_second:
close cursor_second
close cursor_second_a
close cursor_second_b
copy/concatenate cursor_second.for + cursor_second_b.for -
cursoxr_second. for
delete cursor_second_b.for;
purge cursor_second. for , .
copy/concatenate cursor_first.for + cursor_second.for -
+ cursor_thir:s. for + cursor_fourth.for cursor.for
type sys$inpu:
Cursor file rea.: inged.

Reorder the con =nts of i sert_second so that the internal read
gstatements occur before the respective insert.

Uy Ur Ur x4

close insert_first

NNtV rnrnrnnn nrnnnnnrrnntnnrnnr NN nngnnnnnnnannn

“r Ly Ur U - U L U L2 U V2 2 O A0 D Oy O

close insert_second
open insert_second insert_second.for /read
open insert_second_a insert_second.for /write
open insert_second_b insert_second_b.for /write
read insert_second line /end_of_file=end_of_insert_second
echo_comments_to_insert_second:
write insert_second_a line
read insert_second line /end_of_file=end_of_insert_second
write insert_second_a line
read insert_second line /end_of_file=end_of_insert_second
write insert_second_a line
read insert_second line /end_of_file=end_of_insert_second
write insert_second_a line
read_from_insert_second:
read insert_second line /end_of_file=end_of_insert second
if fsextract(o 1,1ine) .egs. *“C* then goto new_insert
if fSextract(9,6,1line) .nes. *if(ifn" then write insert_second_b line
if fSextract(9,6,line) .nes. "if(ifn* then goto read._from_insert_second
write insert_second_a line
read insert_second line /end_of_file=end_of_insert_second
write insert_second_a line
read insert_second line /end_of_file=end_of_insert_second
write insert_second_a line
read insert_second line /end_of_file=end_of_insert_second
write insert_second_a. line
read insert_second line /end_of_file=end_of_insert_second
write insert_second_a line
goto read_from_insert_second
new_insert:
close insert_second_a
close insert_second_b
copy/concatenate insert_second.for + insert_second_b.for -
. insert_second. for
delete insert_second_b.for;
open insert_second_a insert_second. for /append
open insert_second_b 1nsert_second_b for /write
goto echo_comments_to_insert_second
end_of_insert_second:
close insert_second
close insert_second_a
close insert_second_b
type sys$input
Insert file rearranged.

Now get table and attribute names and the associated fields ordered
by screen.

number_of_integers = 0
number_of_reals = 0
looking_for_entity:
read screen line /end_of_file=premature_eof
if fSextract(0,6,1ine) .nes. *Entity® then goto looking for_entity
read screen line /end_of_file=premature_eof
new_screen:
screen_ltr = f$edit(fSextract(66,1,1line), "upcase")
write insert_third *C*

write insert_third *C Database table and attribute names for screen fields.*
write insert_third *C*

write insert_third * data atrbt’’screen_ltr‘/*

write insert_fourth *C" .

write insert_fourth "C Program variable names (value and null * -

+ "indicator) for screen fields.*
write insert_fourth *C*
write insert_fourth " data varbl’‘screen_ltr’/*
next_variable_descriptor:
attribute = fSedit (f$Sextract(31,30,line),"*trim,upcase")
table = f$edit (fSextract(0,30,1line),“trim,upcase®*)
gserial = f$edit(f$extract(66,1,line), *upcase") -
+ fSedit (fSextract(75,2,1ine),"trim")
domain = f$ed1t(f$extract(78 30, llne),'trlm upcase")
domain_number = 0
get_domain_number:

oy RO ROREGEGRDENEGEOGEHEH] NN S Tt L Uy r N L NNt Y NN nnrnvrnin R RG RO ROEHEHEH V0] wr nrvrnnrnr e oy

if domain .egs. f$element (d~main_-~ mber,*/*,c:mains) then -

goto get_next_line

domain_number = domain_numoar + 1

if fSelement (domain_number,*/*,domains) .eqgs. */" then goto no_domain_fourd
goto get_domain_number

get_next_line:

read screen line /end_of_file=done_with_screen

if fSedit(fSextract(0,108,1line),"trim") .egs. ** then goto get_next_line

if fSedit(fSextract(66,1,line), *upcase®) .nes. screen_ltr then -

goto next_screen
write insert_third * . """ 4+ table + *’,’* + attribute + *’,*

if f$extract (0,1, fSelement (domain_number,*/",domain_types)) .nes. *i" -

then goto is_it_real
number_of_integers = number_of_integers + ‘1 .

write insert_fourth " . ‘:intg’ 'number_of_integers’:ifn’‘serial’’,"
if domain .nes. "INTEGER_DATE_COUNT" then goto next_variable_descriptor
write insert_fifth * . ’" + table + "’,’"* + attribute + "‘,"

write insert_sixth * . ’:intg’’number_of_integers’:ifn’’serial’’,"

goto next_variable_descriptor

is_it_real:

if f$extract (0,1, fSelement {d: ._number, */*,domain_types)) .nes. "r" -
then goto must_be_q charactel

number_of_reals = number_of__ + 1

write insert_fourth * L’ 'mumber_of reals’:ifn’’serial’’,"

goto next varlable descrlptor

must_be_character:

write insert_fourth * . f:fid‘’serial’:iin’'serial’’,"
goto next_variable_descriptor

next_screen:

write insert_third * . ’" 4+ table + *’,’" + attribute + "/"

if f$extract(0,1,fselement (domain_number,*/*,domain_types)) .nes. "i"* -
then goto is_this_real.

number_of_integers = number_of_integers + 1

write insert_fourth * . ’:intg’’number_of_integers’:ifn’’serial‘’‘/"
if domain .nes. "INTEGER_DATE_COUNT* then goto new_screen

write insert_fifth * . '" + table + "’,’" + attribute + *’,"

write insert_sixth * . ‘:intg’'number_of_integers’:ifn’‘*gerial’’,"

goto new_screen

is_this_real:

if fSextract (0,1, fSelement (domain_number,"/*,domain_types)) .nes. *“r* -
then goto this_is_character:

number_of_reals = number_cf reals + 1

write 1nsert_fourth . . ’':real’’number_of_reals’:ifn’‘serial’’/*"
goto new_screen

this_is_character:

write insert_fourth * . *:fld’’serial’:ifn’’'serial’" /"
goto new_screen

done-with_screen:

write insert_third * ‘% 4 ®ritable’® + *f,’% 4 “/’attribute’ /"
if f$extract(0,1, fselement(domaln number, */*,domain_types)) .nes. "“i* -
then goto is_this_real_ last

.number_of_integers = number_of_integers + 1

write insert_fourth * . ‘:intg’ ‘number_of_integers’:ifn’‘serial’‘/"

if domain .nes. “INTEGER_DATE_COUNT" then gotc close_inserts

write insert_fifth * . ‘" 4+ table +. *’,’* + attribute + "’ /*

write insert_sixth * . ‘:intg’‘number_of_integers’:ifn’‘’gerial’’ /"

goto close_inserts
ig_this_real_last:

if fSextract(0,1,fselement (domain_number,"/",dorain_types)) .nes. *r* - -

then goto this_is_character_ last

number_of_reals = number_of_reals + 1 .

write insert_fourth * . ’':real’’number_of_reals’:ifn’’serial’‘/"

goto close_inserts -
this_is_character_last:

write insert_fourth * . *:fld’'serial’:ifn’’'serial’‘/*
close_inserts:

““nge ingert_third

~.<g8e insert_fourth

ciose insert_fifth

close insert_sixth

copy/concatenate insert_second.for + insert_second b.for -
insert_second. for

delete insert_second_b.for;

A-10

nvrnnrntntnrn 4

purge insert_second. for

copy/concatenate insert_first.for + insert_second.for + insert_third.for -
+ insert_fourth.for + insert_fifth.for + insert_sixth.for insert.for

goto close_then_exit

Abnormal terminations.

Premature end-of-file detected.

premature_eof:

type sys$input

A premature end-of-file was detected. The create_schema.sgl file

being created will be deleted. The entity input file will be closed but
not deleted.

WV O N A U

goto abort

No domains entered.

no_domains:

type sys$input

No domains were entered, hence no attributes can be created. The

create_schema.sql and cursor and insert files being created will be deleted.
The entity input file will be closed but not deleted.

$

!
!
1

wn N

goto abort

No matching domain found.

no_domain_found:

type sys$input

No matching domain was found for the current attribute. The

create_schema.sqgl and cursor and insert files being created will be deleted.
The entity input file will be closed but not deleted.

“nornnnnrnrnntvttintnnnnnnnnnnnnnnnrnrntnntntnrnrnttrnn e

Abortive closure.

close sqgl_first

close sgl_second
close sql_third

close cursor_first
close cursor_second
close cursor_third
close cursor_fourth
close insert_first
close insert_second
close insert_third
close insert_fourth
close insert_fifth
close insert_sixth
close update_tables
close delete_tables
delete/log create_’schema.sgl;
delete/log cursor.for;
delete/log insert.for;
delete/log update. for;
delete/log delete. for;

Close the input files and delete the temporary output files before exiting.

close_then_exit:

close entity

close screen

close update_tables

close delete_tables

delete insert_*.for;

delete cursor_*.for;

delete create_schema_*.sql;

A-11

Ay Uy Y Uy <y Uy LA wr Ox Oy WY Ur Wy wr Uy “r AN “r nnnnnnnnuunnnunnnannnnnnannnntnnunnnnnannntney

exit
*Finished with table" GOSUB definition.

Storage area size calculation (see Rdb/VMS MAINT, section 14.4):

the primary key will be used as the index for sorting;

node_size = 3 * (primary_key_size_bytes + primary_key_size_attributes
+ 11) + 32;

row_size_bytes = row size in bytes, obtained by summing over all
the respective column (attribute) domain sizes;

row_overhead_bytes = number of no-compression bytes,
(row_size_bytes + 64)/128, + 2 for version number + number of
null bytes, {(number_of_attributes+4)/8 + 2 for record identifier
+ 3 for control information; will add one extra no-compression
byte and one extra null byte to avoid none being provided for;

variable page overhead = system record bytes, 8 + duplicate node
record line and TSN index bytes, 8 + (data row line and TSN
index bytes, 8) * number of data rows per page

(number_of_data_rows_per_page * (row_size_bytes + row_overhead_bytes +
8 + primary_key_size_bvtes + primary_key_size_attributes + 11)) +
{(fixed page overhead, 40) + (variable page overhead, 16) +

(node size overhead, 32))/512 + 1

Will use one-tenth of the initial size as the storage area extent.

Will use ten pages for the snapshot file allocation, and two
pages for each snapshot file extent.

inished_with_table:

1
]
]
[}
]
]
]
]
]
|
!
t
I
1
i
|
)
!
! Number of 512-byte block pages for table and sorted index storage area =
[
]
!
1
[}
]
]
!
1
l
£
]
! Print the cursor declaration and open/fetch statements.
1]
write cursor_first * ‘*table_current’.’’attribute’*

if fgextract(o,1, fSelement(domaln number, */",domain_types)) .nes. *i* -

then goto 1f_real
if domain .egg. *INTEGER_DATE_COUNT*®* then write cursor_third -

*’table_current’.‘‘attribute’"

number_ of _integers = number_of_integers + 1
write cursor_gecond -

. :intg’ ‘number_of_integers’:ifn’‘’serial’"

if .not. dupllcate attribute then write insert_second -

:intg’ ‘number_of_integers’: ifn’"serial’)*
wrlte cursor second -
if{ifn’‘serial’. eqg.-1)intg’ ‘number_of_integers’=0"

write cursor_gecond * write(fld’'serial’," -

+ "fmt=' (i<mxnoc’’element’>)’)intg’ ‘number_of_integers’*

1f domain .egs. "INTEGER_DATE_COUNT" then write cursor_fourth -

:intg’ ‘number_of_integers’:ifn’’serial’*

write 1nsert _second * if(ifn’'serial’.eq.-1)then
write 1nsert_second . intg’’'number_of_integers’=0"
write insert_second * else"
write insert_sgecond * read(fld’‘serial’, " -
+ *"fmt=’ (i<mxnoc’’element’>}’)intg’ ‘number_of_integers’*
write ingsert_gecond * endif*

wrlte update_tables -
‘rattribute’=:intg’ ‘'number_of_integers’:ifn’‘serial’,"*
goto last attribute_to_sql
if_real:

if f$extract(0,1,fSelement (domain_number,"/",domain_types)) .nes. "r" -

then goto if_character_of_sorts
number_of_reals = number_: of _reals + 1
wrlte cursor_second * . :real’'number_of_reals’* -

+ *:ifn’'serial’*

if .not.duplicate attribute then write insert_second -

:real’ ‘number_of_reals’:ifn’’serial’)*

write cursor _second " 1f(1fn"serial’.eq.-l)real"number_of_reals':O.O'
write cursor_second * write(fld’’serial’,* -~
+ "fmt=’' (f<mxnoc’‘element’-2>.1)’)real’ ‘number_of_reals‘’"
write insert_second * if(ifn’'serial’.eq.-1)then
write insert_second * real’’'number_of_reals’=0.0*
write insert_second * else"

A-12

write insert_second * read(f1d4’‘serial’," -
+ "fmt=’ (f<mxnoc’ ‘element’~-2>.1)’)real’ 'number_of_reals’"*
write insert_second * endif*

+ ":ifn’’gerial’,*
goto last_attribute_to_sgl
if_character_of_sorts:
write cursor_second -
" . :f1d’ 'serial’:ifn’ ‘serial’"
if .not.duplicate_attribute then write insert_second -
:f1d’ 'serial’:ifn’ 'serial’,*
wrlte update_tables -
'tattribute’=:£1d’' '‘serial’:ifn’'serial’, "
last_: attrlbute to_sql:
wrlte update_tables -
USER_CREATING_OR_MODIFIYING=USER,
wr1Ce update tables -
DATE_CREATED_OR_MODIFIED=TODAY"
write’ 1nsert _second * . USER, TODAY) *
if .not.duplicate_attribute then write sql_third -
“ ‘rattribute’ ’’f$extract (0, (31-fSlength(attribute)), -

Ly R4 3 W“r wr oy “r N U “r

column_constraint)’,
write sql_third * USER_CREATING_OR_MODIFIYING USER_NAME, "

write cursor_first * . from ’'cursor_from’*
write cursor_first * . where ‘’cursor_where_first’"
1f cursor_where_second .nes. *" then write cursor_first -
and ’‘cursor_where_second’”
1f cursor where_third .nes. ** then write cursor_first -
and ’‘cursor_where_third’*
write cursor first * . order by ‘’cursor_order_by_first’*
if cursor_ order _by_second .nes. ** then write cursor_ first -
* : ‘! *cursor_order_by_second’ "
f cursor order_by_third .nes. ** then write cursor first -
‘*cursor_order_by_third’*
write delete tables * . where ’'’cursor_where_first’*
if cursor_where_second .nes. "* then write delete_tables -
. and ’‘cursor_where_second’*
if cursor where_third .nes. ** then write delete_tables -
* and ’‘'cursor_where_third’*
write update tables * where ’’cursor_where_first’*
if cursor-where_second nes *“* then write update_tables -
* and ’‘cursor_where_second’"
1f cursor where_third .nes. "" then write update_ tables -
and ‘‘cursor_where_third’*
column_constralnt = ",
if .not.foreign_key_found then goto no_foreign_key_found
write sqgl_third * primary key (’’primary_key’),"
write sqgl_third * foreign key (‘’foreign_key’)"
write sqgl_third * references ’‘reference_table’ * -
+ "(’’reference_column’) });*

goto finish_write
no_foreign_key_found:

write sql_third * primary key (’’primary_key’)):*
finish_write:

write sql_third * *

if table_comment .egs. "* then goto get_number_of_rows_per_page

write sgl_third *comment on table ’‘table’*

write sgl_third * is ’'* + table_comment + *‘;*

write sqgl_third " * ‘
get_number_of_rows_per_page:

write sys$output " *

inquire number_of_rows_per_page -

" Enter the number of rows per page to be clustered together*
if number_of_rows_per_page .egs. "" then number_of_rows_per_page =

[

get_number_of_rows_per_table:
write sys$output * *
inquire number_of_rows_per_table -
" Enter the maximum number of rows for this table*
if number_of_rows_per_table .egs. *"* then number_of_rows_per_table

L2 3 Ur L r Ut N mmmmmmmmmmmmm Wy 0 Uy Ur Y “ U A wr Uy Ur " Xy U “r Ly U L

A-13

write update_tables * . ‘rattribute’=:real’ 'number_of_reals’*

thirty_blanks)’ ‘’domain’’fS$extract(0, (f$length(column_constraint)

_1)' -

write sql_third * DATE_CREATED_OR_MODIFIED VMS_DATE_TIME, "

write cursor_third * . order by ‘‘’table’.SAMPLE_TRACKING_ID desc*

3

if number_of_rows_per_page .lt. 1 then goto get_number_of_rows_per_page

=1

Ox Ur Uy N r NP A R23 “r Ly

R R GRGE G U Uy U U U 2 O Ur Ur

if number_of_rows_per_table .1lt. 1 then goto get_number_of_rows_per_table
row_overhead_bytes = (row_size_bytes + 64)/128 -
+ (number_of_attributes + 4)/8 + 9
node_size = 3 * (primary _key_size_bytes + primary_key_size_attributes -
+ 11) + 32
write sql_third -
*create unique index ‘’abbreviated_table’_PRIMARY_KEY_INDEX"
write sqgl_third * on ‘‘table’ (’’primary_key')*
write sgl_third * type is sorted*
write sqgl_third * node gize ’'’‘node_size’" .
write sgl_third * store in ‘‘abbreviated_table’;*
write sql_third * *
write sql_third *comment on index ’’abbreviated_table’_PRIMARY_KEY_INDEX"
write sqgl_third * is 'Primary key index for table '’table’.’;"
write sqgl_third * *
write sgl_third "create storage map ’‘‘abbreviated_table’_map for ‘‘table’"
write sgl_third * store in ’‘abbreviated_table’"
write sqgl_third -
. placement via index ’’abbreviated_table’_PRIMARY_KEY_INDEX"
write sqgl_third * disable compresgssion;*
write sql_third * *
page_size = (number_of_rows_per_page * (row_size_bytes -
+ row_overhead_bytes + 8 + primary_key_size_bytes -
+ primary_key_size_attributes + 11) + 88)/512 + 1
if page_size .gt. maximum_page_size then maximum_page_size = page_size
file_allocation_size = (11 * number_of_rows_per_table -)
/ number_of_rows_per_page) / 10
extent_size = file_allocation_size / 10 + 1
write sqgl_second *create storage area '‘abbreviated_table’*
write sql_second * filename ""rdb_data: [database]’'abbreviated_table’"*"
write sqgl_second * allocation is ‘‘file_allocation_size’ pages"
write sql_second * page size is ’’‘page_size’"*
write sql_second * page format is uniform®
write sql_second * extent is ’'’extent_size’™
write sqgl_second -
. snapshot filename **rdb_snap: [database]’‘’abbreviated_table’ .snp*"*"
write sqgl_second * snapshot allocation is 10 pages*
write sqgl_second * snapshot extent is 2 pages"
table = table_next
return

A-14

-4

sbery ¢ q 06 WNTuoIlsS BISq podU* uotjewIcjut o7dues

sbel1y 11 e} Jay3o rviaq eydie ssoxbpasu- uotjewrojutr ordwues

sbely ¢ o sI931T3 viaq eydie ssoab psau- uotjeurtojut~eydues

sbel13 61 s} I9Yj0 eueb poau- uoTiewrojutr ordues

sbery 11 6 otrdojost TNy eRuweS peeu- uotjewrojut oTdwes

sbel13 ¢ B ues108 eunreb pasu- uoTJewIOIUT oTdues

sxequmu—xabejut pu u Iaquinu~ @ouenbasTxossessod 3xau* uoTaewIOjuUT 9Tdwes

sxaqumu—aabejur pu u SUIT uoT3yonIjsut TeToeds axsu: uoTjrwIojur 91dues

‘sbe1] 9¢ ur euurefTpeeu uot jeutojut” sydues

sbely s¢ w vjoq pesu- - uot Jeurojul o Tdwes

sbeiy v¢ w eydre poau- uot jeuxojut erdwes

sbe13 ¢¢ w e3aq eydre ssoxf pesu:’ uoTjeurojur oTdwes

: sI9jdRIRYD U] Z¢ w Jequnu— ApoasnoTJo uteyo- uotjeurojur” oTdues
sxejoexeyd KIXTS g w o] sgo1ppe” aosgessod- Buryoeiy

sxaqunuauoyd Q¢ w p Jaqunu suoyd xossessod- Butyoeis

soueu 7 w p sueu0gsegs0d " Butyoeay

saejoeIRys AIXTI8 87 w sgeappe” Aq dnyo1d e rdues uorjeuwIojur o1duwes

sxaqumusuoyd £g u JaqunuTauoyd Aq-dnyord s Tdwes uotjeuIojur o1dues

gaweu 97 u awey~ AqTdnyo1d oTdues* uot Jewrojuy ordues

saejoeIRYs AIXTIB8 G2 u sgaippe 031~ s3Insex pues: uotjeurojul” @rdues

sxaqunu~euoyd g u Toqunu_suoyd 03" s3jInsax pues® uotjeuIojul @ydues

gaueu ¢ wu sweuT 03" g3IN88I puas- uoTjeWIOIUT o1dues

sasjoeIRyo” A3xX1s 22 u §8aIppe 10BIUOD” TROTUYDD3” uotjewrojul” o{dues

sxaqunu—auoyd Tz u Jaqunu~euoyd 3oejuod” TEOTUYDd]” uotjeutojur” ayduies

satun souweu (f u sweu 10eJUCD TEDOTUYDD]* uotjeuxrojur” @7dues
s1930vIRYD”_AJjUdM] sxejdoeIeyo” AIXT8 61 u ssaxppe” 1933TWIqnS 8 Tdues " uoljewrojur eydues
sI9jovIRUO U] sxequnu - auoyd g wu Tequnu-suoyd Ie@33Twgns aTdues - uoTjewrojutr a1dwes
sI93ovIRYD_ AIXIS saueu £ u sweu” 1933TUqNs o Tdwes - uo1jeurcjureTdues
83930RIRYDTUSDIXTS staqunu_ 1eaI 91 u K3tataoe” Aeaans~dy eidues- uotjeurojut o1dues
Sapoo pl~ TeajoadsTTux - : sbel13y ST u peloarns~dy a1dues- uot jeurojut sydues
sIisqunu_ Tead sbetry ¥1 w suot3onIjsut [etoads” Aue:* uot jeuxojutr erdues
sxaqunu—euoyd uT Yy 8w 3T I930RIRYD €1 ur 2wty uUoTIve 100 oTdues) uot jeurojut “ordues
saueU Junos ejep aebejur 7T u slepTUOTIOoBT 00 oTdues . uot jeurojut” ordues
sIyequnu_xabajuy s3tun IT u sjTun"ez1s o Tdues - uot jeuxojul_ orduwes
Junod a3ep Jebequr sIaqunu &I QT ur o218 o1duwes* uotrjeurojut_ ordwes
g9pOOTUOTIRITITIUSPT s19230RIRYD U] § w adA3 ea1duwes* uotjeurojut ordues
s1a30vIRYyD A3a03 sIe@jorIeyd A3JXTS @ w eureu~ oTdues " I8WO]SND * uoTjewrojur odwes
sbets sIaaqunu—abxeys 4 u Tequnu ebIeyos yIoM* uoTjeuxojur” o]dues

s1830ovIRUD” K3313 sIsjovxeyd> A3I103 9 w suey 300 (oxd I8WO38ND " uot jeurojutl”eT1dues
sxsqunu—abievyo junose3ep asbejur § u ejep” Aq pspeeusiTnseax’ uotjeuxojur” adues
Yy ewT 3T I830RIRYD S9POOT UOTIROTITIUSPT § w pt oTdues I9w038N> " uotjeurojul”e1dues
uteuwoqg uncd~a3ep” J8bejut ¢ u pejoTdwooTyIoM (TR e3ep: uotjeuxojui”e7dues

' qunooTejep Iefejur z w paasjue eTdues eqep:* uot jeurojuledues

* S9pOoT UOTIEDTITIUSPT 1 w d pT Butyoexi erdues: uotjeurojuie]dues

utewoqg uteuwoq 4 susaIdg Aoy : 23nqrTI13y Aataug

*E8TITIUD DIVDIBWSD SVYSEP - UOTIRISUSS I0SInd 03 pouUTRIBI SBTIJud ©3edTTdnp - 398YsiIoM PO3TOS-AITIUd qpy

IsI7 pados-Au3 ‘1'g

‘smary) a8ed asotp sarouSt VINAHDS ALVIID 1001 ayf, 'smoxp 98ed 01 puodsariod saur yueiq jo
SOUIaS Y ‘s91 Jund @E-Z-1 @SMOT Surdq 35AY) JO JNSAI © I SIIJ 0m) s noySnonp Apendar readde yormym saur uelq JO SIS YL

S1SI7 NOILdIYOS3d ILNGIHLLY
a31HOS-NI3HOS ANV -ALILINT THL ONINIVINOD S3TI4 INIHd @E-2-L @SNLOo1 'd

sbety

sIajovIeyd Ajusam)
aunoo @3ep aebejut
junoo~e3epaebajut
sxajoeieyd AIx1s
89pOOTUOTIeDTITIUSPT

sbety
s1930eIRYI " AUdM]
junoo ejep x9bajut
junodo”e3ep asbajutr
sIejoeIryo” AIXTS
S9pOOTUOTIBRDTJTIUSPT

. sbety
sasjoraeYS Ajuemi
junoo"ejep—aebajur
junooTsjepT1ebejur
gxojoeIRyd” AJXTS
$9POOTUOTIROTI T IUSPT

sbety

sI1ejoeleyd Ajusm]
junoo ejep asbajur
Junoo ejep asbajut
sIejoeIRyd” AIXTS
SepOSTUOTIeDTITIUSPT

gbety

sxsjoeIeyd> Ajusm]
junoo e3ep~aebequt
junosTejep xebeiut
sI1930eIRYD AIXTS
S9pPOOTUOTIRDTITIUSPT

sbety

sa@joereyd Ajusmy
Junodo ejep x8bejur
Junoo ejep xebajur
sI1ajovIRys” AIXTS
89pPOOTUOTIRDOTITIUSPT

sbery]
sasloeIRys>TAJUuaMm]
junos eaepaebejur
junoo"ej3epasbojut
gI9joeaeys> AIxXT8

89p0Oo T UOTILOTFTIUSPT

sBety
sbe1y;
sbety
sbery
sbery
sber}
gber}
gberty
sbety
sbety
sbery

NN o~

(] L © 9T TC T T TCOTST Como TOCCT T Lo G B ©ooT Lo

QeoaQuoc o oo

suoTjonIiIsuI [etoeds™ fue-
uoTlelTo” jx0dex"83Tnsax "
peajarduco) IoMTITe @3Rp "

a3ep Aq pepesuTs]iinssx-

P sweu~oTdues IsWO3ISND
ds3 pT Buryoriy erdurs -

suoT3onIIsul 1eT00ds T fue”

uot3e3Td 3I0dexTs3Tnesa”
poleTduos) I0M [TE @3ep"

a3ep”Aq poposuTsitnsax-

p sweu oTdwes I2WO3SND*
d/3 pr Buryoexy erdues

suotjonijsutTretcads Aue*
uoTIe3ToT 330dor 83 TNSSI "
peleTdwod™}I0M [T @3ep"”

93ep~Aq popoeuTsjTnsaa

P aueu o1dues”I8wo3SN0 "
d/3 pr Buryorvxy eordues

suotjonilsur” retoads Aue-

uotjeltd 3r0dsa"sjInssa’
pajeTduod yaom TTe @3ep"

9jep Aq popesu8S3Insgax*

P suru_@1dwes I0W038ND"
dys3 pr Buryoriy e1dues:

guotlonxlsutr” retroeds” Aue-

uot3elIo 3aodeI"g3nsea"
pojeTduco) IoM [I® @3ep"

a3ep~Aq pepesu s3Tnsaa”

p sueu o TdwRs IBWOISND *
d/sz pI Butydoery s1dues -
SUOTIONIISUT Telveds™ Aue-
uoT3R3TD J10dex " s3[nsaa”
pajefduoo IoM (TR 93ep"
o3ep” Aq popesuTelInsaa”
p sureu o dues I0WO38ND "

d/3 pt buryoeay ordues-

suot3onIisur- TeToads T Aue-
uotiezro jxodeaTs3TngeI"
po3a1duod Ty IOM [Ie ®3ep*

83ep~Aq pepesu83Insal’

P sureu o TduesTI8W038ND "

d/z pT Buryoery o1dues -

Ioyjo eydie pesu’
oTIj8Wox309ds” [BI103 eydie pesu*
. 8ggnd yatm Tpzue eydie pesu:
-ggznd sues” TpzueTeydre pesu-
umtuonTd eydie psau-

untIoyy eydre pasu-
untuexn~eydie posu’
I9Y30 T vIaq pasu”
wntitTIy elaq peau*
unt3uoxlsTrejolTelaq pesu-

06 PU®R g8 wNTIUOIIS RIS PO "

Teyjo eydie

JayaoTeydie

J9yjoeydie

aayloeydie

uoTjewrojut ardues

Teyjo eydre
oTx3jsuoildeds” [eI01 eydie
ot1ajesuwoaydeds” Telrcy eydie
orI32uox3oeds Tej03 eydie
orx32uwox3oeds” [ejol eydie
uoT3ruIOIUT "oTdwes
sra3euoaioeds T 1eiod eydre
gegnd yats Tyzueeydre
ggznd_yatM (pzue”eydre
gegnd yatm Tyzuwe eydie
gezndyatm THzuwe eydre
uoTjewIojur o1dues
geznd yatm THzue eydre
grznd sues [pzue T eydie
geznd sues” Tpzue eydie
ggznd sues” 1pzue eydie
geznd sues [pzue T eydre
uoTaewrojur o1duwes

ggznd sues Tpzue eydre
untuoinid eydye
untuoanideydie
umtuozngdeydie

untuointd eydie
uoTjeuIouT ©1dwes
‘untuoanid eydie

uniaoyy eydie
untroyyeydre

untioyy eydre

untroyy eydtre
uotjewrojut” ordues
untroyieydre
untueaneydie
umtueinTeydre

untuean eydre

untuexn eydre
uotjeurojut- oTdues

unruern—eydre
uoTIewIoUT o1dues
uoT jeuwrojute1dues
uotjeutrojut sidues
uot jewrojur o7dumes
ucTieWIoJUT ordues
uoT jeurojut” eydues
uoTiewIoFuUl a1dues
uotjeutojul eidues
uotjeurojut eydues
ucTieuIo)uUT "9Tdwes
uotjewrojur o1dues

junooTejep 1ebaiut
s3TUN

axsqunuTTesx
sasjoexeys” A3xTs
S8pOO UOCTIRDTITIUSPT

sbe13

saejokIRUYD” Ajuam)
Junoo”ejep asbheaut
Yy T ewt 3T 18308I0YD
Junco”elep 1ebejut
sbe1]

sbe1j

sbe13

sbet3

g3Tun

sasqunu” Teax
gxeloexeyo AIx1s
S9pPOS UOTIEITITIUSPT

sbetry

sI@3oeIRYD Kjusmi
junoo"e@3ep aebajut
uuTyyTeur 37 Ie3o0eIeyo
unoo e3epT1ebequr

' s3TuUn
sIsqunuTTesx
sxajdexeyd KIx1s
S2pOOTUOTIEDTITIUSPT

sbe1y

sxejoereyd Ajuem3
junod ejep xebajur
unTyy Tewt 3T I830eIRYD
junod> ejep 1ebejut
saTun

sisqunu_Teal
s10j0vIRYD A3XT8
S8pooTuUOTIedTITIUePT

sbet}

saejoereyo” Ajusmy
unoo”elep Jobejut
uuT Yy TewT 3T I93ovIRyD
junos @3ep aefequr
s3TuUn

sIaquinu” [es

sxo3oevIRYOTAIXTS
89p0OD UOT IBDT JTIUIPT

sbel3

sx93oeIRYS Ajuam]
junod~9jep” aebajut
uniT Yy T euT 3" Ie3oeIeyd
unod”@3ep” Jebajul
s3TuUn

gragqunu_ Tesx
gIejorIRyD” AIXTS
S9POOT UOT IRDTITIUSPT

HONPDVOEDAO ™

-~

aLo00000 .Q-Q—Q.D.d.ﬂ.ﬁ.ﬂ.ﬂ Q000000040 Lo0000000000.00

[oRe RO R R]

aLooa000000 040

ajep” Aq pepesu siTnhsax’
sarun—y3busiT3uncdTa030e39p”
yabuaT ™ Iunoo” 1030939p°

p sueu aTdursTI8WO3SND "
dss p1 Buryoexay eydues’

suoT3lonxisurTeroeds Aue:

uot3elro 3a0der s3TNSadI”
peletduco™yaom 11 @3ep"”

|wI 3 Aq papesu 83TN8VI"

o3ep AqQ pepesu sjfnsex-

1Pz untuoantd eaeq podu’
ggTanjinsejeq podu-

GG uoxtT eleq podu”

€97 T8YOTU elaq paou”

g3Tun yjbusT T 3unco”I030839p"
yabusT 3uncd~1030039p "

P sureu—ardwes™ 1oWO3SND*
ds3 pt~Buryoery a1dues"
suotionIggul” reroeds” Aue:
uor3e3toT3xodar s nesI"
pojarduwco™IOoM 1R @3Rp"’

swI 3~ AqQ pepeduTslInsax”
@3ep” Aq pepesuTsjInsax’
gatun yabusy T aunosTa030839p "
yabus1 junod 1030939p"

p sueu a1dwes” I8WO3END "
dsz pT Buryovay @ dues

suotjonxjsureToeds T Aue:

uotlelto jxoder s3(nsax’
pojetdwos ™ Iom [T @3ep"”

2wt~ Aq pepssu” 83INsdI’

®3ep” AqQ pepeauTgjinsax’

s3tun yabust junod”I030938p"
yabuat aunoo"I030939p"

P sureu o1dues I2wW038N0"
d/3 p1 Buryoexy erdues*

suotiontisuy” (erossds” Aue*
oY 3e3to” Jx0dex s3Insex”
paloTdwos HIOM TR 930p"

sut 3~ Aq poposuTs3TNngax”
a3ep T Aq pepoduTsIINSST "
saTun yabueT JunooTI030939p "
yabusT Junod~1030939p "

P aueu” oTdurs18WO38NO
dss p1 butyoery ordues:

suotionalsur Teroeds Aue-*
uoTIBlITO 3x0dea saTngsx”
peoleTdwoo yaoM 1R 938p"

euwrT 1~ Aq pepesu s3[nsax"’

o3ep~Aq papesu s3Tnsax’

satun y3bueT 3unooT1030938p"
yabus1 T junoosTI030238p"

e} oureu s 1dues I0WO38N0 "
ds3 pr Buryoexj erdues"

usexos eumeH

ussxos euwred

ussIog eumeb
uoTjeuwrojulr_ aydues
ussI09” BuIBD

Ixey3o wleq

asY30” vlaq

asy0 RIS

Isyj0TeIeq

Ioylj0o e39q

I9Ya0 viaq

I9Y30” v39q

PlihToa -2t o]

Jayl07 I8

aayijo eiaq

asya0_ e39q

uotieurojul ordues
a9y 307 eIdq

wni3rI3Tessq

wNT3TI3 RIS
unt3lTIy T eleq
wnt3rIaTelsq
wnT3IrII"R3Ieq
wnt3tI3Telnq

wnt3tIg eseq

uotieurojut ordues
wni3tI3 eleq
wntuoI3sT [BI0] T vIS]
WNTuoI3s” [¥303vILg
untTuUOIls”T [BI0Y viIBg
wnrtuoxls”T [ejoy eleq
wnruoxlsT [ejoieieq
wntjuoxis”T (el03 eleq

wNT JUOIIS” [BIO] BIBY
uotjeurojut” oidurs
wnt3uoIys” (e3oly eivg

06 PU®R g8 WNTJUOIIS™ RIB]
06 pPUR g8 WNTJUOIIS vIDQ
06 PUE ggTUNT JUOI IS vl
06 PUE 68 UMT IUOT IS RIS
06 PUBT T WNT UCI 18T BIDY
06~ PUE g8 WNT JUOTIS eIRY
06 PUB 68 WNTjuOIIS T RIDY

uot jeuIojuUT BTdues
06 PURT g UNT JUOIIST RIS

06 wnTjuoxls vilaq
06 WNTIUOIIS vIBq
06 WNT JUOIIS™ BB
06 WNY JUOXIS” RIABQ
06 wWNt3uoxis elaq
06 Wnt3uoIisTeIDq
06 WNT 3UOI38 eI
uoT yewrojur oydues
g6 uNTIUCTIS” BIBY

staqunu-Iebajur pu T ¢d sut(uotjonxisur [eroads- SUOTIONIISUT [eTo9ds
sxejoeaeyd A3ITy b T uot3oniisutr [eroeds: SUOT IONIISUT” [RTO9dS
gasjodereyd uselxts ¢ T zd uotr3onazsuy yeyoedsTjo uibrio: sUQTIoNIISUT [eidads
sa@joexeyo” AIxX1s g T P sueu 9 Tdwes” IBWOISND* uoTIeuIozul” ardues
89PODTUOTIRDOTITIUSPT | 1T 1d/3 pT - ButryseI3l OTdURS " sSuOTIONI3SUT” [RTO2dS
: sbe13y g7 fe] suoT3dnIjsul” [etoads™ Aue- TeyjoTelaq eydie ssoib
gIejovIeyo” Ajuaml (1 fe) uotaelro” jro0daI " sa(neaa” Tayizo” eileq eydie ssoxb
Junoo"ejep aabajur g1 o) pajeTduods RIoM ({8 @3ep’ aeyjo” eleq eydieTssoib
Yy swT 3" I93o0vIRyd G fe) awty Ag pepasu sjrnsex’ a9y30” eiaq eydreT8soab
unoo~ejep Iebajur §1 o a3ep~Aq pepoduTsiTnser’ Je9yjo~ eleq eydre ssoab
sjtun ¢ o s3jTun " yjbus1T3unco"I030938p" aoyjo eiaq eydie ssoxb

s1aqunu” {eax ZI o) gabusT T 3unos"I030829p" xeyjo ejeq eydie ssoab
sI83oRILYI” AIXTIS fe) p sweu a1dues Iswolsnd - uoTjeurojut ardues
S8pO0TUOTIRDTITIUSPT T o d/z p1 Buryoeay erdues- . asy3jo~ejeq rydie ssoxb
sbe11 Q1 o suetionIisut leroads Aue: s193(TI atTe Rileq eydie ssoib

. sasjdereyd Kjuemi ¢ o uoT3IelTOo T 3I0d0r" S TNSDI" 8ILSITTI ITR vieq eydie ssoxb
unose3ep aebajur § o poleTduco™yaom [Te @iep* sI231TT3 ITe viaq eydie ssoxb
Yy Tewt 3T x8jorvIRYD [o] suWT 3 AQq pepesu T s3[nesI" sI9ITTI TR vl eydie ssoab
junoo"ejepaebequr 9 2 e3kp Aq pepesuTsaTnssa’ 8193113 ate eieq eydie ssoib
s3TUNn § o] s3TUN Y3busT 3unos"I030938p° 8I931TI JTe” v3laq wydie ssoib

sIaqunuT[esI § o y3bua1Taunoo T I030939p" 8IDITTI AT RIBq eydieTssoib
sI930vIRYD” AIXTS 2 o p sweu a1dwes IoW018N0 " uotjewrojut eydues
89pOOTUOTIEDTITIUSPT T o dy3 pt bulxoeay erdues: sye9l1ti ate eisq eydie ssoab
- sbely s¢ [suoT3oNI3suT [eroads Aue:* I8y 30 euueb

sIajoereys” Ajusml B¢ o} uotje3ro jxodax"saTnsex” I8Y30 euueb
sbell €€ B Junooax~unijoedsTeT8TY) ST a9Y30” vued

sapod~pP1- Tea3deds T TUX ZE b ptTIeIjoedsTTwr Iay0 enureb
junoo~a@jep a8bajur ¢ b pejunodo~atdues e3ep " , Iay0 euweb
Junoco~e3ep a8bajur QOf b padeTdwoo™yI0oM (1o ©3Bp" I2y30 euwueh
Yy ewt 3 I930eaeyd .62 [autT] Aq pepesau s3insax Iayj0 euweh
junoo ajep asbajur 82 b ajep”Aq pepeou s3(NSaI " Joy 30 euueb
satun 17 B s3Tun Yibus 1 junodTI030838p " 29430 eunred

sasqunu_Teal 92 6 gabua1T 3unco” I030939p " Tay3o euweb
sI930BIRYD” AIXT8 2 3} p suwey o 1dwrs I9WOISND* uotiewrojut ordues
S®POOTUCTIBOTITIULPT | 6 d/3 pr Butyoery ordues Ty 30" euueH
sbeld vz b suoT3onI3suY Teroeds Aue® o1dojos1 [(N3 euwed

sxejoRIRYDd AJUdM] €Z B uoTielIo 3I0d0I 83 TNEDT" ot1dolosT TN} euwed
sbe1y zz b Junoosex unxjoedsTe 8Tyl 8T ordojosT 1INn3 eumedh
s9po0” pT_ relidveds U TZ b pt Tex3oeds pux- : or1dojosT N3 euwed
Junos ejepTasbajut 07 <] pajunoo eTdwes ajep* otrdojost 11Nn3 euweb
Junc."ajepTaebeiutr g1 3] peijstduco™IoM [T B3RP " oTrdoles1 [N euwed
wrg t3 I930RIRYD 9T 6 awty~Aq pepesu sj(nsex’ otdojost 1in3 euweb
Juncs RjepTiebeur 1 6 @3ep AqTpepesu siinse1 o1do3osT 1IN} euwed
saTUn 97 B s3tun"3buaT Tunon"I030838p " o1dojos1 TN} euwesS

sxaqunuT e8I §i b yabusr T junocoTa030930p" - o1dojosT 1TNn3 euued
s1230vIRYO” AIX18 7 4] P aueu e Tdwes IoWO}SND* uoTjewroyuT @idues
g0pooTUOTIeDSTITIUSPT T 6 dy3 pT Buty oIy BTdUes " otrdojosTT 1IN} eueRS
gbely €1 6 suot3oniasut” [eTnads Aue* u9s128” pUIRS

siejoeIRUD” Ajuemi g1 b uoTjelr1o” 310doI7g3nsax " ussa0s euured
sbel] 1T 5} juncoodx unxjoeds TR 8TYI ST uoei0s eumref
s89poD” pT1_ Tedideds Tuwx QT B Pt Teazoeds Twa- ueel1ds eumed
unoo e3ep aebejur g B pajunoo oTdues a3ep* ueaI0sT euweb
junoo e3ep aebejur g 6 peieTduod oM TR ®3RD " . use108 rUIRD
un Yy et 3" a83oeaeyo /£ b SWT 3 Aq papeau s3Tnsax’ usaxos” eunaeH

sasqunu—I8b93uT pu b} zd Iaqunu~vousnbes” Iosgessod: butyoexy
junoo a3ep aebojutr g 3 aoggesgod Aq peysinburiex siep* Butiyoexa
junos@3epTasbejut 4 3 aosseggod” Aq paideoose 93ep- Butyoeal
sxs3oeaeyn L1313 9 3 uosear uorssessod “aosgessod’ Putyoeil
si9joeIRYD AIXI8 § 3 ssaippe Josgassod- Butyoeaa
sxsqunu-euoyd § 3 Jequnuouoyd- 10ssessod” Butyoeay

saweu ¢ 3 sweu 08899804 " Butyoeil
sisloeIeyd”AIXTS8 ¢ 3 P sureu—oTdues I8W038ND " uotieuxojut erdues
89pOOTUOTIEDTITIUSPT T 3 1d/3 p1 Butryoery sydues- Butyoea)

%

B.2. Screen-Sorted List

Worksheet for Sorting Entities and Attributes and Assigning Keys and Relationships.

Base Worksheet - Sorted by Screen

Entity
sample_information
sample_information
sample_information
sample_information
sample_information
sample_information
sample_information
sample_information
sample_information
sample_information
sample_information
sample_information
sample_information
sample_information
sample_information
sample_informat4on
sample_information
sample_information
sample_information
sample_information
sample_information
sample_information
sample_information
sanple_information
sample_information
sample_information
sample_information
sample_information
tracking

tracking

tracking
sample_information
sample_information
sample_information
sample_information
sample_information
sample_information
sample_information

alpha_uranium
sample_information
sample_information
alpha_uranium
alpha_uranium
alpha_uranium
alpha_uranium
sample_information
alpha_thorium
alpha_thorium
alpha_thorium
alpha_thorium
sample_information
alpha_plutonium
alpha_plutonium
alpha_plutonium
alpha_plutonium

sample_information
alpha_am241_sans_pu238
alpha_am241_sans_pu238
alpha_am241_sans_pu238
alpha_am241_sans_pu2l8§
sample_information

~alpha_am241_with pu238

alpha_am241_with_pu238
alpha_am241_with_pu238
alpha_am241_with_pu238
sample information
alpha_total_spectrometric
alpha_total_spectrometric
alpha_total_spectrometric

Attribute Key
.sample_tracking_id P
.date_sample_entered
.date_all_work_completed
.customer_sample_.id
.results_needed_by_date
.customer_project_name
.work_charge_number
.customer_sample_name
.sample_type

.sample_size

.sample_size units
.sample_collection_date
.sample_collection_time
.any_special_instructions
.sample_hp_surveyed
.sample_hp_survey_activity
.sample_submitter_name
.sample_submitter_phone_number
.sample_submitter_address
.technical_contact_name
.technical_contact_phone_number
.technical_contact_address
.send_results_to_name
.send_results_to_phone_number
.send_results_to_address
.sample_pickup_by_name
.sample_pickup_by_phone_number
.sample_pickup_by_ address
.possessoy_name :
.possessor_phone_number
.possessor_address
.chain_of_custody_number
.need_gross_alpha_beta
.need_alpha

.need_beta

.need_gamma
.next_possessor_seguence_number
.next_special_instruction_line

200 0

.sarple_tracking_id
.customer_sample_name
.need_alpha_uranium
.results_needed_by_date
.date_all_work_completed
.results_report_citation
.any_special_instructions
.need_alpha_thorium .
.results_needed_by_date
.date_all_work_completed
.results_report_citation
.any_special_instructions
.need_alpha_plutonium
.results_needed_by_date
.date_all_work_completed
.results_report_citation
.any_special_instructions

f/p
d

.need_alpha_am241_sans_pu238
.results_needed_by_date
.date_all_work_completed
.results_report_citation
.any_special_instructions
.need_alpha_am241_with_pu238
.resulte_needed_by_date
.date_all_work_completed
.regults_report_citation
.any_special_instructions
.need_alpha_total_spectrometric
.results_needed_by_date
.date_all_work_completed
.results_report_citation

B-6

CEEEEEEEEEEE L E L EEEEE R EEEEEE

Screens

ORI I R TR U R T T T

[N RN VI R R U R R

#

W10 N

Domain
identification_codes
integer_date_count
integer_date_count
identification_codes
integer_date_count
forty_characters
charge_numbers
sixty_characters
ten_characters
real_numbers

units
integer_date_count
character_time_hh_mm
flags

flags

real_numbers

names
phone_numbers
sixty_characters
names
phone_numbers
sixty_characters
names
phone_numbers
sixty_characters
names
phone_nunmbers
sixty_characters’
nanes
phone_numbers
sixty_characters
ten_characters
flags

flags

flags

flags

integer_ numbers
integer_numbers -

identification_codes
sixty_characters
flags
integer_date_count
integer_date_count
twenty_characters
flags

flags
integer_date_count
integer_date_count
twenty_characters
flags

flags
integer_date_count
integer_date_count
twenty_characters
flags

flags
integer_date_count
integer_date_count
twenty_characters
flags

flags
integer_date_count
integer_date_count
twenty_characters
flags

flags
integer_date_count
integer_date_count
twenty_characters

alpha_total_spectrometric

sample_information
alpha_other
alpha_other
alpha_other
alpha_other

beta_strontium_90
sample_information
sample_information
beta_strontium_9%0
beta_strontium_50
beta_strontium_90
beta_strontium_90
beta_strontium_90
beta_strontium_90
beta_strontium_90
sample_information
beta_strontium_89_and_90
beta_strontium_89_and_90
beta_strontium_89_and_90
beta_strontium_89_and_90
beta_strontium_89_and_90
beta_strontium_89_and_S0
beta_strontium_89_and_80
sample_information
beta_total_strontium
beta_total_strontium
beta_total_strontium
beta_total_strontium
beta_total_strontium
beta_total_strontium
beta_total_strontium
sample_information
beta_tritium
beta_tritium
beta_tritium
beta_tritium
beta_tritium
beta_tritium
beta_tritium
sample_information
beta_other

beta_other

beta_other

beta_other

beta_other
beta_other
beta_other
beta_other
beta_other
beta_other
beta_other

gamma_screen
sample_information
sample_information
gamma_screen '
gamma_screen
gamma_screen
gamma_screen
gamma_screen
gamma_screen
gamma_screen
gamma_screen
gamma_ screen
gamma_screen
sample_information
gamma_full_isotopic
gamma_full_isotopic
gamma_full_isotopic
gamma_full_isotopic
gamma_full_isotopic
gamma_full_isotopic
gamma_full_isotopic
gamma_full_isotopic
gamma_full_isotopic

gamma_full_isotopic
sample_information

.any_special_instructions
.need_alpha_other
.results_needed_by_date
.date_all_work_completed
.results_report_citation
.any_special_instructions

.sample_tracking_id
.customer_sample_name
.need_beta_strontium_9%0
.detector_count_length
.detector_count_length_units
.results_needed_by_date
.results_needed_by_time
.date_all_work_completed
.results_report_citation
.any_special_instructions
.need_beta_strontium_89_and_ 90
.detector_count_length
.detector_count_length_units
.results_needed_by_date
.results_needed_by_time
.date_all_work_completed
.results_report_citation
.any_special_instructions
.need_beta_total_strontium
.detector_count_length
.detector_count_length_units
.results_needed_by_date
.results_needed_by_time
.date_all_work_completed
.results_report_citation
.any_special_instructions
.need_beta_tritium
.detector_count_length
.detector_count_length_units
.results_needed_by_date
.results_needed_by_time
.date_all_work_completed
.results_report_citation
.any_special_instructions
.need_beta_other
.detector_count_length
.detector_count_length_units
.need_beta_nickel_ 63
.need_beta_iron_55

.need_beta_sulfur_35
.need_beta_plutonium_241
.results_needed_by_date
.results_needed_by_time
.date_all_work_completed
.results_report_citation
.any_special_instructions

.sample_tracking_id
.customer_sample_name
.need_gamma_screen
.detector_count_length
.detector_count_length_units
.results_needed_by_date
.results_needed_by_time
.date_all_work_completed
.date_sample_counted
.xrml_spectral_id
.is_this_a_spectrum_recount
.results_report_citation
.any_special_instructions
.need_gamma_full_isotopic
.detector_count_length
.detector_count_length_units
.results_needed_by_date
.results_needed_by_time
.date_all_work_completed
.date_sample_counted
.rml_spectral_id
.is_this_a_spectrum_recount
.results_report_citation

.any_special_instructions
.need_gamma_other

B-7

f/p
d

f/p
d

o oomiogiogiogiogionionfogoglofiontentonoontoentomononiontontoofoionivaicaiogioniontoatoaloniofvlo N L I CIR 2N]

vooocouoy

[elefoNleRleRreRioglagloRioRie NoflaRle Niaalo RTs FlaFre Rre RloRle]

24
25

flags

flags
integer_date_count
integer_date_count
twenty_characters
flags

identification_codes
sixty_characters
flags

real_numbers

units
integer_date_count
character_ time_hh_mm
integer_date_count
twenty_characters
flags

flags

real_numbers

units
integer_date_count
character_time_hh_mm
integer_date_count
twenty_characters
flags

flags

real_numbers

units
integer_date_count
character_time_hh_mm
integer_date_count
twenty_characters
flags

flags

real_numbers

units :
integer_date_count
character_time_hh mm
integer_date_count
twenty_characters
flags

flags

real_numbers

units

flags

flags

flags

flags
integer_date_count
character_time_hh_mm
integer_ date_count
twenty_characters
flags

identification_codes
sixty_characters
flags

real_numbers

units
integer_date_count
character_time_hh_mm
integer_date_count
integer_date_count
rml_spectral_id_codes
flags
twenty_characters
flags

flags

real_numbers

units
integer_date_count
character_time_hh_mm
integer_date_count
integer_date_count
rml_spectral_id_codes
flags
twenty_characters

flags
flags

gamma_other
gamma__other
gamma_other
gamma_other
gamma_other
gamma_other
gamma_other
gamma_other
gamma_other
gamma_other

gross_alpha_beta_air_filters
sample_information
sample_information
gross_alpha_beta_air_ filters
gross_alpha_beta_air_filters
gross_alpha_beta_air_filters
gross_alpha_beta_air_ filters
gross_alpha_beta_air_filters
gross_alpha_beta_air_filters
gross_alpha_beta_air_filters
sample_information
gross_alpha_beta_other
gross_alpha_beta_other
gross_alpha_beta_other
gross_alpha_beta_other
gross_alpha_beta_other
gross_alpha_beta_other

gross_alpha_beta_other

special_instructions
sample_information

special_instructions
special_instructions
special_instructions

tracking
sample_information
tracking
tracking
tracking
tracking
tracking
tracking
tracking

.detector_count_length
.detector_count_length_units
.results_needed_by_date
.results_needed_by_time
.date_all_work_completed
.date_sample_counted
.rml_spectral_id
.is_this_a_spectrum_recount
.results_report_citation
.any_special_instructions

.éample_tracking_id f/p

.customer sample_name d
.need_gross_alpha_beta_filters
.detector_count_length
.detector_count_length_units
.results_needed_by_date
.results_needed_by_time
.date_all_work_completed
.results_report_citation
.any_special_instructions
.need_gross_alpha_beta_other
.detector_count_length
.detector_count_length_units
.results_needed_by_date
.results_needed_by_time
.date_all_work_completed
.results_report_citation,

.any_special_instructions

.sample_tracking_id f/pl
S d

.customer_sample_name
.origin_of_special_instruction p2
.special_instruction

.special_instruction_line p3
.sample_tracking_id f/pl
.customer_sample_name d

.possessor_name
.possessor_phone_number
.possessor_address
.possessor_possession_reason
.date_accepted_by_possessor
.date_relinguished_by_possessor
.possessor_sequence_number p2

0000000000000 oYU A

Q
oy
@

wwwww
Db W R

tetetet ot et otetet
j=
L@ U WP

=2

real_ numbers

units
integer_date_count
character_time_hh_mm
integer_date_count
integer_date_count
rml_spectral_id_codes
flags
twenty_characters
flags

identification_codes -
sixty_characters
flags

real_numbers

units
integer_date_count
character_time_hh_mm
integer _date_count
twenty_characters
flags

flags

real_numbers

units
integer_date_count
character_time_hh_mm
integer_date_count
twenty_characters

flags

identification_codes
sixty_characters
sixteen_characters
fifty_characters
integer_numbers

identification_codes
sixty_characters
names

phone_numbers
sixty_characters
fifty_characters
integer_date_count
integer_date_count
integer_numbers

C. EXECUTION OF CREATE_SCHEMA - A SAMPLE TERMINAL
SESSION

What the user enters appears in bold text in the following.

$ @create_schema
Enter the name of the schema to be created: sample_tracking
For domain CHARACTER_TIME_HH_MM:
Enter the data type for this domain'(char/date/int/real): c
Enter the length of the character domain: 5
Enter the default value (return says NULL):
Enter any desired comment: Domain for time in the form hh:mm.
For domain CHARGE_NUMBERS:
Enter the data type for this domain (char/date/int/real): ¢
Enter'the length of the character domain: 9
Enter the default value (return says NULL): PF7400000

Enter any desired comment: Domain for nine-alphanumeric-long charge
numbers. ,

For domain FIFTY_CHARACTERS:
Enter the data type for this domain (char/date/int/real): ¢
Enter the length of the character domain: 50
Enter the default value (return says NULL):
Enter any desired comment: Domain for fifty-alphanumeric-long fields.
For domain FLAGS:
Enter the data type for this domain (char/date/int/real): ¢
Eﬁter the length of the character domain; 1
Enter the default value (return says NULL): N

Enter any desired comment: Domain for one-character-long yes/no
flags. ‘

For domain FORTY_CHARACTERS:
Enter the data type for this domain (char/date/int/real): ¢
Enter the length of the character domain: 40

Enter the default value (return says NULL):

C-1

Enter any desired comment: Domain for forty-alphanumeric-long fields.

For domain IDENTIFICATION_CODES:
Enter the data type for this domain (char/date/int/real): ¢
Enter the length of the character domain: 12
Enter the default value (return says NULL):

Enter any desired comment: Domain for twelve-character-long g
identification codes.

For domain INTEGER_DATE_COUNT:
Enter the data type for this domain (char/date/int/real): i
Enter the default - :e (return says NULL):

Enter any desired comment: Domain for integer*4d date count starting
at January 1, 1990.

For domain INTEGER_NUMBERS:

Enter the data type for this domain (char/date/int/real): 4
Enter the default value (return says NULL):
Enter any desired cdmment: Domain for integer*4 numbers.
For domain NAMES:
Enter the data type for this domain (char/date/int/real}): ¢
Enter the length of the character domain: 25
Enter the default value (return says NULL):

Enter any desired comment: Domain for twenty-five-alphanumeric-long
names.

For domain PHONE_NUMBERS:
Enter the data type for this domain (char/date/int/real): ¢
Enter the length of the character domain: 12
Enter the default value (return'says NULL) :

Enter any desired comment: Domain for twelve-alphanumeric-long phone
numbers. _ , '

For domain REAL_NUMBERS:
Enter the data type for this domain (char/date/int/real): =r
Enter the default value (return says NULL):

Enter any desired‘comment: Domain for real*d numbers.

C-2

For domain RMI,_ SPECTRAIL_ID_CODES:
;Enter the data type for this domain (char/date/int/real): e
Enter the length of the character domain: 14 »
Enter the default value (return says NULL):

Enter any desired comment: Domain for fourteen-character-long RML
spectral identification codes («<save area>$<spectral id>).

For domain SIXTEEN_CHARACTERS:
Enter the data type for this domain (char/date/int/real): ¢
Enter the length of the character domain: 16
Enter the default value (return says NULL):

Enter any desired comment: Domain - for sixteen-alphanumeric-long
fields. .

For domain SIXTY CHARACTERS:
Enter the data type for this domain (char/date/int/real); c
Enter the length of the character domain: 60
Enter the default value (return says NULL):
Enter any desired comment: Domain for sixty-alphanumeric-long fields.
For domain TEN_CHARACTERS:
Enter the data type for this domain (char/date/int/real): ¢
Enter the length of the character domain: 10
Enter the default value (return says NULL):
Enter any desired comment: deain for ten-alphanumeric-long fields.
For domain TWENTY_CHARACTERS:
Enter the data type for this domain (char/date/int/real): ¢
Enter the length of the character domain: 20
Enter the default value (return says NULL):

Enter any desired comment: Domain for twenty-alphanumeric-long
fields.

For domain UNITS:
Enter the data type for this domain (char/date/int/real): ¢

Enter the length of the character domain: 5

C-3

Enter the default value (return says NULL):

Enter any desired comment: Domain for five-alphanumeric-loag units.
For table SAMPLE_INFORMATION:
Enter any desired comment: Table for sample information.
Enter the number of rows per page to be clustered together: 1
Enter the maximum number of rows for this table: 4000
For table ALPHA_URANIUM:

Enter any desired comment: Table for requested alpha analyses for
Uranium radionuclides.

For foreign key SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE_INFORMATION
Enter the reference column: SAMPLE_ TRACKING_ID

Enter the number of rows per page to be clustered together: 1

Enter the maximum number of rows for this table: 1000
For table ALPHA_THORIUM:

Enter any desired comment: Table for requested alpha analyses for
Thorium radionuclides.

For foreign key SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE INFORMATION
Enter the reference column: SAMPLE_TRACKING ID
Enter the number of rows per page to be clustered together: 1
Enter ehe maximum number of rows for this table: 1000
For table ALPHA_ PLUTONIUM:

Enter any desired comment: Table for requested alpha analyses for
Plutonium radionuclides.

For foreign key SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE_INFORMATION
Enter the reference column: SAMPLE_TRACKING_ ID
Enter the number of rows per page to be clustered together: 1
Enter the maximum number of rows for this table: 1000
For table ALPHA_AM241_SANS PU238:

Enter any desired comment: Table for requested alpha analyses for

C-4

Americium-241 separate from Plutonium-238.
For foreign kéy SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE_INFORMATION
Enter the reference column: SAMPLE_TRACKING_ID
Enter the number of rows per page to be clustered together: 1
Enter the maximum number of rows for this table: 1000
For table ALPHA_AM241_WITH_PU238:

Enter any desired comment: Table for requested alpha analyses for
Americium-241 combined with Plutonium-238.

For foreign key SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE_INFORMATION
Enter the reference column: SAMPLE_ TRACKING_ID
Enter.the number of rows per page to be clustered together: 1
Enter the maximum number of rows for this table: 1000
For table ALPHA_TOTAL_SPECTROMETRIC:

Enter any desired comment: Table for requested total spectrometric
alpha analyses.

For foreign key SAMPLE_TRACKING_ID: _
Enter the reference table: SAMPLB_INFORMATIONV
Enter the reference column: SAMPLE_TRACKING_ID
Enter the number of roWs per page to be clustered together: 1
Enter the maximum number of rows for this table: 1000
For table ALPHA_OTHER:

Enter any desired comment: Table for requested alpha analyses for
other, unlisted radionuclides. .

For foreign key SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE_INFORMATION
- Enter the reference column:‘ SAMPLE_TRACKING_ID
Enter the number of rows per page tb be clustered together: 1
Enter the maximum'number of rows for this table: 1000
For table BETA_STRONTIUM 90:

Enter any desired comment: Table for requested_beta analyses for

C-5

Strontium-90.

For foreign key SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE_INFORMATION
Enter the reference column: SAMPLE_TRACKING_ID
Enter the number of rows per page to be clustered togethef: 1
Enter the maximum number of rows for this table: 1000
For table BETA_STRONTIUM_89_AND_90:

Enter any desired comment: Table for requested beta analyses for
Strontium-89 and -90.

For foreign key SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE_INFORMATION
Enter the reference column: SAMPLE_TRACKING_ID
Enter the number of rows per page to be clustered together: 1
Enter the maximum number of rows for this table: 1000
For table BETA_TOTAL_STRONTIUM:

Enter any desired comment: Table for requested beta analyses for
total Stromtium.

For foreign key SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE_INFORMATION
Enter the reference column: SAMPLE_TRACKING_ID
Enter the number of rows per page to be clustered together: 1
Enter the maximum number of roWs for this table: 1000
For table BETA_TRITIUM:

Enter any desired comment: Table for requested beta analyses for
Tritium.

For foreign key SAMPLE_TRACKING_ID:.
Enter the reference table: SAMPLE_INFORMATION
Enter the reference column: SAMPLE_TRACKING_ID
Enter the numbér of rows per page to be clustered together: 1
Enter the maximum number of rows for this table: 1000
For table BETAhOTHER:

Enter any desired comment: Table for requested beta analyses for

C-6

other, unlisted radionuclides.
For foreign key SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE_INFORMATION
Enter the reference column: SAMPLE_TRACKING_ID
Enter the number of rows per page to be clustered together: 1
Enter the maximum number of rows for this table: 1000
For table GAMMA_SCREEN: |

Enter any desired comment: Table for requested screening and shipping
gamma analyses.

For foreign key SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE_INFORMATION
Enter the reference column: SAMPLE_TRACKING_ID
Enter the number of rows per page to be clustered together: 1
- Enter the maximum number of rows for this table: 4000
For table GAMMA_FULL_ISOTOPIC: |

Enter any desired comment: Table for requested full isotopic gamma
analyses.

For foreign key SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE INFORMATION
Enter the reference column: SAMPLE_TRACKING_ID
Enter the number of rows per page to be clustered together: 1
Enter.the maximum number of rows for this table: 4000
For table GAMMA_OTHER:

Enter any desired comment: Table for requested gamma analyses for
other, unlisted radionuclides. :

For foreign key SAMPLE TRACKING_ID:
Enter the reference table: SAMPLE_INFORMATION
- Enter the reference column: SAMPLE TRACKING_ID
Enter the number of rows per page to be clustered together: 1
Enter the maximum number of rows for this table: 4000
For table GROSS_ALPHA_BETA AIR_FILTERS:

Enter any desired comment: Table for requested gross alpha-beta

C-7

analyses of air filters.
For foreign key SAMPLE_TRACKINGfID:
Enter the reference table: SAMPLE_INFOR&ATION
Enter the reference column: SAMPLE_TRACKING_ID
Enter the number of rows per page to be clustered together: 1
Enter the maximum number of rows for this table: 1000
For table GROSS_ALPHA_BETA_OTHER:

" Enter any desired comment: Table for requested gross alpha-beta
analyses of other, unlisted samples.

For foreign key SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE_INFORMATION
Enter the reference column: SAMPLE_TRACKING_ID
Enter the number of rows per page to be clustered together: 1
Enter the maximum number of rows for this table: 1000
For table SPECIAL_INSTRUCTIONS:
Enter any desired comment: Table for special instructions.
For foreign key SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE_INFORMATION
Enter the reference column: SAMPLE TRACKING ID
Enter the number of rows per page to be clustered together: 15
Enter the maximum number of rows for this table: 20000
For table TRACKING:
Enter any desired comment: Table for tracking samples.
For foreign key SAMPLE_TRACKING_ID:
Enter the reference table: SAMPLE_INFORMATION
Enter the reference column: SAMPLE_TRACKING_ID
Enter the number of rows per page to be clustered together: 5
Enter the maximum number of rows for this table: 20000
Execution has successfully completed. The create_schema.sqgl and
cursor and insert files will be closed and retained. The entity and
screen files will also be closed and retained.

Please wait while certain sections of the cursor and insert files are

C-8

rearranged; this may take a few minutes.
Cursor file rearranged.

Insert file rearranged.

C-9

D. SQL INSTRUCTION SET FOR CREATION OF SAMPLE TRACKING
DATABASE

Note the ellipses in the two "define/system” lines below; these would be replaced with the
appropriate root directory specifier (SUSER:[DATABASES.], for example).

I SQL commands for creating sample_tracking schema.

1}

! Define the data and snapshot file location logical names.
H

$ define/system/nolog/translation_attributes=concealed rdb_data
$ define/system/nolog/translation_attributes=concealed rdb_snap
|
!" Create the schema.
i
create schema

filename "sample_tracking*

buffer size is 18

i
! Create the storage areas.
I
create storage area SAIN
filename "rdb_data:[sample tracklng]SAIN“
allocation is 4400 pages
page size is 2
page format is uniform
extent is 441
snapshot filename *rdb_snap: [sample_tracking]SAIN.snp*
snapshot allocation is 10 pages
snapshot extent is 2 pages

create storage area ALUR
filename *"rdb_data:[sample_tracking] ALUR"
allocation is 1100 pages
page size is 1
page format is uniform
extent is 111
snapshot filename "rdb_snap: [sample tracking]ALUR. snp"
snapshot allocation is 10 pages :
snapshot extent is 2 pages

Ccreate storage area ALTH
filename *rdb_data:[sample_tracking]ALTH"
allocation is 1100 pages
page size is 1 .
page format is uniform
extent is 111
snapshot filename "rdb_snap: [(sample_tracking]ALTH.snp"
snapshot allocation is 10 pages
snapshot extent is 2 pages

- ¢reate storage area ALPL
filename “"rdb_data:[sample_tracking]ALPL"
allocation is 1100 pages
page size is 1
page format is uniform
extent is 111

D-1

snapshot filename "rdb_snap: [sample_tracking]ALPL.snp"
snapshot allocation is 10 pages
snapshot extent is 2 pages

create storage area ALAMSAPU
' filename "rdb_data:[sample_tracking] ALAMSAPU"
allocation is 1100 pages
page size is 1
page format is uniform
extent is 111
snapshot filename "rdb_snap: [sample_tracking]ALAMSAPU.snp"
snapshot allocation is 10 pages
snapshot extent is 2 pages

Create storage area ALAMWIPU
filename *"rdb_data:[sample_tracking] ALAMWIPU"
allocation is 1100 pages
page size is 1
page format is uniform
extent is 111
snapshot filename *“rdb_snap: [sample_tracking] ALAMWIPU.snp"
snapshot allocation is 10 pages
snapshot extent is 2 pages

Ccreate storage area ALTOSP
filename “"rdb_data:[sample_tracking]ALTOSP"
allocation is 1100 pages
page size is 1
page format is uniform
extent is 111
snapshot filename "rdb_snap: [sample_tracking]ALTOSP.snp*
snapshot allocation is 10 pages
snapshot extent is 2 pages

&

create storage area ALOT
filename "rdb_data:[sample_tracking}ALOT*
allocation is 1100 pages ,
page size is 1
page format is uniform
extent is 111
snapshot filename "rdb_snap: [sample_tracking]ALOT.snp"
snapshot allocation is 10 pages
snapshot extent is 2 pages

create storage area BESTS0
filename "rdb_data:[sample_tracking] BEST90*"
allocation is 1100 pages
page size is 1
page format is uniform
extent is 111
snapshot filename “rdb_snap: [sample_tracking]BEST90. snp
snapshot allocation is 10 pages
snapshot extent is 2 pages

create storage area BEST8SANI0
filename "rdb_data:[sample_tracking]BES . 9AN90“
allocation is 1100 pages
page size is 1
page format is uniform
extent is 111

D-2

- snapshot filename "rdb_snap:[sample_trackihg]BEST89AN90.snp"
snapshot allocation is 10 pages
snapshot extent is 2 pages

Create storage area BETOST
filename "rdb_data:[sample_tracking] BETOST"
allocation is 1100 pages
page size is 1
page format is uniform
extent is 111
snapshot filename *rdb_snap: [sample_ tracklng]BETOST snp*
B snapshot allocation. is 10 pages
snapshot extent is 2 pages

create storage area BETR
filename "rdb_data:[sample_tracking] BETR"
allocation is 1100 pages
bage size is 1
page format is uniform
extent is 111)
snapshot filename "rdb_snap: [sample_tracking]BETR.snp*
snapshot allocation is 10 pages
snapshot extent is 2 pages

create storage area BEOT
filename "rdb_data:[sample_tracking] BEOT"
allocation is 1100 pages
page size is 1
page format is uniform
extent is 111
snapshot filename "rdb_snap: [sample_tracking]}BEOT.snp"
snapshot allocation is 10 pages
snapshot extent is 2 pages

create storage area GASC
filename "rdb_data:[sample_tracking]GASC"
allocation is 4400 pages
page size is 1
page format is uniform
extent is 441 ,
snapshot filename "rdb_snap: [sample_tracking]GASC.snp"
snapshot allocation is 10 pages
snapshot extent is 2 pages

create storage area GAFUIS

filename "rdb_data:[sample_ tracklng]GAFUIS“

allocation is 4400 pages

page size is 1

page format is uniform

extent is 441

snapshot filename "rdb_snap: [sample_tracking]GAFUIS.snp"
- snapshot allocation is 10 pages

snapshot extent is 2 pages

create storage area GAOT
filename *“rdb_data:[sample_tracking]GAOT"
allocation is 4400 pages
page size is 1
page format is uniform
extent is 441

D-3

snapshot filename *rdb_snap: [sample_trackingl]GAOT.snp"
snapshot allocation is 10 pages
snapshot extent is 2 pages

create storage area GRALBEAIFI
filename "rdb_data:[sample_tracking] GRALBEAIFI®
allocation is 1100 pages
page size is 1
page format is uniform
extent is 111
snapshot filename “rdb_snap: [sample_ tracklng]GRALBEAIFI snp*
snapshot allocation is 10 pages .
snapshot extent is 2 pages ’

create storage area GRALBEOT
filename "rdb_data:[sample_tracking] GRALBEQT"
allocation is 1100 pages
page size is 1
page format is uniform
extent is 111
snapshot filename “rdb_snap: [sample_tracking]GRALBEOT. snp*
snapshot allocation is 10 pages
snapshot extent is 2 pages

create storage area SPIN
filename *“rdb_data: [sample_tracking] SPIN*
allocation is 1466 pages
page size is 6
page format is uniform
extent is 147
snapshot filename “rdb _snap: [sample_tracking] SPIN. snp*
shapshot allocation is 10 pages
snapshot extent is 2 pages

create storage area TR
filename "rdb_data:[sample_tracking] TR"
allocation is 4400 pages
page size is 3
page format is uniform
extent is 441
snapshot filename "rdb_snap: [sample_tracking]TR. snp"
snapshot allocation is 10 pages
snapshot extent is 2 pages

-
r

|
.

! Create the domains, including defaults, constraints, and comments.
I

create domain USER_NAME char(30)
default NULL;

- comment on domain USER_NAME -
is ’‘Domain for user name.’;

create domain VMS_DATE_TIME char(18)
default NULL;

comment on domain VMS_DATE_TIME
is ‘Domain for VMS date (dd-mmm-yy) and time (hh:mm:ss).’;

D4

create domain CHARACTER_TIME_HH_MM char (5)
default NULL; -

comment on domain CHARACTER_TIME_HH_MM
is 'Domain for time in the form hh:mm.’;

create domain CHARGE_NUMBERS char (9)
default ‘PF7400000;

comment on domain CHARGE_NUMBERS
is ‘Domain for nine-alphanumeric- 1ong charge numbers.’

create domaln FIFTY CHARACTERS char (50)
default NULL;

comment on domain FIFTY_CHARACTERS _
is ‘Domain for fifty-alphanumeric-long fields.’;

‘create domain FLAGS char (1)
default 'N’;

comment on domain FLAGS
is 'Domain for one-character-long ves/no flags.’;

create domain FORTY_CHARACTERS char (40)
default NULL;

comment on domain FORTY_CHARACTERS
is 'Domain for forty-alphanumeric-long fields.’;

create domain IDENTIFICATION_CODES char(12)
default NULL;

comment on domain IDENTIFICATION_CODES
is 'Domain for twelve-character-long identification codes.’;

create domain INTEGER_DATE_COUNT integer
default NULL;

comment on domain INTEGER_DATE_COUNT

is ’'Domain for integer*4 date count starting at January 1, 1990.°;

create domain INTEGER _NUMBERS integer
default NULL;

comment on domain INTEGER_NUMBERS
is 'Domain for integer*4 numbers.’;

create domain NAMES char(25)
default NULL;

comment on domain NAMES
is ’‘Domain for twenty-five- alphanumerlc long names.’

create domain PHONE_NUMBERS char(12)
default NULL;

comment on domain PHONE_NUMBERS
is 'Domain for twelve-alphanumeric-long phone numbers.’;

D-5

create domain REAIL_NUMBERS real
default NULL;

comment on domain REAL_NUMBERS
is 'Domain for real*4 numbers.’;

create domain RML_SPECTRAL_ID_CODES char(14)
default NULL;

comment on domain RMI,_SPECTRAL_ID_CODES
is ’Domain for fourteen-character-long RML spectral identification
codes (<save area:i<spectral id>).’; *

create domain SIXTEEN_CHARACTERS char(16)
default NULL;

comment on domain SIXTEEN_CHARACTERS
is ’'Domain for six=-sen-alphanumeric-long fields.’;

create domain SIXTY_ (HARACTERS char (60)
default NULL;

comment on domain SIXTY_CHARACTERS
is ‘Domain for sixty-alphanumeric-long fields.’;

create domain TEN_CHARACTERS char (10)
default NULL;

comment on domain TEN_CHARACTERS
is ‘Domain for ten-alphanumeric-long fields.’;

create domain TWENTY_CHARACTERS char(20)
default NULL;

comment on domain TWENTY_CHARACTERS
is 'Domain for twenty-alphanumeric-long fields.'’;

creats domain UNITS char(5)
default NULL;

comment on domain UNITS
is ’‘Domain for five-alphanumeric-long units.’;

]
| Create tables.
|

éreate table SAMPLE_INFORMATION (

SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,
DATE_SAMPLE_ENTERED INTEGER_DATE_COUNT, '
DATE_ALL_WORK_COMPLETED INTEGER_DATE_COUNT,
CUSTOMER__SAMPLE_ID IDENTIFICATION_CODES,
RESULTS_NEEDED_BY_ DATE INTEGER_DATE_COUNT, .
CUSTOMER_PROJECT_NAME FORTY_CHARACTERS,
WORK_CHARGE_NUMBER CHARGE_NUMBERS,
CUSTOMER_SAMPLE_NAME SIXTY_CHARACTERS,

SAMPLE_TYPE TEN_CHARACTERS,

SAMPLE_SIZE . REAL_NUMBERS,

SAMPLE_SIZE_UNITS UNITS,

SAMPLE_COLLECTION_DATE INTEGER_DATE_COUNT,
SAMPLE_COLLECTION_TIME CHARACTER_TIME_HH_ MM,

ANY_SPECIAL_INSTRUCTIONS
SAMPLE_HP_SURVEYED
SAMPLE_HP_SURVEY_ACTIVITY
SAMPLE_SUBMITTER_NAME
SAMPLE_SUBMITTER__PHONE_NUMBER
SAMPLE_SUBMITTER_ADDRESS
TECHNICAL_CONTACT_NAME
TECHNICAL_CONTACT_PHONE_NUMBER
TECHNICAL_CONTACT_ADDRESS
SEND_RESULTS_TO_NAME
SEND_RESULTS_TO__PHONE_NUMBER
SEND_RESULTS_TO_ADDRESS
SAMPLE_PICKUP_BY_NAME
SAMPLE_PICKUP_BY_PHONE_NUMBER
SAMPLE_PICKUP_BY_ADDRESS
NEED_GROSS_ALPHA_BETA .
NEED_ALPHA

NEED_BETA

NEED_GAMMA

NEXT_SPECIAL INSTRUCTION_LINE
NEXT__POSSESSOR_SEQUENCE_NUMBER
NEED_GAMMA_SCREEN
NEED_GAMMA_FULL_ISOTOPIC
NEED_GAMMA_OTHER
NEED_GROSS_ALPHA_ BETA_FILTERS
NEED_GROSS_ALPHA_ BETA_OTHER
NEED_BETA_STRONTIUM_90
NEED_BETA_STRONTIUM_89_AND_90
NEED_BETA_TOTAL__STRONTIUM
NEED_BETA_TRITIUM
NEED_BETA_OTHER
NEED_ALPHA_URANIUM
NEED_ALPHA_THORIUM
NEED_ALPHA_PLUTONIUM
NEED_ALPHA_AM241_SANS_PU238
NEED_ALPHA_AM241_WITH_PU238
NEED_ALPHA_ TOTAL_SPECTROMETRIC
NEED_ALPHA_OTHER
USER_CREATING_OR_MODIFYING
DATE_CREATED_OR_MODIFIED
CHAIN_OF_CUSTODY_NUMBER

primary key (SAMPLE_TRACKING_ID)

comment on table SAMPLE_INFORMATION

is ‘Table for sample information.’;

FLAGS,

FLAGS,
REAL_NUMBERS,
NAMES,
PHONE_NUMBERS,
SIXTY CHARACTERS,
NAMES,
PHONE_NUMBERS,
SIXTY_CHARACTERS,
NAMES,
PHONE_NUMBERS, .
SIXTY_CHARACTERS,
NAMES,
PHONE_NUMBERS,
SIXTY_CHARACTERS,
FLAGS,

FLAGS,

FLAGS,

FLAGS, :
INTEGER_NUMBERS,
INTEGER_NUMBERS,
FLAGS,

FLAGS,

FLAGS,

FLAGS,

FLAGS,

FLAGS,

FL‘AGS 2

FLAGS,

FLAGS,

FLAGS,

FLAGS,

FLAGS,

FLAGS,

FLAGS,

FLAGS,

FLAGS,

FLAGS,
USER_NAME,
VMS_DATE_TIME,
TEN_CHARACTERS,

create unique index SAIN_PRIMARY_KEY_ INDEX
on SAMPLE_INFORMATION (SAMPLE_TRACKING_ ID)
type is sorted
node size 104
store in SAIN;

comment on index SAIN_PRIMARY_KEY_ INDEX
'Primary key index for table SAMPLE_INFORMATION. ' ;

is

create storage map SAIN_map for SAMPLE_INFORMATION
store in SAIN
placement via index SAIN_PRIMARY_KEY_INDEX
disable compression;

D-7

create table ALPHA_ URANIUM (

SAMPLE_TRACKING_ID ' © IDENTIFICATION_CODES
RESULTS_NEEDED_BY_DATE INTEGER_DATE_COUNT,
DATE_ALL_WORK_COMPLETED ' INTEGER_DATE_COUNT,
RESULTS_REPORT_CITATION TWENTY_CHARACTERS,
ANY_SPECIAL_INSTRUCTIONS FLAGS,
USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE_TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on table ALPHA_URANIUM

not null,

is ’'Table for requested alpha analyses for Uranium radionuclides.’;

create unique index ALUR_PRIMARY_ KEY_INDEX
on ALPHA URANIUM (SAMPLE_TRACKING_ID)
type is sorted
node size 104
store in ALUR;

comment on index ALUR_PRIMARY_KEY_INDEX
" is 'Primary key index for table ALPHA_URANIUM. ’;

create storage map ALUR_map for ALPHA_URANIUM

store in ALUR
placement via index ALUR_PRIMARY_KEY_ INDEX

disable compression;

create table ALPHA_THORIUM (

SAMPLE_TRACKING_ID IDENTIFICATION_CODES
RESULTS_NEEDED_BY_DATE INTEGER_DATE_COUNT,
DATE_ALIL_WORK_COMPLETED INTEGER_DATE_COUNT,
RESULTS_REPORT_CITATION TWENTY_CHARACTERS,
ANY_SPECIAIL,_INSTRUCTIONS FLAGS,
USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE_TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE TRACKING_ID) };

comment on table ALPHA THORIUM

not null,

is ’Table for requested alpha analyses for Thorium radionuclides.’;

create unique index ALTH PRIMARY KEY INDEX
on ALPHA_THORIUM (SAMPLE_ TRACKING_ID)
type is sorted
node size 104
store in ALTH;

comment on index ALTH_PRIMARY_KEY_ INDEX
igs ‘Primary key index for table ALPHA_THORIUM. ’;

create storage map ALTH_map for ALPHA_ THORIUM

store in ALTH }
placement via index ALTH_PRIMARY_KEY_INDEX

disable compression;

create table ALPHA_PLUTONIUM (
SAMPLE_TRACKING_ID IDENTIFICATION_CODES

D-8

not null,

RESULTS_NEEDED_BY_DATE INTEGER_DATE_COUNT,
DATE_ALL_WORK_COMPLETED INTEGER_DATE_COUNT,
RESULTS_REPORT_CITATION TWENTY_CHARACTERS,
ANY_SPECIAL_INSTRUCTIONS FLAGS,
USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE_TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on table ALPHA_PLUTONIUM
g is 'Table for requested alpha analyses for Plutonium radionuclides.’:

create unigue index ALPIL._PRIMARY KEY INDEX
on ALPHA_PLUTONIUM (SAMPLE_TRACKING_ID)
type is sorted
node size 104
store in ALPL;

comment on index ALPL_PRIMARY_ KEY_ INDEX
is ’'Primary key index for table ALPHA_PLUTONIUM. ’;

create storage map ALPL_map for ALPHA_PLUTONIUM
store in ALPL
placement via index ALPL_PRIMARY KEY INDEX

disable compression;

create table ALPHA_AM241_SANS_PU238 (

SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,
RESULTS_NEEDED_BY_DATE INTEGER_DATE_COUNT,
DATE_ALL_WORK_COMPLETED INTEGER_DATE_COUNT,
RESULTS_REPORT_CITATION TWENTY_CHARACTERS,
ANY_SPECIAL_TINSTRUCTIONS FLAGS,
USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE_TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on table ALPHA AM241_ SANS_PU238
is 'Table for requested alpha analyses for Americium-241 separate from

Plutonium-238.";

create unique index ALAMSAPU_PRIMARY_ KEY INDEX
on ALPHA_AM241_SANS_PU238 (SAMPLE_TRACKING_ID)
type is sorted
node size 104
store in ALAMSAPU;

comment on index ALAMSAPU_PRIMARY_KEY INDEX
is ‘Primary key index for table ALPHA AM241_SANS_PU238.°‘;

create storage map ALAMSAPU _map for ALPHA_AM241_SANS_PU238

store in ALAMSAPU
placement via index ALAMSAPU_PRIMARY KEY INDEX

disable compression;

create table ALPHA_AM241_ WITH_PU238 (
SAMPLE_TRACKING_ID - IDENTIFICATION_CODES not null,

RESULTS_NEEDED_BY_ DATE : INTEGER_DATE_COUNT,

D-9

DATE_ALL_WORK_COMPLETED INTEGER_DATE_COUNT,

RESULTS_REPORT_CITATION TWENTY__CHARACTERS,
ANY_SPECIAL_INSTRUCTIONS FLAGS,
USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on table ALPHA AM241_ WITH_PU238
is 'Table for requested alpha analyses for Americium-241 combined with

Plutonium-238."';

create unique index ALAMWIPU_PRIMARY_KEY INDEX
on ALPHA_AM241 WITH_PU238 (SAMPLE_TRACKING_ID)
type is sorted
node size 104
store in ALAMWIPU;

comment on index ALAMWIPU_PRIMARY_ KEY_ INDEX
is *Primary key index for table ALPHA_AM241_ WITH_PU238.°‘;

create storage map ALAMWIPU_map for ALPHA_AM241_WITH_PU238

store in ALAMWIPU
placement via index ALAMWIPU_PRIMARY_KEY_INDEX

disable compression;

create table ALPHA TOTAL_SPECTROMETRIC (

SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,
RESULTS_NEEDED_BY_DATE INTEGER_DATE_COUNT,
DATE_ALL_WORK_COMPLETED INTEGER_DATE_COUNT,
RESULTS_REPORT_CITATION TWENTY_CHARACTERS,
ANY_SPECIAL_INSTRUCTICNS FLAGS,
USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE_TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on table ALPHA_TOTAL_SPECTROMETRIC
is 'Table for requested total spectrometric alpha analyses.’;

create unique index ALTOSP_PRIMARY KEY INDEX
on ALPHA_TOTAL_SPECTROMETRIC (SAMPLE_TRACKING_ID)
type is sorted
" node size 104
store in ALTOSP;

comment on index ALTOSP_PRIMARY_ KEY_INDEX
is ‘Primary key index for table ALPHA_TOTAL_SPECTROMETRIC.’;

create storage map ALTOSP_map for ALPHA_TOTAL_SPECTROMETRIC

store in ALTOSP
placement via index ALTOSP_PRIMARY_KEY_INDEX

disable compression;

create table ALPHA_OTHER (

SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,
RESULTS_NEEDED_BY_DATE INTEGER_DATE_COUNT,
DATE_ALL_WORK_COMPLETED INTEGER_DATE_COUNT,

D-10

RESULTS_REPORT_CITATION TWENTY_CHARACTERS,

ANY_SPECIAL_INSTRUCTIONS FLAGS,
USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE_TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on table ALPHA OTHER , _
is ‘'Table for requested 'alpha analyses for other, unlisted
radionuclides.’;

create unique index ALOT PRIMARY_KEY_INDEX
on ALPHA_OTHER (SAMPLE_TRACKING_ID)
type is sorted
node size 104
store in ALOT;

comment on index ALOT_PRIMARY_KEY_INDEX
is ’‘Primary key index for table ALPHA_OTHER.’:

create storage map ALOT _map for ALPHA_OTHER
store in ALOT
placement via index ALOT_PRIMARY_KEY_ INDEX
disable compression;

create table BETA_STRONTIUM_90 (

SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,
DETECTOR_COUNT_LENGTH REAL_NUMBERS,
DETECTOR_COUNT_LENGTH_UNITS UNITS,

RESULTS_NEEDED_BY_DATE INTEGER_DATE_COUNT,
RESULTS_NEEDED_BY_TIME CHARACTER_TIME_HH_MM,
DATE_ALL_WORK_COMPLETED INTEGER_DATE_COUNT,
RESULTS_REPORT_CITATION TWENTY_ CHARACTERS
ANY_SPECIAI_INSTRUCTIONS FLAGS,

USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE_TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on table BETA_STRONTIUM_S0
is ‘Table for requested beta analyses for Strontium-90.

create unigque index BEST90_PRIMARY_KEY_ INDEX
on BETA_STRONTIUM 90 (SAMPLE_TRACKING_ID)
type is sorted
node size 104
store in BEST90;

comment on index BEST90_PRIMARY KEY: INDEX
. " is ‘Primary key index for table BETA_STRONTIUM_90.°’;

create storage map BEST90_map for BETA_STRONTIUM_90
store in BEST90
placement via index BEST90_PRIMARY_KEY_INDEX
disable compression;

create table BETA_STRONTIUM_89_AND_90 (
SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,

D-11

DETECTCOR_COUNT_LENGTH REAL_NUMBERS,

DETECTOR_COUNT_LENGTH_UNITS UNITS,
RESULTS_NEEDED_BY_DATE - INTEGER_DATE_COUNT,
RESULTS_NEEDED_BY_TIME CHARACTER_TIME_HH_MM,
" DATE_ALL_WORK_COMPLETED INTEGER_DATE_COUNT,
RESULTS_REPORT_CITATION TWENTY_CHARACTERS,
ANY_SPECIAL_INSTRUCTIONS - FLAGS,
USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID) ,
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on table BETA_STRONTIUM_89_AND 90
is 'Table for requested beta analyses for Strontium-89 and -90.';

create unique index BEST89AN90_PRIMARY KEY_ INDEX
on BETA_STRONTIUM 8S%_AND_9C (SAMPLE_TRACKING_ID)
type is sorted
node size 104
store in BEST89AN90;

comment on index BEST89AN90_PRIMARY_KEY_INDEX
is ‘Primary key index for table BETA_STRONTIUM_89_AND_ 90.°';

create storage map BEST89AN90_map for BETA_STRONTIUM_89_AND_90
store in BEST39AN90
placement via index BEST89AN90_PRIMARY_ KEY_ INDEX
disable compression;

create table BETA_TOTAL_STRONTIUM (

SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,
DETECTOR_COUNT_LENGTH REAL_NUMBERS,

DETECTOR_COUNT _LENGTH_UNITS UNITS,

RESULTS_NEEDED_BY_DATE INTEGER_DATE_COUNT,
RESULTS_NEEDED_BY_TIME CHARACTER_TIME_HH_MM,
DATE_ALL_WORK_COMPLETED INTEGER_DATE_COUNT,
RESULTS_REPORT_CITATION TWENTY_CHARACTERS,
ANY_SPECIAIL_INSTRUCTIONS FLAGS,
USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE_TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on table BETA_TOTAL_STRONTIUM
is ‘Table for requested beta analyses for total Strontium.’;

create unique index BETOST_PRIMARY KEY_INDEX
on BETA_TOTAL_STRONTIUM (SAMPLE_TRACKING_ID)
type is sorted
node size 104
store in BETOST;

comment on index BETOST_ PRIMARY_ KEY_ INDEX
is ’Primary key index for table BETA_TOTAL_STRONTIUM.'’;

create storage map BETOST _map for BETA_TOTAL_STRONTIUM

store in BETOST
placement via index BETOST_PRIMARY_KEY_ INDEX

D-12

disable compression;

create table BETA_TRITIUM (

SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,
DETECTOR_COUNT_LENGTH REAL_NUMBERS,
DETECTOR_COUNT_LENGTH_UNITS UNITS,
RESULTS_NEEDED_BY_DATE INTEGER_DATE_COUNT,
RESULTS_NEEDED_BY_TIME CHARACTER_TIME_HH_MM,
DATE_ALL_WORK_COMPLETED INTEGER_DATE_COUNT,
RESULTS_REPORT_CITATION - TWENTY_CHARACTERS,
ANY_SPECIAL_INSTRUCTIONS FLAGS,

‘ USER_CREATING_OR_MODIFYING USER_NAME,
"DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE_TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on table BETA_TRITIUM
is ’'Table for requested beta analyses for Tritium.’;

create unigque index BETR_PRIMARY KEY_INDEX
on BETA_TRITIUM (SAMPLE_TRACKING_ID)
type is sorted
node size 104
store in BETR;

comment on index BETR_PRIMARY KEY INDEX
is ‘Primary key index for table BETA_TRITIUM.’;

create storage map BETR_map for BETA_TRITIUM
store in BETR
placement via index BETR_PRIMARY KEY_INDEX
disable compression; .

create table BETA_OTHER (

SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,
DETECTOR_COUNT_LENGTH REAL_NUMBERS,
DETECTOR_COUNT_LENGTH_UNITS UNITS,
NEED_BETA_NICKEL_63 FLAGS,
NEED_BETA_TRON_55 FLAGS,
NEED_BETA_SULFUR_35 FLAGS,
NEED_BETA_PLUTONIUM_241 FLAGS,
RESULTS_NEEDED_BY_DATE INTEGER_DATE_COUNT,
RESULTS_NEEDED_BY_TIME CHARACTER_TIME_HH_MM,
DATE_ALL_WORK_COMPLETED INTEGER_DATE_COUNT,
RESULTS_REPORT_CITATION TWENTY__CHARACTERS,
ANY_SPECIAL_INSTRUCTIONS FLAGS,

- USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE_TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
* . references SAMPLE_INFORMATION (SAMPLE TRACKING_ID));

comment on table BETA_OTHER
is 'Table for requested beta. analyses for other, unlisted
radionuclides.’; ’

cfeate unique index BEOT_PRIMARY_ KEY_INDEX
on BETA_OTHER (SAMPLE_ TRACKING ID)
type is sorted

D-13

node size 104
store in BEOT;

comment on index BEOT_PRIMARY KEY_ INDEX
is ‘Primary key index for table BETA_OTHER.';

create storage map BEOT map for BETA_OTHER
store in BEOT
placement via index BEOT_PRIMARY KEY_ INDEX
disable compression; '

create table GAMMA_SCREEN (

SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,
DETECTOR_COUNT_LENGTH REAL_NUMBERS,
DETECTOR_COUNT_LENGTH_UNITS UNITS,
RESULTS_NEEDED_BY_DATE INTEGER_DATE_COUNT,
RESULTS_NEEDED_BY_TIME CHARACTER_TIME_HH_ MM,
DATE_ALIL_ WORK_COMPLETED INTEGER_DATE_COUNT,
DATE_SAMPLE_COUNTED _ INTEGER_DATE_COUNT,
RML_SPECTRAL_ID RML_SPECTRAL_ID_CODES,
IS_THIS_A_SPECTRUM_RECOUNT FLAGS,
RESULTS_REPORT_CITATION TWENTY_CHARACTERS,
ANY_SPECIAL_INSTRUCTIONS ' FLAGS,
USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE_TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on table GAMMA_SCREEN
is 'Table for requested screening and shipping gamma analyses.’;

create unique index GASC_PRIMARY_ KEY INDEX
on GAMMA_SCREEN (SAMPLE_TRACKING_ID)
type is sorted
node size 104
store in GASC;

comment on index GASC_PRIMARY_KEY INDEX
is ’‘Primary key index for table GAMMA_SCREEN.;

create storage map GASC_map for GAMMA_SCREEN
store in GASC
placement via index GASC_PRIMARY_KEY_ INDEX
disable compression;

create table GAMMA_FULL_ISOTOPIC ('
SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,

DETECTOR_COUNT_LENGTH REAL_NUMBERS,
DETECTOR_COUNT_LENGTH_UNITS UNITS,
RESULTS_NEEDED_BY_DATE INTEGER_DATE_ COUNT,
RESULTS_NEEDED_BY_TIME CHARACTER_TIME_HH_MM,
DATE_ALL_WORK_COMPLETED INTEGER_DATE_COUNT,
DATE_SAMPLE_COUNTED- INTEGER_DATE_COUNT,
RML_SPECTRAL_ID RML_SPECTRAL_ID_CODES,
IS_THIS_A_SPECTRUM_RECOQUNT FLAGS,
RESULTS_REPORT_CITATION TWENTY_CHARACTERS,
ANY_SPECIAL_INSTRUCTIONS FLAGS,
USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

D-14

primary key (SAMPLE_TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on table GAMMA_FULL_ISOTOPIC
is 'Table for requested full isotopic gamma analyses.'’

create unique index GAFUIS_PRIMARY KEY_ INDEX
on GAMMA_ FULL _ISOTOPIC (SAMPLE_TRACKING_ID)
type is sorted
-node size 104
store in GAFUIS;

comment on index GAFUIS_PRIMARY KEY_ INDEX
is 'Primary key index for table GAMMA_FULL_ISOTOPIC.

create storage map GAFUIS_map for GAMMA_FULL_ISOTOPIC
store in GAFUIS
placement via index GAFUIS_PRIMARY_KEY_ INDEX
disable compression;

Create table GAMMA OTHER (

SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,
DETECTOR_COUNT_LENGTH - REAL_NUMBERS, '
DETECTOR__COUNT_LENGTH_UNITS UNITS,
RESULTS_NEEDED_BY_DATE INTEGER_DATE_COUNT,
RESULTS_NEEDED_BY_TIME , CHARACTER_TIME_HH_MM,
DATE_ALIL_WORK_COMPLETED INTEGER_DATE_COUNT,
DATE_SAMPLE_COUNTED » INTEGER_DATE_COUNT,
RML,_SPECTRAL_ID RML_SPECTRAL_ID_CODES,
IS_THIS_A_SPECTRUM_RECOUNT FLAGS, ‘
RESULTS_REPORT_CITATION ‘ TWENTY_CHARACTERS,
ANY_SPECIAL_INSTRUCTIONS FLAGS,
USER_CREATING_OR_MODIFYING ' USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE_TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID)); .

comment on table GAMMA_OTHER
is 'Table for requested gamma analyses for other, unlisted
radionuclides.’;

create unique index GAOT_PRIMARY KEY_INDEX
on GAMMA_OTHER (SAMPLE_TRACKING_ID)
" type is sorted
node size 104
store in GAOQOT;

comment on index GAOT_PRIMARY_KEY_ INDEX
is ‘Primary key index for table GAMMA_OTHER.’;

create storage map GAOT map for GAMMA_OTHER
store in GAOT

: placement wvia index GAOT_PRIMARY_ KEY INDEX
disable compression;

create table GROSS_ALPHA_BETA_AIR_FILTERS (
SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,
DETECTCR_COUNT_LENGTH REAL_NUMBERS,

D-15

DETECTOR_COUNT_LENGTH_UNITS UNITS,

RESULTS_NEEDED_BY_DATE INTEGER_DATE_COUNT,
RESULTS_NEEDED_BY_TIME CHARACTER_TIME_HH_MM,
. DATE_ALL_WORK_COMPLETED INTEGER_DATE_COUNT,
RESULTS_REPORT_CITATION TWENTY_CHARACTERS,
ANY_SPECIAL_INSTRUCTIONS FLAGS,
USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE TRACKING_ID),
foreign key (SAMPLE TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on tabls GROSS_ALPHA _BETA_AIR_FILTERS
is 'Table for requested gross alpha-beta analyses of air filters.’

create unique index “ALBEAIFI_PRIMARY KEY_ INDEX
on GROSS_ALPHA_BEZ: AIR_FILTERS (SAMPLE_ TRACKING_ID)
type is sorted
node size 104
store in GRALBEAIFI;

comment on index GRALBEAIFI_PRIMARY_KEY_INDEX
is 'Primary key index for table GROSS_ALPHA_ BETA_AIR_FILTERS.

create storage map GRALBEAIFI_map for GROSS_ALPHA_BETA_AIR_FILTERS
store in GRALBEAIFI
placement via index GRALBEAIFI_PRIMARY_KEY INDEX
disable compression;

create table GROSS_ALPHA_BETA_OTHER (

SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,
DETECTOR_COUNT_LENGTH REAL_NUMBERS,
DETECTOR__COUNT_LENGTH_UNITS UNITS,

RESULTS_NEEDED_BY_DATE INTEGER_DATE_COUNT,
RESULTS_NEEDED_BY_TIME CHARACTER_TIME_HH_MM,

DATE_ALL_ W(C2X_COMPLETED THNTEGER_DATE_COUNT,

RESULTS_REFCZRT_CITATION ‘ENTY_CHARACTERS,

ANY_SPECTIAL_INSTRUCTIONS F7.AGS,
USER_CREATING_OR_MODIFYING USZR_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

prlmary key (SAMPLE_TRACKING_ID),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on table GROSS_ALPHA_BETA_OTHER
is 'Table for requested gross alpha-beta analyses of other, unlisted
samples.’;

create unique index GRALBEOT_PRIMARY_KEY_ INDEX
on GROSS_ALPHA_BETA_OTHER (SAMPLE TRACKING_ID)
type is sorted
node size 104
store in GRALBEOT;

 comment on index GRALBEOT_PRIMARY_KEY_INDEX 5
is ‘Primary key index for table GROSS_ALPHA_BETA_OTHER.';

create storage map GRALBEOT_map for GROSS_ALPHA_BETA_OTHER

store in GRALBEOT -
placement via index GRALBEOT_PRIMARY_XKEY_ INDEX

D-16

disable compression;

create table SPECIAL_INSTRUCTIONS (

SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,
ORIGIN_OF_SPECIAL_INSTRUCTION SIXTEEN_CHARACTERS not null,
SPECIAL_INSTRUCTION FIFTY_CHARACTERS,
SPECIAL_INSTRUCTION_LINE INTEGER_NUMBERS not null,
USER_CREATING_OR_MODIFYING . USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE_TRACKING_ID, ORIGIN_OF_SPECIAL INSTRUCTION,
SPECIAL_INSTRUCTION_LINE)},
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID));

comment on table SPECIAL_INSTRUCTIONS
is 'Table for special instructions.’;

create unigue index SPIN_PRIMARY KEY INDEX
on SPECIAL_INSTRUCTIONS (SAMPLE_TRACKING_ID,
ORIGIN_OF_SPECIAL_INSTRUCTION, SPECIAL_INSTRUCTION_LINE)
type is sorted
node size 170
store in SPIN;

comment on index SPIN_PRIMARY_KEY INDEX
is 'Primary key index for table SPECIAL_INSTRUCTIONS.ﬁ;

create storage map SPIN_map for SPECIAL_ INSTRUCTIONS
store in SPIN
placement via index SPIN_PRIMARY_KEY_ INDEX
disable compression;

create table TRACKING ({

SAMPLE_TRACKING_ID IDENTIFICATION_CODES not null,
POSSESSOR_SEQUENCE_NUMBER INTEGER_NUMBERS not null,
POSSESSOR_NAME NAMES,

POSSESSOR_PHONE_NUMBER PHONE_NUMBERS,

POSSESSOR_ADDRESS SIXTY_ CHARACTERS,
POSSESSOR_POSSESSION_REASON FIFTY_CHARACTERS,
DATE_ACCEPTED_BY_POSSESSOR INTEGER_DATE_COUNT,
DATE_RELINQUISHED_BY_ POSSESSOR INTEGER_DATE_COUNT,
USER_CREATING_OR_MODIFYING USER_NAME,
DATE_CREATED_OR_MODIFIED VMS_DATE_TIME,

primary key (SAMPLE_TRACKING_ID, POSSESSOR_SEQUENCE_NUMBER),
foreign key (SAMPLE_TRACKING_ID)
references SAMPLE_INFORMATION (SAMPLE_TRACKING_ID) }:

comment on table TRACKING
is ‘Table for tracking samples.’:;

create unique index TR_PRIMARY_KEY INDEX
on TRACKING (SAMPLE_TRACKING_ID, POSSESSOR_SEQUENCE_NUMBER)
type is sorted :
-node size 119
store in TR;

comment on index TR_PRIMARY KEY_ INDEX
is ‘Primary key index for table TRACKING.';

create storage map TR_map for TRACKING

D-17

store in TR
placement via index TR_PRIMARY KEY INDEX
disable compression;

commit;

| exit;

D-18

100U} = pueuiy
(JWTX3,’ (BUTT (TODSPI-TODUT]) ‘TOO8PF) 10RIIXRS]) ITPOS] = PIeT]

‘prety Indur jo pue 103 Yool MOou - punoj piery Indur jo HButuutbeg

pusTpiaTy o306 usyj ,T, °"SOU’ (SUTT'T‘TODUTF) IORXIXD$I IT
1 + T09ut3 = foouly

'pUs pYaT3
1o0sp3 = ToouTy

‘pre13 andul jo 3Ie3S X0 YOOI Mou - punoj Ioidraosep plety jo Butuurbeg

yozees ojob usyl ojuxew ‘ba* (038373 ‘(3UT]’'I’'10°8p])308I3X25F)81RI0T$T IT
9uTIT " 3Ixdu 0306 usyy ueyurl °*°6° T1008pP3 IT
1 + Too8Sp3 = TOOSpPJ

tyoaees

1 = [oosp}

i
‘PI®13 3X8U BYI I0J YDIWSS i
i

autT{ T 3Ixeu ojob usyy .. "sbe* sury 31
1 + IqUUTT = Iquuiy
(2UTT)yabud($y = usquIy
I1X@=e1T3 JOpPuUI/ SUIT UTSTTJ peox
tAUTT IxX9U
*BUTT JIOJUNCO-UUMTOoD peay| 3TX9=0113J JO pPud/ SUI] UTISIIJ Ppwsax

i
*auT{ yoes osied pue pesy ;
i

: 0 = pryunu

€9 = ojuxew

« 1 68L9SPETTOZAXMANLSYOZONHTILI HDAAADEVZ Axmangsabdounyy(Tybjepoqe, = 038I13
0 = Iquurty

« ®duareatnbas » eatnbe ejtram

«Dw BATnbe® B3TaM

. 'SJI9JSURI) BlEp I0] Sjuswelels 8dsusleATNDI OD. ealnbe ejTam

D BAInbe 231am

831am/ jep-eatnbs eatnbe usdo

« 2sI0bo3ut « B0tBOT @31am

«De BOTHOT B83TIM

«"8I9JsUBI] BIRP I0J SI0JEDTIPUT TINU palelrreuoN D. ©DTBOT @3Tam
»Ds BOTBOT B3TaIM

@31am/ jepredotrbor wotrbor uedo

« I930BIRYD « O®vleyo 93Tam

WDe ORIRYD BITIM

«*S90UBTRATND® 103 SPI@T3 IojoeIRYD PITjIoseds-yibua] O. ORIBYD DITIM
D ORIRYD BITAM

931am/ Jep-oeIeyd oevaeyd uado

®31am/ 3epP°P1IIOP P1IIop uedo

@31am/ 3ep°OBPIOS D9pIos8 uado

@31am/ jep-eprer] Ieioep usdo

pesx/ jep-usaiss ,1d, utelrl uedo

*1d woxa3 andut - seft] a3tsrnbex usdo

*81TeS Juswebeurw
useJos JI0j su0T3ed0] pur sieqe] @jeradoadde jonxjsuoo 03 sutanoy

WV VBV NDWLB VDDV BDB BB NN NN DN D NBB BB DDV VBN BB N BN NN NN

i
i
i
coswed ‘v 'd Aq 1661 ‘L AeW peisTdwod T UOTSIBA |
i
i
i

SN33HOS AHLN3 _
V1Va HOd4 SNOILYDOT ANV S138V1 1314 1ONHLSNOD OL INILNOY V - N33HOS aling '3

- 09pIos a3Tam usyl ,x, 'sbe' ¢d It
»Ou O9PI0OS B3TaM
» S9Z18 PISTJ pue 9I03d1IOSOp PIOTJ S,uU9308 °°* D« 09pPIDS BI3TaM
«Ju OOpPADS BITIM
tpanuTuosTITXe

«Pbex3‘/tuadoz ‘andut3‘pex13j ‘I01193 /I08pl)/ uUOUMOD « 0PpIOS ©11aM

«"SPT2T3 paarTnbax lodj /pToq wgbus /pbaxy - « 09pI08 ®31am

«°SpTe13 TeUCTado JO4; ‘/TewTouwgbus /Tuidoy * « O9PIDS BTAM

. 8p18T3 ndutr Joa; //out aepun ugbus /3nduty * » O9PIDS 93TIM

«"SPI®T] PeXT] Iodi ‘ /esaenR1 WSbUS /POXTIT « J9pPIOS 2TIM

«"S9TIJUd PIOT3I UT 8IOIID IO ¢ /UTTq wgbus /I01I93 Yeaebogur . O9pPIDS DITIAM
WDe O9PADS 23TAM

» "suotadraosep uoriTpuel pratd De OOPIOE O3TIM

«Ds O9PIO8 OITIM

psnuyjuooT3TXe 0306 usyl .x. ‘'seu’ ¢d 3T
eATnbe 88070

eorbol 880l

oeIRYO 980D

Ieoep 980D

uteirl esolo

«Oppua « JRTOPP BITIM

«OPpuU® . leTo8p 83TIM

*uoT3Tpuex prary Induri «(1'0),2d, ,purpy 10-Indury=(1‘L),2d, ,puaty « JBTD9P 93TIM
¢'1=L op « ABPTO9P 93TIM

.24, ,pjunu’i=1 oOp « IBTOSD ©3TIM

WDe TBTOOD 23TaM

“anduTl Yatm uoT3Tpusa PIeT} D. aeT09p B3TAM

.KAerdstp ®y3 jo -30° @8STM-1TQq SY3 03 suoTiTpuex prar3i andur (e 185 D. IeT0p B3TIM

WD JTRTOOP ©3TIM

131x0
i
S3TXF |
i

yoae9s o306

T - ToosSp3 = T00SP]

autT Ixau o306 uayl ualuly ‘ab° 1028pI 3IT
pusuty = 10OSpJ

«‘/PTJUNU,,,2d,,uyT °* edtboT BITIM

« ‘,oouxeu, ,,,priunu,,,z2d,.p13 ° « OBIRPYD ©ITIM

o' (,PT3uwnu,,,zd,,uzt’(,pryuny,,),z4,,{nugt) ° » BATND® 931aM

. o (,PTJUNU,,,2d, ~@ﬁu~ﬁ~00=xw5-u.:A~mu.mu_.=3=.~v~NQ-uﬂmu..nuv ¢ . m>..HSUU |911IM
sotasunueydre yatm 3aevas - adA3 eaeq; «,B,=(,p13uwnu,,},zd, ,dA313 « IETOOp 93TIM
‘prot3y Indur jo yabuedi « so0uxew, ,={,prjunu,,),zd, ,oouxu « AB[OOPp ©3TIM

‘prot1y andut x0j uuntod Burireisi «.TOPUTY, ,=(,pT3unu,,),zd, , 10913 . JBTOOD ©3TaM
r103dtraosop pIoT3i 103 uunios Burireasi « . 1098pP7, . =(,pT3wnu,,},zd, ,100p3 . XBIOOP ©3TIM
‘P19t 103 MOYi » AQUUTT, ,=(,pTJunu,,),zd, ,m0a1p] . JBTOOp 83TaM

« . (PT®T3)yabuatsy, ,=(,pryunu,,),.2d, ueip3 « JABTO8D 83TIM

*103d1I089p PIOTdi een + PTOTI + .,.=(,pT3wnU,,),2d,,P1073 « IBTOBD ©37aM

WDe JBTOOP 93TIM

T - fodouty = Todul}

T - 1008p3 = 10028p]

1ODUTJ - puPUII = Souxeuw

T + prjunu = prjunu

(p1o13‘ (0otode - us(pij) ‘doTode)3oeIIX0s]
~ %+ w,e + [PT®13°‘D0TOdR ‘() 30BIIXO$] = PIOTI ueYl uDIpPT3 ‘eu- oorode jJT
(P19T3)Yyabue$y = usaip1y
(PT®TJ ‘4 /s)®38D0183 = DoTOdR
1pIet3 eatTam

»goydoxysode
Sutignop 19338 ‘©113 O3 PISTJ 94yl °31am - punoj plo1j Indul jo puy

pua_3indut 0306 ueyly .~ . "sba’ (9UIT‘T’‘pPusutj)ioexaxasy IT
pieti ®3tam ojof ueyy uefuiy -eb- pueulry 3t
1 + pusur3j = pusurj

tpua—andut

WDV NV B Uy WAVB BB B DD BB DB HNBBNDNVDBBBBBHBDOBNDBDBNBNHBNNBNDNDBBBBNNDNRBBBNHBNY

£-3

- ‘Iaepreainbe‘!jep-eothol‘!3ep ' oeaeyr’yep -SpPIRT‘iep* O

rxe

‘Jeprpi3ijep

BpI08 93919p
103 -ueeaos™,1d, jep-spiet] + I1EP°'pIIIoP +

- jepreatnbs + 1ep-eSTBOT + 1EP’OBIBYD + 3BP DOPIOS ajeusjeduod/Aded

P133ep @sold

o9paos @807

»Oppus » PTFIOP 23T1aM

«Oppus » PTI3I5p @31am

‘uot3itpusx plery Aetdstgi JTuadoy=(1‘[),zd..puIpj » P1339p ®31am

-Buryoaess 303 ¢ pue ‘Butraepdn xo3j z ‘Burppe 103 Ti g'1=(op « PI3IOP @2Tam

v,2d, ,pjunu’T=1 op « PTII9P @31am

«Js PTJ3IOP ®ITaM

« " Klesseseu se proT] yowe Yitm Ow PT3IOP @3TaM

«pabueyo aq ueo A9yl 08 mou suorjTpusx preri Aeldstp I0J sIneiep 39S Ow PT3IJOP ®3TaIM

»Je PTIIOP 23Tam

«(({T)so0RdS ' (1:1)8) URIq) ®doU3TRATIND® « OBPIDS 93TaIM usyl JA. ‘sber ¢d 31

«pPox3/Tuado] ‘andutry’/pox1}3/10119] /IOSPTI/ UQUNIOD o 08pIO8 93TaM uay3 «A. ‘sbo° ¢d 31

' : «s2d,,031PT « OBpPIOS 91TaAM

«’.gd, ,pouyt’,zd, ,pbazt’,zd, . tqxea’,z4d, ,aqaae’,zd, ,(nuzt’,¢d, ,dL313’,2d, ,p3unu’,z4d, ,puaty’,zd, ,puip3 - » D9pPIDS 93TaM

«’,2d, ,oouxw’,zd, ,100134,2d, ,10°p3 ‘', 2d, ;moap3’,2d, ,uaTp3’, 24, ,3ep13 ‘. 2d,,P18T} /,2d,,3epqp/ UOWMIOD . OBpIO8 B3TaM

«293epdn ue ur pebueyo useq PIATI @ SEH| {.,pTIUnU,,),zd, ,powst Teoiboy « 0®p10O8 ©I3TIM

»'BUTO31TP 103 PY271J pamolTe O3 8IuUT0di /0x,PT3unu,,/(,prjunu,,},zd,,031py - » O9pIO8 BITIM

»*PI®13 uopusdep paxtnbar-3r 031 SIUTOd| ‘/0s,PT3UNU,,/(,PT3WNY,,),2d, ,pba3T * . O9PIOS BITIM

c{®sTmISy3oc @ ‘TINU 3T 1-) JOJEOTIPUT [INN; {.p13unu,,),zd,,(nujt Z.3ebaiur « O9pIDS 2ITIM

« " SUOTATPUST PIDTA] pbaxj ‘Tuadoz‘anduty‘pextjj‘aoxrsy ° . O9pIOS ©31IM ueyl ..A. '8be- ¢d 37

«*8pTeTI 3JOo ToqUNU oYL '/.,pT3wny, ,/,24d, ,p3uny ¢ . 0BDIDE ©3TaM usyy .X. ‘sbe* ¢d 31

«"8pPIeT3 3JOo Joqunu BYJi /.p13umu,,/,zd, ,paunu « OBPANE BITIM UBYY LX. 'sOU’ ¢4 IT

»* {(ydorees/siepdn/ppe) SUOCTITPUSI PIATAi ‘(,plyunu,, ‘g),gd, ,purty‘(,pr3unu,,’g),gd, ,puapy - « O9pID8 ITam
« ' (L.pT3wny,,),zd, ,oouxw’ (,prjunu,,),2d,,1o0t3’ (,p1yuny,,),2d,,109P3.

- + W'(.p13umu,,),zd, ,m01p3’ (,PTIuUMu,,),2d, ,usTp} ¥,I0b03uY » O9pIOS B3Tam

»(,PT3unu,,),zd, ,dA313 T I830B3RYD . O®PID8 B3TAM UBY] .X. ‘sou‘. €d 3T

. (,pYrJunu, ,),zd, ,dA3T3//. ,.08/(08)seoeds T,I1930RIRYD
: . - D9pI08 ©3TIM USY3 WA ‘Sbec gd 3T
« (,PTJUNU,,),2d,,1qT8A }1eID30RIEYUD « O9pIO8 237aIM

«(,PT3UNU,, ‘2),2d,,3q33® Qf«I20RIPYD .

o8pans

o ((PTIUNU,,),gd,,30pTy’ (,PTFUNY,,),2d,,PIOT] 08+I2IORIBYD
- 09pJId8 B3TIM USYI wAe "BOU- £d 371
.S\uerq’aeputy’(,prjwnu,,),zd,,3epry’ (,pryuny,,),zd, ,pI9TI 08sI930RIRYD

23t1am

w0 R X X7 2 Uy WD VNN DN DB NN NI BN DB NN w o

F. SCREEN TEMPLATE FOR THE GROSS ALPHA-BETA ANALYSES
| SCREEN SUBMITTED TO BUILD_SCREEN

12345678901234567890123456789012345678901234567@901234567890123456789012345678

‘5Tracking ID:
Sample Name:

1
2
3
4
5
6
7

8Gross Alpha-Beta for Air Filters? _
9 Length of count: min or hr?

10 Results needed by: date: time: Completed:

11 Results report citation: Special Instructions? _
12

13Gross Alpha-Beta for Other Samples?

14 Length of count: min or hr? _

15 Results needed by: date: time: Completed:

16 Results report citation: Special Instructions? _
17 ’

18

19

20

G. BUILD_SCREEN OUTPUT FOR THE GROSS ALPHA-BETA
ANALYSES SCREEN

screen’s field descriptors and field sizes.

000

- character*80 fieldC(18),fidatC(18)

character*30 atrbtC(2,18)

character*14 varblC(18)

character*l fitypC(18)

integer*4 fdlenC(18},fdrowC (18}, fdcolC(18), f1colC(18) mxnocC (18), .
. £drndCc(3,18),£firndC(3,18), 'Fleld“rendltlons (add/update/search)

. numfdCc/18/ !The number of fields.

integer*2 ifnulC(18) INull indicator (-1 if null, 0 otherwise).

. ifrqgdCc(18)/18*0/, lPoints to if-required dependent field.
iditoC(18)/18*0/ !Points to allowed field for dittoing.
logical ifmodC{(18) 'Has a field been changed in an Update?
common /dbdatC/ fieldC, fidatC, fdlenC, fdrowC, fdcolC, ficolC, mxnocC,
fdrndC; firndC, numfdC, fitypC, ifnulC, atrbtC, varblC, ifrqdC, ifmodcC,
iditoC

[eNeN®]

Length-specified character fields for equivalences.

character
fldci*12,
£f14c2*60,
f148C3+*1,
£1dc4+*4,
£14cs+*1,
£f1d4dCe*6,
£14C7+*5,
£14C8*6,
£14c9*240,
£14C10*1,
f14c11*1,
£fl4ci12+*4,
£14C13*1,
. £f14dc14*6,
. . £14C15*5,
f1dclée*6,
£14C17*20,
£14c18*1,

Noharrayed null indicators for data transfers.

[N eNe]

integer*2

- . ifncC1,
. 1ifnC2,
ifnC3,
ifnC4,
ifnCs,
ifncCs,
ifnC7,
ifnC8,
i1fnC9,

ifnCi1o0,

.. ifncC11,

. ifnCi2,

G-1

NnNno

(o Ro NS XP]

ifnCl3,
ifnC14,
ifnC1l5,
. ifnClse,
. ifnC17,
ifnC18,

Equivalence statements for data transfers.

equivalence
(fidatC(1) (1:12),£f1dCl),
(ifnulcC(1l),ifnCl),
(ifnulC(2),ifnC2), '

. (fidatC(3)(1:1),£14C3),.

. (ifnulC(3),ifnC3),

. (fidatC(4) (1:4),£1dC4),

. (ifnulcC(4),ifnC4),
(fidatC(5) (1:1),£f1l4Ccs),
(ifnulC(5),1ifnCs),
(fidatC(6) (1:6),£14C6),
(ifnulcC(6),ifnCs),
(fidatC(7) (1:5),£1d4C7),
(ifnulc(7),ifnC7),
{(fidatC(8) (1:6),f1d4C8),
{(ifnulC(8),ifnC8),
(fidatC(9) (1:20),£14C9),
(ifnulC(9),ifnC9),

. (£idatC(10)(1:1),£f1d4c10),

. (ifnulc(10),ifnC10),

. (fidatC(11)(1:1),f1ldcil),
(ifnulc(1l),ifnC1l),
(fidatC(12) (1:4),£1dc12),
(ifnulC(12),ifnC12),
(fidatC(13)(1:1),£14C13),
{ifnulc(13),ifnC13),
{fidatC(14) (1:6),£f1dc1l4),
(ifnulC(14),ifnC14),
(fidatC(15) (1:5),£f1dcC15),
(ifnulcCc(15),ifnC15),
(fidatC(16) (1:6),£f1dC1e6),
(ifhulC(16),ifnC16),
{fidatC(17)(1:20),£14C17),
(ifnulC(17),ifnC17),
(fidatC(18)(1:1),£f148c18),
(ifnulc(18),ifnC18),

Set defaults for display field renditions now so they can be changed
with each field as necessary.

do i=1,numfdC

do j=1,3 {1 for adding, 2 for updating, and 3 for searching.
fdrndC(i, j)=foptnl
enddo

enddo

fieldC(1l)='Tracking ID:’
fdlenC(1)=12
fdrowC (1) =5
fdcolC(1)=1

G-2

- ficolC (1) =15
mxnocC (1) =12
fitypC(l)=’a“

fieldC(2)='Sample Name: '’
fdlenC(2)=12
fdrowC(2) =6

. fdcolC(2) =4
ficolC(2)=18
mxnocC(2)=60
fitypC(2)='a’

fieldC(3)='Gross Alpha-Beta for Air Filters?'
fdlenC(3)=33

fdrowC(3)=8

fdcolC(3)=1

ficolC(3)=36

mxnocC(3)=1

fitypC(3)='a’

fieldC(4)='Length of count:’
fdlenC(4}=16

fdrowC (4)=9

fdcolC(4)=4

ficolC(4)=22

mxnocC(4) =4

fitypC{d)='a’

fieldC(5)='min or hr?’
fdlenC(5)=10
fdrowC(5) =9
fdcolC(5)=30
ficolC(5) =42
mxnocC(5) =1
fitypC(5)='a’

fieldC(6) ="Results needed by: date:’
fdlenC(6) =25

fdrowC(6)=10

fdcolC(6) =4

ficolC(6)=31

mxnocC (6) =6

fitypC(6)='a’

fieldC(7)="time:’
fdlenC(7)=5
fdrowC (7} =10
fdcolC{7) =41
ficolC(7)=48
mxnocC(7) =5
fitypC(7)='a’

fieldC(8)='Completed:’
fdlenC(8)=10
fdrowC(8)=10
fdcolC(8) =57
ficolC(8) =69
mxnocC(8) =6
fitypC(8)='a’

fieldC(9)='Results report citation:’
fdlenC(9)=24

fdrowC(9)=11

fdcolC(9) =4

ficolC(9)=30

mxnocC(9)=20

fitypC(9)="a’

fieldC(10)='Special Instructions?’
fdlenC(10)=21

fdrowC(10)=11

fdcolC(10)=54

ficolC(10)=77

mxnocC(10)=1

fitypC(10)="a’

fieldC(11)='Gross Alpha-Beta for Other Samples?’
fdlenC(11)=35

fdrowC(11)=13

fdcolC(11)=1

ficolC(11)=38

mxnocC(11)=1

fitypC(ll)='a“

fieldC(12)='Length of count:’
fdlenC(12)=16

fdrowC(12)=14

fdcolC(12)=4

ficolC(12)=22

mxnocC(12)=4

fitypC(l2)='a’

fieldC{(13)='min or hr?’
fdlenC(13)=10"
fdrowC(13)=14
fdcolC(13)=30
ficolC{13)=42
mxnocC(13)=1
fitypC(l3)='a’

fieldC(14)='Results needed by: date:’
fdlenC{14)=25

fdrowC(14) =15

fdcolC(14)=4

ficolC(14)=31

mxnocC(14)=6

fitypC(l4)='a’

fieldC(15)='time:"’
fdlenC(15)=5
fdrowC(15)=15
fdcolc(15)=41
ficolC(15)=48
mxnocC(15)=5
fitypC(1l5)='a’

fieldC(16)='Completed:’
fdlenC(16)=10
fdrowC(16)=15
fdcolC(16)=57

ficolC(16)=69
mxnocC{1l6) =6
fitypC(l6)='a’

fieldC(17)='Results report citation:’
fdlenC(17)=24
fdrowC(17})=16
. fdcolC(17) =4
ficolC(17)=30
mxnocC(17)=20
fitypC(17)='a’

fieldC(18)='Special Instructions?’
fdlenC(18)=21

fdrowC(18)=16

fdcolC(18)=54

ficolC(18)=77

mxnocC(18)=1

fitypC(18)='a’

Set all input field renditions to the bit-wise .or. of the display
field rendition with finput.

(oo RO NS

do i=1,numfdcC
do j=1,3
firndC(j,i)=finput.or.fdrndC(j, i)
enddo
enddo

G-5

H. ARRAY AND SCALAR DECLARATIONS RELATED TO THE
SCREEN MANAGEMENT ROUTINES
e
C Declaration statements.
C .
s C Component of SAMPLE_TRACKING Versiorni 1 completed June 6, 1991 by
C D. A. Femec.
C
) C Note that variable names are limited to six-characters in length;
C this is a limitation imposed by SQL for variables used in SQL calls.
C
C Field rendition descriptions.
C -
integer*4 ferror/smg$m_blink/, = !For errors in field entries.
ffixed/smg$m_reverse/, !For fixed fields.
finput/smg$m_underline/, IFor input fields.
foptnl/smgSm_normal/, !For optional fields.
freqd/smgsm_bold/ IFor required fields.
common /fldscr/ ferror, ffixed, finput, foptnl, freqd
C
C Main screen’s field descriptors and field sizes.
C
character*80 fieldM(36), f1datM(36) flndat blanks
character*30 atrbtM(2, 38)
character*14 varblM(38)
character*l spaces(80)/80*: '/,fitypM(36)
integer*4 fdlenM (36}, fdrowM(36),fdcolM(36),ficolM(36}, mxnocM(36),
. £fdrndmM (3, 36), flrndM(B 36), 'Fleldrendltlons(add/update/search)
. numfdM/36/ !The number of fields.
integer*2 ifnulM(36), INull indicator (-1 if null, 0 otherwise).
ifrgdM(36)/36*0/, 'Points to if-required dependent field.
iditoM(36)/36*0/ 'Points to allowed field for dittoing.
logical ifmodM(36) 'Has a field been modified in an Update?
common /dbdatM/ fieldM, fidatM, fdlenM, fdrowM, fdcolM, f£icolM, mxnocM,
fdrndM, firndM, numfdM, fitypM, ifnulM, atrbtM, varblM, ifrqgd¥M, ifmodM,
iditoM .
equivalence (blanks(1:1),spaces (1))
C :
C Length-specified character fields for equivalences (f for field).
C
character fMSTI*12, fMDSE*6, fMDAWC*6,fMCSI*12, fMRNBD*6, EMCPN*40,
. EMWCN*S, fMCSN*60, fMST*10, fMSS*5, fMSSU*5, fMSCD*6, £MSCT*5, fMASI*1,
. fMSHS*1, fMSHSA*6, fMSSN*25, fMSSPN*12, fMSSA*60, fMTCN*25, fMTCPN*12,
fMTCA*60, EMSRTN*25, fMSRTP*12, fEMSRTA*60, fMSPBN*25, fMSPBP*12,
fMSPBA*60, fMPN*25, fMPPN*lZ fMPA*GO fMCOCN*10, fMNGAB*l fMNA*l
fMNB*1, fMNG*1
C
C Real and integer field storage (r for real, i for integer).
p
real*4 rMSS,rMSHSA
integer*4 iMDSE, iMDAWC, iMRNBD, iMSCD
C JxXinst ,nxcust !Declared in the main routine.
C
C Nonarrayed field lengths (1 for lengths).
G _

integer*4 1MSTI, 1IMDSE, IMDAWC, 1MCSI, 1MRNBD, 1IMCPN, IMWCN, 1IMCSN, 1MST,
1MSS, 1MSSU, 1MSCD, 1MSCT, 1MASI, 1MSHS, 1MSHSA, 1MSSN, IMSSPN, 1MSSA,

H-1

NN nOn

000N

1MTCN, lMTCPN 1MTCA, IMSRTN, 1IMSRTP, 1MSRTA, 1IMSPBN, IMSPBP, 1MSPBA,
1MPN, 1MPPN, 1MPA, 1IMCOCN, 1MNGAB, 1MNA, 1MNB, 1MNG

Nonarrayed null indicators for data transfers (n for null).

integer*2 nMSTI,nMDSE, nMDAWC,nMCSI, nMRNBD, nMCPN, nMWCN, nMCSN, nMST,

. TiIMSS,nMSSU,nMSCD,nMSCT,nMASI,nMSHS, nMSHSA, nMSSN, nMSSPN, nMSSA,
. nMTCN, nMTCPN, nMTCA , nMSRTN, nMSRTP, nMSRTA , nMSPEN, nMSPBP, nMSPBA,
. nMPN, nMPPN, nMPA, nMCOCN, nMNGAB, nMNA , nMNB , nMNG

Nonarrayed if-modified indicators {(m for modified).

integer*2 mMSTI, mMDSE, mMDAWC, mMCSI , mMRNBD, mMCPN, mMWCN, mMCSN, mMST,

. mMSS,mMSSU, mMSCD, mMSCT , mMAST , mMSHS , mMSHSA , mMSSN, mMSSPN, mMSSA,,
. MMTCN, mMTCPN, mMTCA , mMSRTN, mMSRTP , mMSRTA , mMSPBN, mMSPEP, mMSPBA,
. MMPN, mMPPN, mMPA, mMCOCN, mMNGAB , mMNA , mMNB , mMNG

Equivalence statements for data transfers.

equivalence (fidatM(1l)(1:12),£fMSTI), (ifnulM(1l),nMSTI),

. (fidatM{2) (1:
(fidatM(3) (1:
(fidatM(4) (1:
(fidatM(5) (1:
(fidatM(6) (1:
(fidatM(7) (1:
(fidatM(8) (1:
(fidatM(9) (1:

6),fMDSE), (ifnulM(2),nMDSE),
6),fMDAWC), (ifnulM(3) ,nMDAWC) ,
12),fMCSI), (ifnulM(4) ,nMCSI),
6),fMRNBD), (ifnulM(5) ,nMRNBD) ,
40),fMCPN), (ifnulM(6) ,nMCPN)},
9), fMWCN), (ifnulM(7),nMWCN) ,
60) ,EMCSN), (ifnulM(8),nMCSN),
10),£MST), (ifnulM(9),nMST),

(fidatM(10) (1: 5),fMSS),(1fnu1M(lO) nMss),

(fidatM(11) (1:5),£fMSSU), (ifnulM(1l1l),nMSSU),
(fidatM(lZ)(l:G).fMSCD),(ifnulM(lZ),nMSCD),
(fidatM(13) (1:5),£MSCT), (ifnulM(13) ,nMSCT},
(fidatM(14)(1:1),fMASI), (ifnulM(14),nMASI),
(fidatM(15) (1:1),fMSHS), (ifnulM(15),nMSHS),

. (£idatM(16) (1:6) , EMSHSA) , (ifnulM(16) , nMSHSA) ,

(£idatM(17) (1:25),fMSSN), (ifnulM(17) ,nMSSN),
(fidatM(18) (1:12), fMSSPN), (ifnulM(18) ,nMSSPN)},
(fidatM(19)(1:60),£fMSSA), (ifnulM(19),nMSSA),
(£idatM(20) (1:25), fEMTCN), (ifnulM(20) ,nMTCN),
(fidatM(21) (1:12), fMTCPN), (ifnulM(21),nMTCPN),
(fidatM(22) (1:60), fMTCA), (ifnulM(22) ,nMTCA),
(fidatM(23) (1:25), fMSRTN) , (ifnulM(23) ,nMSRTN),
(fidatM(24) (1:12), fMSRTP), (1fnulM(24) ,nMSRTP),
(fidatM(25) (1:60), fMSRTA), (ifnulM(25),nMSRTA),
(fidatM(26) (1:25), fMSPBN), (ifnulM(26),nMSPBN) ,
(fidatM(27)(1:12), fMSPBP), (ifnulM(27),nMSPBP),
(fidatM(28) (1:60),fMSPBA), (ifnulM(28),nMSPBA),
(fidatM(29) (1:25), £fMPN), (ifnulM(29),nMPN),
(fidatM(30) (1:12), fMPPN), (ifnulM(30) ,nMPPN),
(fidatM(31) (1:60), £MPA), (ifnulM(31),nMPa),
(£idatM(32) (1:10} , £EMCOCN), (ifnulM(32) ,nMCOCN) ,
(fidatM(33) (1:1), fMNGAB), (1fnulM(33) ,nMNGAB},
(fidatM(34) (1:1),fMNA) , (ifnulM(34) ,nMNA) ,
(£idatM(35) (1:1),fMNB), (ifnulM(35) ,nMNB),
(fidatM(36) (1:1),fMNG), (ifnulM(36),nMNG),
(momocM (1) , 1MSTI), (ifmodM(1) ,mMSTI),
{mxnocM(2),1MDSE), {(ifmodM(2) ,mMDSE),
(mxnocM(3),1MDAWC}, (ifmodM(3) ,mMDAWC) ,
(mxnocM(4),1MCSI), (ifmodM(4) ,mMCSI),
{(mxnocM(5), IMRNBD), (ifmodM(5) ,mMRNRD) ,

H-2

(mxnocM(6) ,1MCPN), (ifmodM(6) ,mMCPN},
(mxnocM(7) , IMWCN) , (ifmodM(7) ,mMWCN) ,
(mxnocM({8),1MCSN), (i1fmodM(8) ,mMCSN),
(mxnocM(9),1MST), (ifmodM(9) ,mMST),
(mxnocM(10), IMSS), (ifmodM(10) ,mMSS),
(mxnocM(11),1MsSSU), (ifmodM(11) ,mMSSU),
(mxnocM(12), 1IMSCD), (ifmodM(12) ,mMSCD),
{mxxnocM{13),1MSCT), {ifmodM(13) ,mMSCT),
(mxnocM(14), IMAST), (ifmodM(14) ,mMASI),
(mxnocM(15), IMSHS) , (ifmodM(15),mMSHS),
. (mxnocM(16),1MSHSA), (ifmodM(16) ,mMSHSA),
‘ . (mxnocM(17),1MSSN), (ifmodM(17) ,mMSSN),

' (mxnocM(18),1MSSPN), (ifmodM(18) ,mMSSPN),
(mxnocM(19),1MSSA), (ifmodM(19) ,mMSSA)},
(mxnocM{20), IMTCN), (ifmodM(20) ,mMTCN) ,
(mxnocM(21),1IMTCPN}, (ifmodM(21) ,mMTCPN) ,
{mxnocM(22), IMTCA) , {(ifmodM(22) ,mMTCA),
(mxnocM(23), IMSRTN) , (1fmodM(23) , mMSRTN) ,
(mxnocM(24), IMSRTP}, (ifmodM(24) ,mMSRTP)},
{mxnocM(25), IMSRTA), (ifmodM(25) ,mMSRTA) ,
(mxnocM(26),lMSPBN),(imedM(ZG),mMSPBN),
{mxnocM(27),1MSPBP), (ifmodM(27) ,mMSPBP),
(mxnocM(28), IMSPBA), (ifmodM(28) ,mMSPBA),
{mxnocM(29) , 1IMPN), (ifmodM(29) ,mMPN) ,
(mxnocM(30), IMPPN) , (ifmodM(30Q) ,mMPPN},
(mxnocM(31),1MPA), (ifmodM(31) ,mMPA),
(mxnocM(32), IMCOCN) , (ifmodM(32) , mMCOCN) ,
(mxnocM(33), IMNGAB) , (ifmodM(33) , mMNGAR) ,
(mxnocM(34),1MNA), (ifmodM(34),mMNA),
(mxnocM(35),1MNB), (ifmodM(35) ,mMNB) ,
{mxnocM(36), 1MNG), (ifmodM(36) , mMNG)

3
C Database table and attribute names for screen fields.

data atrbtM/
*SAMPLE_INFORMATION’, ' SAMPLE TRACKING_ID‘,
*SAMPLE_INFORMATION', 'DATE_SAMPLE_ENTERED’,
‘SAMPLE_INFORMATION', 'DATE_ALL_WORK_COMPLETED’,
'SAMPLE_INFORMATION’', 'CUSTOMER_SAMPLE_ID’,
' SAMPLE_INFORMATION', 'RESULTS_NEEDED_BY_ DATE’,
*SAMPLE_INFORMATION'’, 'CUSTOMER_PROJECT_NAME’,
' SAMPLE__INFORMATION'’ , ' WORK_CHARGE_NUMBER',
'SAMPLE__INFORMATION' , ' CUSTOMER_SAMPLE NAME’,
'SAMPLE_INFORMATION’ , ' SAMPLE_TYPE',
*SAMPLE_INFORMATION', ' SAMPLE_SIZE’,
‘' SAMPLE_INFORMATION'’, 'SAMPLE_SIZE_UNITS',
' SAMPLE__INFORMATION’, ' SAMPLE_COLLECTION_DATE’,
f SAMPLE_INFORMATION'’, ' SAMPLE_COLLECTION_TIME',
‘' SAMPLE_INFORMATION’, 'ANY_SPECIAL_INSTRUCTIONS’,
'SAMPLE__INFORMATION', ' SAMPLE_HP_SURVEYED’,
"SAMPLE__INFORMATION'’ , ' SAMPLE_HP_SURVEY_ACTIVITY'’,
‘ SAMPLE_INFORMATION'’, ' SAMPLE_SUBMITTER_NAME’,
'SAMPLE_INFORMATION', ’'SAMPLE_SUBMITTER_PHONE_NUMBER’,
' SAMPLE_INFORMATION', 'SAMPLE_SUBMITTER_ADDRESS',
' SAMPLE_INFORMATION', ‘' TECHNICAIL_CONTACT_NAME’,

. 'SAMPLE_INFORMATION', 'TECHNICAL_CONTACT_PHONE_NUMBER'’,

. 'SAMPLE_INFORMATION', ' TECHNICAL_CONTACT ADDRESS’,
'SAMPLE_INFORMATION', ' SEND_RESULTS_TO_NAME’,
'SAMPLE_INFORMATION'’, ' SEND_RESULTS_TO_PHONE_NUMBER',
fSAMPLE_INFORMATION' , ' SEND_RESULTS. TO_ADDRESS',

H-3

\
i
c
:
c

nan

QN0

00

' SAMPLE_INFORMATION'’, ' SAMPLE_PICKUP_BY_NAME'’,

' SAMPLE_INFORMATION’ , ' SAMPLE_PICKUP_BY_PHONE_NUMBER',
' SAMPLE_INFORMATION’ , ' SAMPLE_PICKUP_BY_ADDRESS’,
'TRACKING’, ' POSSESSOR_NAME',
'TRACKING’ , ' POSSESSOR_PHONE_NUMBER',
‘TRACKING' , ' POSSESSOR_ADDRESS',

' SAMPLE_INFORMATION' , ‘CHAIN_OF_CUSTODY_NUMBER’,
'SAMPLE_INFORMATION' , 'NEED_GROSS_ALPHA_BETA’,

' SAMPLE_INFORMATION’, ‘NEED_ALPHA’,
'SAMPLE__INFORMATION'’, 'NEED_BETA',

* SAMPLE_INFORMATION’ , ‘NEED_GAMMA'’ , :

' SAMPLE__INFORMATION’, 'NEXT_SPECIAL_INSTRUCTION_LINE’,
' SAMPLE__INFORMATION' , 'NEXT_POSSESSOR_SEQUENCE_NUMBER'’ /

Prdgram variable names Qvalue and null indicator) for séreen fields.

data varblM/’:fMSTI:nMSTI‘,’:iMDSE:nMDSE’, ’ : iMDAWC :nMDAWC',
*:fMCSI:nMCSI’, ‘' : iIMRNBD:nMRNBD', ’ : EMCPN:nMCPN', ' : fMWCN:nMWCN ",
*: fMCSN:nMCSN'’, ’ : fMST:nMST’, ' : rMSS:nMSS’, ' : £MSSU:nMSSU’,

:iMSCD:nMSCD"’, ' : £MSCT :nMSCT’, ' : fMASI:nMASI’, ’ : fMSHS :nMSHS ',

s+ TYMSHSA :nMSHSA ', ’ : fMSSN:nMSSN‘, / : fMSSPN:nMSSPN’, ’ : fMSSA:nMSSA ',
: EMTCN :nMTCN’ , * : fMTCPN :nMTCPN’, ’ : EMTCA :nMTCA’, ’ : EMSRTN:nMSRTN' ,
+ fMSRTP :nMSRTP', ’ : fMSRTA:nMSRTA’, * : fMSPBN:nMSPBN"’ ,
:fMSPBP:nMSPBP',’:fMSPBA:nMSPBA',':fMPN:nMPN’,

: fMPPN:nMPPN', ’ : fMPA:nMPA’, ’ : fMCOCN : nMCOCN' , ' : EMNGAB: nMNGAB ',
:EMNA:nMNA’, ' :fMNB:nMNB’, ' : fMNG:nMNG ', ’ :nxinst:ifnnxi’,
:nxcust:ifnnxc’/

- - -~ % N - -~ -

Alpha screen’s field descriptors and field sizes.

character*80 fielda(37),fidatA({37)

character*30 atrbtA(2,37)

character*14 varblA(37)

character*l fitypaA(37)

integer*4 fdlenA(37),fdrowA(37),fdcolA(37),ficolAa(37),mxnocA(37),

. fdrnda(3,37),£firndA(3,37), !Field renditions (add/update/search).

. numfda/37/ IThe number of fields.

integer*2 ifnulA(37), INull indicator (-1 if null, 0 otherwise).
ifrgda(37)/37*0/, 'Points to if-required dependent field.
iditoA (37)/37*0/ !Points to allowed field for dittoing.
logical ifmodAa(37) ‘Has a field been modified in an Update?
common /dbdatA/ fielda,fidata, fdlenA, fdrowa, fdcola, ficolA, mxnocA,
fdrnda, firndA,numfdA, fitypA,ifnulA,atrbta,varbla,ifrqdA, ifmoda,
iditoa
Length-specified character fields for equivalences (f for field).

character fASTI*12,fACSN*60,faANAU*1, fARNB1*6, fADAW1*6,fARRC1*20,
fAAST1*1, fANATh*1, fARNB2*6, fADAW2*6, fARRC2*20, fAASI2*1, fANAPu*l,

. fARNB3*6, fADAW3*6, fARRC3*20, fAASI3*1, fANASP*1,fARNB4*6, fADAW4L*6,

. FARRC4*20, fAASTI4*]1, fANAWP*1, fARNBS*6, fADAWS *6, fFARRCS5*20, fAASIS*1,

. fANATS*1,fARNB6*6, fADAW6*6, fARRC6*20, fAAST6*1, fANAO*1, fARNB7*6,
fADAW7*6, fARRC7*20, fAAST7*1

Integer field storage (i for integer).

integer*4 iARNB1, iADAW1, iARNB2, iADAW2, 1ARNB3, iADAW3, iARNB4, iADAW4,
iARNBS, iADAWS, iARNB6, iADAW6, iARNB7 , iADAW7

Nonarrayed maximum field lengths (1 for length).

H-4

O NOKSP!

[eXe NP

Qo0

integer*4 1ASTI,1ACSN, 1ANAU, 1ARNB1, 1ADAW1,1ARRC1, 1AASI1, 1ANATh,

1ARNB2, 1ADAW2, 1ARRC2, 1AASI2, 1ANAPu, 1ARNB3, 1ADAW3, 1ARRC3, 1AASI3,
1ANASP, 1ARNB4, 1ADAW4 , 1ARRC4, 1AASI4, 1ANAWP, 1ARNB5, 1ADAWS, 1ARRCS,
1AASIS, 1ANATS, 1ARNB6, 1ADAW6, 1ARRC6, 1AASTI6, 1ANAO, 1ARNB7 1ADAW7T,
1ARRC7,1AASI7

Nonarrayed null indicators for data transfers (n for null).

integer*2 nASTI,nACSN,nANAU,nARNB1,nADAW],nARRC1,nAASI1,nANATh,

. NARNB2,nADAWZ, nARRC2,nAASI2, nANAPu,nARNB3,nADAW3 ,nARRC3,nAASI3,
. NANASP,nARNB4,nADAW4 ,nARRC4,nAASTI4,nANAWP, nARNB5, nADAWS , nARRCS,
. NAASIS5,nANATS, nARNB6, nADAWG nARRC6,nAASI6, nANAO, nARNB7 , nADAW7,

. NARRC7,nAASI7

Nonarrayed if-modified indicators (m for modified).

integer*2 mASTI,mACSN, mANAU, mARNB1, mADAWL,mARRC1,mAAST1,mANATh,

. MARNB2,mADAWZ, mARRC2 ,mAASI2, mANAPu, mARNB3, mADAW3 ,mARRC3, mAASI3,
. MANASP,mARNB4, mADAW4 ,mARRC4,mAASI4 , mANAWP, mARNBS , mADAWS, mARRCS,
. MAASIS5,mANATS, mARNBG , mADAW6 , mARRC6 , mAASI6, mANAO, mMARNB7 , mADAW7,
. MARRC7,mAASI7

Equivalence statements for data transfers.

equivalence (fidata(1l)(1:12),fASTI), (ifnulA(l),nASTI),

(fidatA(2) (1:60),fACSN), (ifnulA(2),nACSN},
(fidatA(3) (1:1), fANAU), (ifnulA (3),nANAU),
(fidatA(4) (1:6),fARNB1), (ifnulA(4) ,nARNB1),
(fidatA(5) (1:6), fADAW1), (ifnulA(5) ,nADAW]1) ,
(fidatA(6){(1:20),fARRC1), (ifnulA(6) ,nARRC1),
(fidatA(7) (1:1),fAAST1), (ifnulAa(7),nAAST1),
(fidatA(8) (1:1), fANATh), (ifnulA(8),nANATH),
(fidatA(9) (1:6),fARNB2), (ifnulA(9) ,nARNB2),
(£idatA(10) (1:6) ,fADAW2) , (ifnulA(10) ,nADAW2),
(fidatA(11) (1:20), fARRC2), (ifnulA(11),nARRC2),
(fidatA(12) (1:1),£fAASI2), (ifnulA(12) ,nAASI2),
(fidatA(13) (1:1), fANAPu), (1fnulA(13) ,nANAPu),
(fidatA(14) (1:6),fARNB3), (ifnulA(14) ,nARNB3),
(£idatA(15) (1:6) ,fADAW3), (ifnulA(15) ,nADAW3),
(fidatA(16) (1:20), fARRC3), (ifnulA(16),nARRC3),
(fidatA(17) (1:1),fAASI3), (ifnulA(17) ,nAASI3),
(fidatA(18) (1:1),£fANASP), (ifnulA(18),nANASP),
(fidatA(19) (1:6),fARNB4), (ifnulA(19) ,nARNB4),
(fidatA(20) (1:6),fADAW4), (ifnulA(20) ,nADAWY),
(fidatA(21)(1:20),fARRC4), (ifnulA(21),nARRCY),
(fidatA(22) (1:1),fAASI4), (ifnulA(22) ,nAASI4),
(fidatA(23) (1:1),fANAWP) , (ifnulA(23) ,nANAWP),
(fidatA(24) (1:6) ,fARNBS), (ifnulA(24) ,nARNBS),
(fidatA(25) (1:6),fADAWS), (ifnulA(25) ,nADAWS),

. (fidatA(26) (1:20), fARRCS), (ifnulA(26) ,nARRCS),

(fidatAa(27) (1:1),£fAASIS5), (ifnulA(27) ,nAASIS),
(fidatA(28) (1:1),fANATS), (1fnulA(28) ,nANATS),
(fidatA(29) (1:6) ,fARNB6), (ifnulA(29) ,nARNB6),
(fidatA(30) (1:6) ,fADAW6) , (ifnulA(30) ,nADAWG),
(fidatA(31) (1:20), fARRC6), (ifnulA(31) ,nARRCSE),
(fidatA(32) (1:1),fAASI6), (ifnulA(32) ,nAASI6),
(fidatA(33) (1:1),£fANAO), (ifnulA(33),nANAO),

(fidatA(34) (1:6), fARNB7), (ifnulA(34) ,nARNB7),
(fidatA(35) (1:6) ,fADAW7), (1fnulA(35),nADAW7),

H-5

(£idatA{(36) (1:20), fARRC7), (ifnulA(36),nARRC7),
(£idatA(37) (1:1),fAASI7), (ifnulA(37) ,nAASI7),

(mxnocA (1) ,1ASTI), (ifmodA (1) ,mASTI),
(mxnocA (2),1ACSN), (ifmodA(2) ,mACSN),
(mxnocA (3),1ANAU), (ifmodA (3) ,mANAU) ,
(mxnocA(4),1ARNB1l), (ifmodA (4) ,mARNBl),
(mxnocA(5) ,1ADAWL) , (ifmodA (5) , mADAWL),
(mxnocA (6),1ARRC1), (ifmodA (6) ,mARRC1) ,
(mxnocA(7),1AASI1), (ifmodA(7),mAASI1),
(mxnocA (8),1ANATh)}, (ifmodA (8) ,mANAThH),
(mxnocA(9) ,1ARNB2), (ifmodA (9) ,mARNB2),
{(mxnocA (10),1ADAW2), (ifmodA(10) ,mADAW2),
(mxnocA (11),1ARRC2), (ifmodA(11),mARRC2),
(mxnocA (12),1AASI2), (ifmodA(12),mAASI2),
(mxnocA (13),1ANAPu)}, (ifmodA(13),mANAPuU),
(mxnocA(14),1ARNB3), (ifmodA(14),mARNB3),
(mxnoca (15) , 1ADAW3), (ifmodA (15) ,mADAW3),
(mxnocA(16),1ARRC3), (ifmodA(16) ,mARRC3),
(mxnocA(17),1AASI3), (ifmodA(17) ,mAASI3),
(mxnocA(18),1ANASP), (ifmodA (18) ,mANASP),
(mxnocA(19),1ARNB4), (ifmodA(19) ,mARNB4),
. (mxnocA(20),1ADAW4), (i1fmodA(20),mADAWS),
. (mxnocA(21),1ARRC4), (ifmodA(21),mARRCY),
(mxnocA (22),1AASI4), (ifmodA(22) ,mAASIY),
(mxnocA (23), 1ANAWP) , (ifmodA(23),mANAWP),
(mxnocA (24) , 1ARNBS), (ifmodA(24),mARNBS),
(mxnocA (25), 1ADAWS) , (ifmodA(25) ,mADAWS),
(mxnocA (26), 1ARRCS5), (ifmodA(26) ,mARRCH) ,
(mxnocA (27), 1AASIS5), (ifmodA(27) ,mAASIS),
(mxnocA (28), 1ANATS), (ifmodA (28) ,mANATS),
(mxnocA (29), 1ARNB6), (ifmodA (29) ,mARNB6) ,
(mxnocA(30), 1ADAW6) , (ifmodA (30) ,mADAWG) ,
{(mxnocA{31),1ARRC6), (ifmodA (31),mARRCE),
(mxnocA(32),1AAS16), (ifmodA(32),mAASI6),
(mxnocA (33}, 1ANAO}, (ifmodA (33) ,mANAO),
(mxnocA(34), 1ARNB7), (ifmodA (34) ,mARNB7),
(mxnocA(35), 1ADAWT7), (1fmodA (35),mADAWT),
(mxnocA(36),1ARRC7), {ifmodA (36) ,mARRC7),
(mxnocA(37),1AASI7), (ifmodA(37) ,mAASI7)

Database table and attribute names for screen fields.

data atrbta/

. 'ALPHA_URANIUM’, 'SAMPLE_TRACKING_ID’,
' SAMPLE_INFORMATION', ' CUSTOMER_SAMPLE_NAME',
' SAMPLE_INFORMATION', ‘NEED_ALPHA_URANIUM’,
‘ALPHA_URANIUM’, ‘RESULTS_NEEDED_BY DATE',
'ALPHA_URANIUM’, ‘DATE_ALI,_WORK_COMPLETED’,
'ALPHA_URANIUM'’, 'RESULTS_REPORT_CITATION',
‘ALPHA_URANIUM’, ‘ANY_SPECIAL_INSTRUCTIONS',
' SAMPLE__INFORMATION' , ‘NEED_ALPHA_THORIUM’,
‘ALPHA_THORIUM', 'RESULTS_NEEDED_ BY_DATE’,
'ALPHA_THORIUM'’, 'DATE_ALL_WORK_COMPLETED'’,
'ALPHA_THORIUM'’, 'RESULTS_REPORT_CITATION’,
'ALPHA_THORIUM’, 'ANY_SPECIAL_ INSTRUCTIONS’,
*SAMPLE__INFORMATION'’, 'NEED_ALPHA_PLUTONIUM’,
'ALPHA_PLUTONIUM’, ‘RESULTS_NEEDED_BY DATE’,
‘ALPHA_PLUTONIUM'’, 'DATE_ALL_WORK_COMPLETED’,
'ALPHA_PLUTONIUM’, 'RESULTS_REPORT CITATION’,

"ALPHA_PLUTONIUM’, ‘ANY_SPECIAL_INSTRUCTIONS’,

H-6

'SAMPLE_INFORMATION'’, 'NEED_ALPHA_AM241_SANS_PU238’,
'‘ALPHA_AM241_SANS_PU238’, 'RESULTS_NEEDED_BY_DATE’,

. 'ALPHA_AM241_SANS_PU238’,’'DATE_ALL_WORK_COMPLETED’,

. 'ALPHA_AM241_ SANS PU238‘,’'RESULTS_REPORT CITATION',

. 'ALPHA_AM241_ SANS PU238','ANY_SPECIAL_INSTRUCTIONS',
' SAMPLE_INFORMATION’ , 'NEED_ALPHA_AM241_WITH_PU238',

. 'ALPHA_AM241 WITH_PU238‘, 'RESULTS_NEEDED_BY_DATE’,

. . 'ALPHA_AM241_ WITH_PU238‘, 'DATE_ALL_WORK_COMPLETED’,

'ALPHA_AM241_WITH_PU238’, 'RESULTS_REPORT_CITATION’,
‘ALPHA_AM241 WITH_PU238','ANY_SPECIAL_INSTRUCTIONS',

. 'SAMPLE_INFORMATION', 'NEED_ALPHA_TOTAL_SPECTROMETRIC’,

* . 'ALPHA_TOTAL_SPECTROMETRIC’, 'RESULTS_NEEDED_BY_DATE’,

‘ALPHA_TOTAL_SPECTROMETRIC’, 'DATE_ALL_WORK_COMPLETED’,
'ALPHA_TOTAL_SPECTROMETRIC'’, 'RESULTS_REPORT_CITATION’,
‘ALPHA_TOTAL_SPECTROMETRIC'’, 'ANY_SPECIAL_INSTRUCTIONS’,
' SAMPLE_INFORMATION', 'NEED_ALPHA_OTHER',
'ALPHA_OTHER'’, 'RESULTS_NEEDED_BY_DATE’,
'ALPHA_OTHER', 'DATE_ALL_WORK_COMPLETED’,
'ALPHA_OTHER’, 'RESULTS_REPORT_CITATION’,
‘ALPHA_OTHER', 'ANY_SPECIAL_INSTRUCTIONS'’/

C
C Program variable names {(value and null indicator) for screen fields.
(o

data varblA/’ :£fASTI:nASTI’, ' :fACSN:nACSN’, ' :fANAU:nANAU’,

'+ iARNB1 :nARNB1’, ' : 1ADAW1 : nADAW1 ', * : fARRC1 :nARRC1’
:£AAST1:nAASI1’, ' : £ANATh:nANATh',
: 1ADAW2 :nADAW2 ', ’ : £ARRC2:nARRC2 ',
: fANAPU:nANAPU’, ' : 1ARNB3 :nARNB3 '/,
¢+ £ARRC3 :nARRC3 ', ' : £AASI3 :nAASI3,
:1ARNB4 :nARNB4 ', ' : iADAW4 : nADAW4 ',
+fAAST4 :nAASI4 ", ' : fANAWP:nANAWP',
+ 1ADAWS :nADAWS’, ' : £ARRC5:nARRCS ',
: fANATS :nANATS’, / : 1ARNB6:nARNB6 '’ ,
: fARRC6 :nARRC6’, ' : fAASI6:nNAASI6’,
:iARNB7 :nARNB7’, ' : 1LADAW7 ; nADAW7 ’,
: fAASTI7 :nAASI7' /

:1ARNBZ :nARNB2 ',
: fAASI2 :nAASI2’,
: 1ADAW3 : nADAW3 ‘',
: FANASP :nANASP’,
: fARRC4 :nARRC4‘,
: 1ARNB5 : nARNB5S"’ ,
+ fAASIS :nAASIS',
: 1ADAWG6 : nADAWG ’ ,
:+ £ANAO:nANAO!’ ,

: £fARRC7 :nARRC7',

DO N T T N AT R S S TN
L R R . T T O

L . T T T S S

C .
C Beta screen’s field descriptors and field sizes.
C
: . character*80 fieldB(46),fidatB(46)
character*30 atrbtB(2,46)
character*14 varblB(46)
character*l fitypB(46)
integer*4 fdlenB(46),fdrowB(46),£fdcolB(46),ficolB(46),mxnocB(46),
. £drndB(3,46),firndB(3,46), !Field renditions (add/update/search).
. numfdB/46/ {The number of fields.
integer*2 ifnulB(46)}, {Null indicator (-1 if null, 0 otherwise}.
. .. . ifrgdB(46)/46*0/, !Points to if-required dependent field.
iditoB(46)/46*0/ 'Points to allowed field for dittoing.
logical ifmodB(46) !Has a field been modified in an Update?
common /dbdatB/ fieldB, fidatB, fdlenB, fdrowB, fdcolB, ficolB, mxnocB,
- . fdrndB, firndB, numfdB, fitypB, ifnulB,atrbtB,varblB, ifrqdB, ifmodB,
iditoB
C
C Length-specified character fields for equivalences (f for field).
C

character fBSTI*12, fBCSN*60,fBNBSr*1, fBDCL1*4,fBDCUl1*1, fBRND1*6,
. fBRNT1*5, fBDAW1*6, fBRRC1*20,fBASI1*1, fBNBSC*1, £fBDCL2*4, fBDCU2*1,
. £BRND2*6, £BRNT2*5, fBDAW2*6, fBRRC2*20, fBASI2*1, fBNBST*1, fBDCL3 *4,
. £BDCU3*1, £fBRND3*6, £BRNT3*5, £BDAW3*6, fBRRC3*20, fBASI3*1,fBNBT*1,

H-7

nnNnao

oXoX®! o EeXeNe]

nNnan

. EBDCL4*4,fBDCU4*1, fBRND4*6, fBRNT4*5, fBDAW4*6, fBRRC4*20, £BASI4*1,

fBNBO*1, £BDCL5*4, fBDCU5*1, fBNBNi*1, fBNBFe*1l, fBNBS*1, fBNBPu*l,
fBRND5*6, £BRNT5*5, £BDAWS*6, £BRRC5*20, £BASIS*1

Real and integer field étbrage (r for real, i for integer).
real*4 rBDCL1,rBDCL2Z, rBDCL3,rBDCL4, rBDCLS
integer*4 iBRND1, iBDAW1, iBRND2, iBDAW2, iBRND3, iBDAW3, iBRND4, 1BDAW4,
iBRNDS5, iBDAWS

Nonarrayed maximum field lengths (1 for length) .

integer*4 1BSTI, 1BCSN, 1BNBSr,1BDCL1,1BDCUl, 1BRND1, 1BRNT1, 1BDAW1,

1BRRC1,1BASI1, 1BNBSC, 1BDCL2, 1BDCU2, 1BRND2, 1BRNTZ, 1BDAW2, 1BRRC2Z,
1BASI2, 1BNBST, 1BDCL3, 1BDCU3, 1BRND3, 1BRNT3, 1BDAW3, 1IBRRC3, 1BASI3,
1BNBT, 1BDCL4, 1BDCU4, 1BRND4, 1BRNT4, 1BDAW4 , 1BRRC4, 1BASI4, 1BNBO,
1BDCLS, 1BDCUS 1BNBNi, 1BNBFe 1BNBS, 1BNBPu 1BRNDS, 1BRNTS, 1BDAWS,
1BRRC5, 1BASIS

Nonarrayed null indicators for data transfers (n for null).

integer*2 nBSTI,nBCSN,nBNBSr,nBDCL1,nBDCUl, nBRND1,nBRNT1,nBDAW1,

. NBRRC1,nBASI1,nBNBSC,nBDCLZ,nBDCU2,nBRND2, nBRNT2 , nBDAW2 , nBRRC2,
. NBASI2,nBNBST,nBDCL3,nBDCU3, nBRND3,nBRNT3, nBDAW3 ,nBRRC3,nBASI3,

nBNBT, nBDCL4 ,nBDCU4, nBRND4 , nBRNT4 , nBDAW4 , nBRRC4, nBASI4,nBNBO,

. nBDCLS,nBDCUS, nBNBN1 , nBNBFe, nBNBS, nBNBPu, nBRND5S , nBRNT5 , nBDAWS,
. NnBRRC5,nBASI5

Nonarraved if-modified indicators (m for modified).

integer*2 mBSTI,mBCSN,mBNBSr,mBDCL1,mBDCU1l, mBRND1, mBRNT1, mBDAW],

. MBRRC1,mBASI1,mBNBSC,mBDCL2, mBDCU2, mBRND2, mBRNTZ2 , mBDAWZ2 , mBRRC2,
. MBASIZ2,mBNBST,mBDCL3,mBDCU3, mBRND3 , mBRNT3, mBDAW3 ,mBRRC3, mBASI3,
. mMBNBT, mBDCL4 , mBDCU4, mBRND4 , mBRNT4 , mBDAW4 , mBRRC4 , mBASI4 , mBNBO,

. mMBDCL5,mBDCU5, mBNBNi , mBNBFe, mBNBS, mBNBPu, mBRNDS , mBRNTS , mBDAWS,
. MBRRC5,mBASI5

Equivalence statements for data transfers.

equivalence (fidatB(1) (1:12),fBSTI), (ifnulB(1),nBSTI),

(fidatB(2) (1:60) ,£BCSN), (ifnulB(2) ,nBCSN),
(fidatB(3) (1:1), fBNBSr), (ifnulB(3) ,nBNBSr),
(fidatB({4) (1:4), fBDCL1), (ifnulB{(4) ,nBDCL1),
(fidatB(5) (1:1), £BDCUL1l), (ifnulB(5) ,nBDCU1),
(fidatB(6) (1:6),fBRND1), (ifnulB(6) ,nBRND1),
(fidatB(7) (1:5),fBRNT1), (ifnulB(7) ,nBRNT1),
(fidatB(8) (1:6), fBDAW1l), (ifnulB(8) ,nBDAW1),
(fidatB(9) (1:20), £BRRC1), (ifnulB(9),nBRRC1),
(fidatB(10) (1:1),fBASI1), (ifnulB(10),nBASI1),
(figatB(11) (1:1),£BNBSC), (ifnulB{(11l) ,nBNBSC),
(fidatB(12) (1:4),fBDCL2), (ifnulB(12),nBDCL2),
(fidatB(13) (1:1),fBDCU2), (ifnulB(13) ,nBDCU2),
(fidatB(14) (1:6),fBRND2), (ifnulB(14) ,nBRND2),
(fidatB(15) (1:5), £fBRNT2), (ifnulB(15) ,nBRNT2),
(fidatB(16) (1:6),fBDAW2), (ifnulB(16) ,nBDAW2) ,
(fidatB(17) (1:20), fBRRC2), (ifnulB(17),nBRRC2),
(fidatB(18){(1:1),£fBASI2), (ifnulB(18),nBASI2),
(fidatB(19)(1:1),fBNBST), (ifnulB(19),nBNBST),
(fidatB(20) (1:4),£fBDCL3), (ifnulB(20) ,nBDCL3),
(fidatB(21)(1:1),fBDCU3), (ifnulB(21) ,nBDCU3),

H-8

(fidatB(22) (1:6),fBRND3), (ifnulB(22) ,nBRND3},
(fidatB(23) (1:5) ,fBRNT3), (ifnulB{(23) ,nBRNT3),
(fidatB(24) (1:6),£fBDAW3), (ifnulB(24) ,nBDAW3),
(fidatB(25) (1:20), £fBRRC3), (ifnulB(25),nBRRC3),
(fidatB(26)(1:1),£fBASI3), (ifnulB(26),nBASI3)},
(£idatB(27) (1:1),fBNBT), (ifnulB(27) ,nBNBT),
. (fidatB(28)(1:4),£fBDCL4), (ifnulB(28) ,nBDCL4),
. . (fidatB(29) (1:1),£fBDCU4), (ifnulB(29),nBDCU4),

. (fidatB(30)(1:6),fBRND4), {(ifnulB(30) ,nBRND4),

. (fidatB(31) (1:5),fBRNT4), (ifnulB{(31) ,nBRNT4},

. (fidatB(32)(1:6),fBDAW4), (ifnulB(32) ,nBDAW4),

* . (fidatB(33)(1:20),fBRRC4), (ifnulB{(33),nBRRCY),
. . (fidatB(34)(1:1),fBASI4), (ifnulB(34),nBASI4),
(fidatB(35) (1:1),£BNBO), (ifnulB(35),nBNBO),
(fidatB(36) (1:4),£BDCL5), (ifnulB(36) ,nBDCLS),
(fidatB(37) (1:1),fBDCUS), (ifnulB(37) ,nBDCUS),
(fidatB(38) (1:1),fBNBNi), (ifnulB(38) ,nBNBNi)},
(fidatB(39) (1:1),fBNBFe), (ifnulB(39) ,nBNBFe) ,
(fidatB(40) (1:1),£fBNBS), (ifnulB(40),nBNBS),
(fidatB(41) (1:1), fBNBPu), (ifnulB(41) ,nBNBPuU),
(fidatB(42) (1:6),fBRND5), (ifnulB(42) ,nBRNDS),
(fidatB(43) (1:5), £fBRNT5), (ifnulB(43) ,nBRNTS),
(fidatB(44) (1:6), £BDAWS), (ifnulB(44),nBDAWS),
(fidatB(45) (1:20), fBRRCH), (ifnulB(45) ,nBRRCS),
(fidatB(46) (1:1),£fBASIS5), (ifnulB(46) ,nBASIS),
(mxnocB({1) ,1BSTI), (ifmodB(1l},mBSTI),
(mxnocB(2) ,1BCSN), (ifmodB(2) ,mBCSN) ,
{mxnocB(3),1BNBSr), (ifmodB(3) ,mBNBSr),
{(mxnocB(4),1BDCL1), (ifmodB (4) ,mBDCL1),
(mxnocB(5),1BDCULl), (ifmodB(5),mBDCUl),
(mxnocB(6),1BRND1), (ifmodB(6) ,mBRND1),
(mxnocB(7),1BRNT1), (ifmodB(7) ,mBRNT1) ,
(mxnocB(8),1BDAWl), (ifmodB (8) ,mBDAW1) ,
(mxnocB(9),1BRRC1l), (1fmodB(9),mBRRC1),
(mxnocB(10),1BASI1), (ifmodB(10),mBASIl),
{mxnocB(11l),1BNBSC), {ifmodB(11l),mBNBSC),
(mxnocB(12),1BDCL2), (ifmodB(12),mBDCL2),
(mxnocB(13),1BDCU2), (ifmodB(13) ,mBDCU2),
{mxnocB(14),1BRND2), (ifmcdB(14) ,mBRND2) ,
(mxnocB(15),1BRNT2), (ifmodB(15) ,mBRNT2),
(mxnocB(16),1BDAW2), (ifmodB(16) ,mBDAW2),
(mxnocB(17),1BRRC2), (ifmodB(17) ,mBRRC2),
(mxnocB(18),1BAS12), (ifmodB(18),mBASI2),
{mxnocB(19),1BNBST), (ifmodB(19),mBNBST),
{(mxnocB(20),1BDCL3}, (ifmodB(20) ,mBDCL3),
. (mxnocB(21),1BDCU3), (ifmodB(21) ,mBDCU3),
. {mxnocB(22),1BRND3), (ifmodB(22),mBRND3),
. . (mxnocB(23),1BRNT3), (ifmodB(23) ,mBRNT3},

. (mxnocB{24),1BDAW3), (ifmodB(24) ,mBDAW3),
{(mxnocB(25), 1BRRC3), (ifmodB(25) ,mBRRC3),
(mxnocB(26),1BASI3), (ifmodB(26) ,mBASI3),

. (mxnocBR(27),1BNBT), (ifmodB(27) ,mBNBT),

. (mxnocB(28),1BDCL4), (ifmodB(28),mBDCL4),
. (mxnocB(29),1BDCU4), {ifmodB(29) ,mBDCU4),
. {(mxnocB(30),1BRND4), (ifmodB(30),mBRND4),
. {(mxnocB(31),1BRNT4), (ifmodB(31),mBRNT4),
. (mxnocB(32),1BDAW4), (ifmodB{32),mBDAWY),
. (mxnocB(33),1BRRC4), (ifmodB(33) ,mBRRC4),
. (mxnocB(34),1BASI4), (ifmodB(34),mBASI4),
. (mxnocB{(35),1BNBO), (ifmodB(35) ,mBNBO),

H-9

(mxnocB (36}, 1BDCL5), (ifmodB(36) ,mBDCLS) ,
(mxnocB (37, 1BDCUS), (ifmodB{37),mBDCUS),
(mxnocB(38) ,1BNBNi), (ifmodB(38) ,mBNBNi) ,
(mxnocB(39), 1BNBFe), (ifmodB(39),mBNBFe),
(mxnocB(40),1BNBS), (ifmodB(40) ,mBNBS},
(mxnocB(41), 1BNBPu), (ifmodB(41),mBNBPu),
(mxnocB(42), 1BRND5), (ifmodB(42) ,mBRNDS),
(mxnocB{(43), 1BRNT5), (ifmodB(43),mBRNTS), .
(mxnocB(44), 1BDAWS), (ifmodB(44),mBDAWS),
(mxnocB(45), 1BRRCS), (ifmodB(45) ,mBRRCS),
{mxnocB(46),1BASIS5), (ifmodB(46) ,mBASIS)

Database table and attribute names for screen fields.

data atrbtB/

. 'BETA_STRONTIUM_90', 'SAMPLE TRACKING_ID’,
* SAMPLE_INFORMATION', ' CUSTOMER_SAMPLE _NAME’,
'SAMPLE_INFORMATION', 'NEED_BETA_STRONTIUM_90°’,
'BETA_STRONTIUM_90', 'DETECTOR_COUNT LENGTH’,
‘BETA_STRONTIUM 90', ‘DETECTOR_COUNT_LENGTH_UNITS’,
‘BETA_STRONTIUM_90’, 'RESULTS_NEEDED_BY DATE’,
‘BETA_STRONTIUM_90', ‘RESULTS_NEEDED_BY_TIME',
'BETA_STRONTIUM_90', 'DATE_ALL_WORK_COMPLETED’,
‘BETA_STRONTIUM_S90’, 'RESULTS_REPORT_CITATION',
'BETA_STRONTIUM_90', 'ANY_SPECIAL_INSTRUCTICNS',
' SAMPLE_INFORMATION , 'NEED_BETA_STRONTIUM_89_AND_S0',
‘BETA_STRONTIUM_89_AND 90’ ,’'DETECTOR_COUNT_LENGTH',
'BETA_STRONTIUM_89_AND_90’, 'DETECTOR_COUNT_LENGTH_UNITS’,

. 'BETA_STRONTIUM_89_AND_S90’, ‘RESULTS_NEEDED BY DATE',

., 'BETA_STRONTIUM_89_AND_90', ‘RESULTS_NEEDED BY TIME’,

L N R Y

'BETA_STRONTIUM_89_AND_90', 'DATE_ALL_WORK_COMPLETED’,
'BETA_STRONTIUM_89_AND_S80’,’'RESULTS_REPORT_CITATION’,
‘BETA_STRONTIUM_89_AND_90’, 'ANY_SPECIAL_INSTRUCTIONS’,

. 'SAMPLE_INFORMATION', 'NEED_BETA_ TOTAL_STRONTIUM',

. ‘BETA_TOTAL_STRONTIUM', 'DETECTOR_COUNT_LENGTH’ ,
‘BETA_TOTAL_STRONTIUM'’, ' DETECTOR_COUNT_LENGTH_UNITS',
*BETA_TOTAL_STRONTIUM’, 'RESULTS_NEEDED_BY_DATE’,
'BETA_TOTAL_STRONTIUM', 'RESULTS_NEEDED_BY_TIME',
'BETA_TOTAL_STRONTIUM’, ’'DATE_ALL_WORK_COMPLETED’,
'BETA_TOTAL_STRONTIUM’, ‘RESULTS_REPORT_CITATION’,
'BETA_TOTAL_STRONTIUM’, ’'ANY_SPECIAL_ INSTRUCTIONS’,
SAMPLE__INFORMATION', 'NEED_BETA_TRITIUM’,
‘BETA_TRITIUM’, 'DETECTOR_COUNT_LENGTH',
‘BETA_TRITIUM’, 'DETECTOR_COUNT_LENGTH_UNITS',
‘BETA_TRITIUM'’, 'RESULTS_NEEDED_BY_DATE’,
'BETA_TRITIUM', 'RESULTS_NEEDED_BY_TIME',
'BETA_TRITIUM’, 'DATE_ALL_WORK_COMPLETED’,
'BETA_TRITIUM', 'RESULTS_REPORT_CITATION’, .
‘BETA_TRITIUM', 'ANY_SPECIAL_INSTRUCTIONS',

' SAMPLE_INFORMATION', 'NEED_BETA_OTHER’,
'BETA_OTHER' , ' DETECTOR_COUNT_LENGTH' ,
'BETA_OTHER'’, 'DETECTOR_COUNT_LENGTH_UNITS’, N
'BETA_OTHER', 'NEED_BETA_NICKEL_63',
'BETA_OTHER'’, 'NEED_BETA_TRON_55"',
‘BETA_OTHER', 'NEED_BETA_SULFUR_35‘,
‘BETA_OTHER' , 'NEED_BETA_PLUTONIUM_241°‘,
'BETA_OTHER', ' RESULTS_NEEDED_BY_DATE’,
'BETA_OTHER', 'RESULTS_NEEDED_BY_TIME',
'BETA_OTHER’, 'DATE_ALL_WORK_COMPLETED',
'BETA_OTHER’ , 'RESULTS_REPORT_CITATION',

H-10

‘BETA_OTHER’, 'ANY_SPECIAL INSTRUCTIONS'/
C
C Program variable names (value and null indicator) for screen fields.
C

data VarblB/’:fBSTI:nBSTI’,':fBCSN:nBCSN',’:fBNBSr:nBNBSr’,
’:YBDCL1:nBDCL1’, ‘' : £BDCU1:nBDCULl‘, ‘ : iBRND1:nBRND1’,

:fBRNTl:nBRNTl’,’ iBDAW1:nBDAW1', ' : fBRRC1:nBRRC1’,

:£BASI1:nBASI1’, ' :£BNBSC:nBNBSC', ’ : rBDCL2 :nBDCL2',

: £BDCU2:nBDCU2', ’ : iBRND2 :nBRND2 ', ’ : fBRNT2 : nBRNT2 ',

:1BDAWZ :nBDAWZ ’ , ’ : £BRRC2 :nBRRC2 ', ' : fBASI2 :nBASI2’,

: £BNBST::nBNBST', ’ : YBDCL3 :nBDCL3 "/, ' : £BDCU3 :nBDCU3 ',

¢« & e e

: fBRRC3 :nBRRC3’, ' : £BASI3 :nBASI3!
+rBDCL4 :nBDCL4 "’ ,

: £BNBT :nBNBT' ,
:£BDCU4:nBDCU4 ‘', ' : iBRND4 :nBRND4 ',
: £BRNT4 :nBRNT4’, ' : iBDAW4 :nBDAW4 ‘', ‘' : £BRRC4 :nBRRC4 ',
:fBASI4:nBASI4', : £BNBO:nBNBO', ‘' : rBDCL5:nBDCLS ',
:fBDCUS:nBDCUS',' fBNBNi:nBNBNi'’, ’ : fBNBFe:nBNBFe’,
: fBNBS:nBNBS', ' : £BNBPu:nBNBPu’, ’ : iBRND5 :nBRND5 ',
:£BRNTS : nBRNTS',’ iBDAWS : nBDAWS / , ’ : £BRRCS :nBRRC5 ',
:fBASI5:nBASIS5’ /

1
’
:iBRND3 :nBRND3’, * : £BRNT3 :nBRNT3 ', ' ; iBDAW3 :nBDAW3 ’

LI S)
L N T T S e U ST Y

C Gamma screen’s field descriptors and field sizes.

character*80 fieldG(35),fidatG(35)

character*30 atrbtG(2,35)

character*14 varblG(35)

character*l fitypG{(35)

integer*4 fdlenG(35),fdrowG(35),£fdcolG(35),£ficolG(35),mxnocG(35),

. £drndG(3,35),£firndG(3,35), 'Fleldrendltlons(add/update/search)

. numfdG/35/ !The number of fields.

integer*2 ifnulG(35), INull indicator (-1 if null, 0 otherwise).
ifrgdG(35)/35*0/, 'Points to if-required dependent field.
iditoG (35) /35*0/ lPoints to allowed field for dittoing.
logical ifmodG(35) ‘Has a field been modified in an Update?

common /dbdatG/ fieldG, fidatgG, fdlenG, fdrowG, £dcolG, ficolG, mxnocG,
£fdrndG, £firndG, numfdG, fitypG, ifnulG, atrbtG, varblG, i frqdG, ifmodG,
iditoG

Length-specified character fields for equivalences (f for field).

oXoNe®!

character fGSTI*12, fGCSN*60,fGNGS*1,fGDCL1*4, fGDCUL*1, fGRND1*6,

. fGRNT1*5, fGDAW1*6, £GDSC1*6, fGRSI1*14,fGITA1*1, fGRRC1*20, fGASI1*1,

. fGNGFI*1,fGDCL2*4,fGDCU2*1, fGRND2*6, £GRNT2*5, £GDAW2*6, £GDSC2*6,

. £GRSI2*14,fGITA2*1, fGRRC2*20, £GASI2*1, fGNGO*1, £GDCL3*4, £GDCU3*1,

. £GRND3*6, fGRNT3 *5, fGDAW3*6, fGDSC3*6, fGRSI3*14, fGITA3*1, fGRRC3*20,
fGasIi3*1

Real and integer field storage (r for real, i for integer).

nnon

real*4 rGDCL1l,rGDCL2,rGDCL3
integer*4 iGRND1, 1GDAW1 iGDSC1,iGRND2, iGDAW2, iGDSC2, iGRND3, 1GDAW3,
- . iGDSC3

Nonarraved maximum field lengths (1 for length).

Nnnan

integer*4 1GSTI,1GCSN, 1GNGS, 1GDCL1,1GDCULl, 1GRND1, 1GRNT1, 1GDAW1,
1GDSC1, 1GRSI1, 1GITAl,1GRRC1, 1GASI1, 1GNGFI, 1GDCL2, 1GDCU2, 1GRNDZ,
. 1GRNT2,1GDAW2,1GDSC2,1GRSI2, 1GITA2,1GRRC2, 1GASI2, 1GNGO, 1GDCL3,
1GDCU3, 1GRND3, 1GRNT3, 1GDAW3, 1GDSC3,1GRSI3, 1GITA3, 1GRRC3, 1GASI3

H-11

[eNeXe! a0

anon

Nonarrayed null indicators for data transfers (n for null).

integer*2 nGSTI,nGCSN,nGNGS,nGDCL1,nGDCULl, nGRND1, nGRNT1 , nGDAW]1,
. nGDSC1,nGRSI1,nGITALl,nGRRC1,nGASI1,nGNGFI,nGDCL2,nGDCU2, nGRND2Z,
. NGRNT2,nGDAWZ , nGDSC2,nGRSI2, nGITA2,nGRRC2, nGASI2, nGNGO, nGDCL3,
. nGDCU3,nGRND3, nGRNT3 ,nGDAW3 , nGDSC3 ,nGRSI3,nGITA3 , nGRRC3,nGASI3

Nonarrayed if-modified indicators (m for modified).

integer*2 mGSTI,mGCSN,mGNGS,mGDCL1, mGDCUL , mGRNDL , mGRNT1 , mGDAW],

. mGDSC1l,mGRSI1,mGITAl,mGRRC1,mGASI1,mGNGFI, mGDCL2,mGDCU2, mGRND2,
. MGRNT2,mGDAW2, mGDSC2 ,mGRSI2, mGITA2, mGRRC2,mGASI2, mGNGO, mGDCL3,
. mGDCU3, mGRND3, mGRNT3 , mGDAW3 , mGDSC3 ,mGRSI3, mGITA3, mGRRC3, mGASI3

-

Equivalence statements for data transfers.

equivalence (fidatG(1)(1:12),£GSTI), (ifnulG{1),nGSTI),
(f£idatG(2) (1:60),£GCSN) , (ifnulG(2) ,nGCSN} ,
(fidatG(3) (1:1) ,£GNGS), (1fnulG(3) ,nGNGS}),
(fidatG(4) (1:4),fGDCL1), (ifnulG(4) ,nGDCLL},
(fidatG(5) (1:1), £GDCUl), (ifnulG(5) ,nGDCUL),
(fidatG(6) (1:6), £GRND1), (ifnulG(6) ,nGRND1),
(fidatG(7) (1:5), fGRNT1), (ifnulG(7) ,nGRNT1),
(£idatG(8) (1:6), £GDAWL), (ifnulG(8) ,nGDAWl),
(fidatG(9) (1:6),£fGDsSCl), (ifnulG(9) ,nGDSC1),
(£fidatG(10) (1:14), £fGRSI1), (ifnulG{10) ,nGRSI1),
(fidatG(11) (1:1) ,£GITAl), (ifnulG(1l1l) ,nGITAl),
(fidatG(12)(1:20),fGRRC1l), (ifnulG(12),nGRRC1),
(fidatG(13)(1:1),£fGASI1l), (ifnulG(13),nGASIl),
{fidatG(1i5) (1:4),£fGDCL2), (1fnulG(15) ,nGDCL2) ,
(fidatG(16) (1:1),£fGDCU2), (ifnulG(16) ,nGDCU2) ,
(£idatG{17) (1:6),£fGRND2), (ifnulG(17) ,nGRND2),
(fidatG(18) (1:5),£fGRNT2), (ifnulG(18) ,nGRNTZ2),

:‘(fidatG(l9)(1:6),fGDAW2),(ifnulG(lQ),nGDAWZ),

(fidatG(20) (1:6),£GDSC2), (ifnulG(20) ,nGDSC2),
(fidatG(21) (1:14),£fGRSI2), (ifnulG(21) ,nGRSI2),

. (£idatG(22) (1:1),£GITAZ), (ifnulG(22) ,nGITA2),

(fidatG(23) (1:20),fGRRC2), (ifnulG(23),nGRRC2),
{fidatG(24) (1:1),£fGAaSI2), (1fnulG(24) ,nGASI2),
(fidatG(25) (1:1),fGNGO), (ifnulG(25),nGNGO),
(fidatG(26) (1:4),£GDCL3), (ifnulG(26) ,nGDCL3),
(fidatG(27) (1:1),£GDCU3), (ifnulG(27) ,nGDCU3),
(£idatG(28) (1:6),£fGRND3), (ifnulG(28),nGRND3),
(fidatG(29) (1:5), £GRNT3), (ifnulG(29) ,nGRNT3),
(£idatG(30) (1:6) ,£fGDAW3), (ifnulG(30) ,nGDAW3) ,
{(fidatG(31) (1:6),£fGDSC3), (ifnulG(31) ,nGDSC3),
(fidatG(32)(1:14),fGRSI3), (ifnulG(32),nGRSI3),
(fidatG(33)(1:1),£fGITA3), (ifnulG(33),nGITA3),
(£idatG(34) (1:20), £fGRRC3}, (ifnulG(34),nGRRC3),
(fidatG(35) (1:1),£fGASI3), (ifnulG(35),nGASI3),
{mxnocG(1),1GSTI), (ifmodG(1l) ,mGSTI),
(mxnocG(2),1GCSN), (ifmodG(2) ,mGCSN),
{mxnocG(3},1GNGS), (ifmodG(3) ,mGNGS) ,
(mxnocG(4),1GDCL1), (ifmodG(4),mGDCLL) ,
(mxnocG(5) ,1GDCUL), (ifmodG (5) ,mGDCUL),
(mxnocG(6),1GRNDL) , (ifmodG (6}, mGRND1),
(mxnocG(7) ,1GRNT1), (ifmodG(7),mGRNT1),
(mxnocG(8),1GDAaW1) , (ifmodG (8) ,mGDAWL) ,
{mxnocG(9),1GDSC1), (ifmodG{(9),mGDSCl),

H-12

(mxnocG(10),1GRSI1), (ifmodG(10) ,mGRSI1),
. {mxnocG(11),1GITAl), (ifmodG(11l),mGITALl),
. (mxnocG(1l2),1GRRC1l), (ifmodG(12) ,mGRRC1),
. {mxnocG(13),1GASIl), (ifmodG(13),mGASI1),
. (mxnocG(14),1GNGFI), (ifmodG(14),mGNGFI),
.. (mxnocG(15),1GDCL2), (ifmodG(15) ,mGDCL2),
(mxnocG(16),1GDCU2), (ifmodG(16) ,mGDCU2) ,
(mxnocG(17),1GRND2), (ifmodG(17),mGRND2) ,
(mxnocG(18),1GRNT2), (ifmodG(18) ,mGRNT2),
(mxnocG(19),1GDAW2), (ifmodG(19),mGDAW2) ,
{mxnocG(20),1GDSC2), (ifmodG(20) ,mGDSC2),
{mxnocG(21),1GRSI2), (ifmodG(21),mGRSI2),
(mxnocG(22),1GITA2), (ifmodG(22) ,mGITA2),
{(mxnocG(23) ,1GRRC2), (ifmodG(23),mGRRC2),
(mxnocG(24),1GASI2), (ifmodG(24) ,mGASI2),
(mxnocG(25) , 1GNGO} , (ifmodG(25) ,mGNGO) ,
(mxnocG(26),1GDCL3), (ifmodG(26) ,mGDCL3),
{(mxnocG(27),1GDCU3), (ifmodG(27) ,mGDCU3),
(mxnocG(28) ,1GRND3), (ifmodG(28) ,mGRND3),
(mxnocG(29),1GRNT3}, (ifmodG(29),mGRNT3),
(mxnocG(30),1GDAW3), (ifmodG(30),mGDAW3),
(mxnocG(31),1GDSC3), (ifmodG(31) ,mGDSC3),
(mxnocG(32), 1GRSI3), (ifmodG(32) ,mGRSI3),
(mxnocG(33),1GITA3), (ifmodG(33),mGITA3),
(mxnocG(34),1GRRC3), (ifmodG(34) ,mGRRC3),
(mxnocG(35),1GASI3), (1fmodG(35) ,mGASI3)

C Database table and attribute names for screen fields.

data atrbtG/

'GAMMA_SCREEN' , SAMPLE_TRACKING_ID’,
' SAMPLE_INFORMATION’, 'CUSTOMER_SAMPLE NAME',
' SAMPLE_INFORMATION' , "NEED_GAMMA SCREEN',
'GAMMA_ SCREEN‘, 'DETECTOR_COUNT_LENGTH' ,
'GAMMA_SCREEN’, ' DETECTOR_COUNT_LENGTH_UNITS’,
'GAMMA_SCREEN’,, 'RESULTS_NEEDED_BY_ DATE’,
'GAMMA_SCREEN’ , 'RESULTS_NEEDED_BY_TIME'’,
‘GAMMA _ SCREEN' , ‘DATE_ALL_WORK_COMPLETED’,
*GAMMA_ SCREEN'’, 'DATE_SAMPLE_COUNTED'’ ,
GAMMA_SCREEN'’, 'RML_SPECTRAL_ID’,
'GAMMA_SCREEN’, 'IS_THIS_A_SPECTRUM_RECOUNT',
‘GAMMA_ SCREEN’, 'RESULTS_REPORT_CITATION',
'GAMMA_SCREEN’ , 'ANY_SPECIAL_INSTRUCTIONS',
*SAMPLE. _INFORMATION'‘, ‘NEED_GAMMA_FULL_ISOTOPIC',
'GAMMA_FULL_ISOTOPIC’, ‘DETECTCR_COUNT_LENGTH',
'GAMMA_FULL_ISOTOPIC’, ' DETECTOR_COUNT_LENGTH_UNITS',
'GAMMA_FULL_ISOTOPIC'’, 'RESULTS_NEEDED_BY_DATE’,
'GAMMA_FULL_ISOTOPIC’, 'RESULTS_NEEDED_BY TIME’,
'GAMMA_FULL__ISOTOPIC’, 'DATE_ALL_ WORK_COMPLETED’,
*GAMMA_FULL_ISOTOPIC’, 'DATE_SAMPLE_COUNTED',

: . 'GAMMA_FULL_ISOTOPIC’, 'RML_SPECTRAL_ID',

- : . 'GAMMA_FULL_ISOTOPIC‘, 'IS_THIS_A_SPECTRUM_RECOUNT’,
'GAMMA_FULL_ISOTOPIC’, 'RESULTS_REPORT_CITATION',
'GAMMA_FULL_ISOTOPIC’, 'ANY_SPECIAL_INSTRUCTIONS'’,
*SAMPLE_INFORMATION' , 'NEED_GAMMA_OTHER’,
'GAMMA_QOTHER' , ' DETECTOR_COUNT_LENGTH' ,
'GAMMA_QOTHER'’, 'DETECTOR_COUNT_LENGTH_UNITS’,
'GAMMA_OTHER'’, 'RESULTS_NEEDED_BY_ DATE’,

‘GAMMA_ OTHER', 'RESULTS_NEEDED_BY_TIME’,
*GAMMA_OTHER'’, 'DATE_ALL_WORK_COMPLETED’,

H-13

"GAMMA_OTHER', ' DATE_SAMPLE_COUNTED',
‘GAMMA_OTHER', 'RML_SPECTRAL_ID',
'GAMMA_OTHER', 'IS_THIS_A_SPECTRUM_RECQUNT',
'GAMMA_OTHER'’ , 'RESULTS_REPORT_CITATION',
'GAMMA_OTHER' , 'ANY_SPECIAL_INSTRUCTIONS'/

C Program variable names (value and null indicator) for screen fields.

data varblG/’ :£GSTI:nGSTI’, ' : fGCSN:nGCSN’, ’ : £GNGS:nGNGS ',
* +rGDCL1:nGDCL1’, ' : £GDCUL1:nGDCUL1 ", * : iGRND1 :nGRND1‘,
:fGRNTl:nGRNTl',':iGDAWl:nGDAWl’, +1GDSC1:nGDSC1 ',
:fGRSI1:nGRSI1’, ' : £GITAl1:nGITALl’, ' : £fGRRC1:nGRRC1,
+fGASI1:nGASI1’, ' : £GNGFI:nGNGFI’, ! : rGDCL2 :nGDCL2’,
: £GDCU2 :nGDCU2', ' : 1iGRND2:nGRND2 ‘, ’ : fGRNTZ2 :nGRNT2 ',

:1GDAW2 :nGDAW2 ', ’ : iGDSC2 :nGDSC2’, ' : £GRSI2 :nGRSI2’
:£GITA2 :nGITAZ2 ', ' : £GRRC2:nGRRC2’, ' : £GASI2 : nGASI2’
: £GNGO:nGNGO’ , ' : rGDCL3:nGDCL3 ", ' : £GDCU3 :nGDCU3 ',

:1GRND3 :nGRND3/, ' : £GRNT3:nGRNT3’, ' : 1iGDAW3 : nGDAW3 ‘',
*+iGDSC3:nGDSC3’,’ : fGRSI3:nGRSI3’, ' : £fGITA3 :nGITA3 ',

' : £GRRC3 :nGRRC3 ', ' : £GASI3 :nGASI3*/

~ % wm N % e ow o=

C Gross alpha-beta screen’s field descriptors and field sizes.

character*80 fieldC({18),fidatC(18)

character*30 atrbtC(2,18)

character*14 varblC{18)

character*l fitypC{18)

.integer*4 fdlenC(18),fdrowC(18),fdcolC(18),£ficolC(18),mxnocC(18),

. £fdrndC(3,18),firndC(3,18), !Field renditions (add/update/search).
numfdCc/18/ !{The number of fields. :
integer*2 ifnulC(18), !Null indicator (-1 if null, 0 otherwise).
ifrgdCc(18)/18*0/, !Points to if-required dependent field.
iditoC(18)/18*0/ tPoints to allowed field for dittoing.
logical ifmodC(18) 'Has a field been modified in an Update?

common /dbdatC/ fieldc, fidatC, fdlenC, fdrowC, fdcolC, ficolC, mxnocC,
fdrndc, £irndC, numfdC, fitypC, ifnulcC,atrbtC, varblC, ifrqdC, ifmodcC,
iditoC

Length-specifiéd character fields for equivalences (1 for length).

eNoXe!

character fCSTI*12,fCCSN*60, fCNGAF*1, fCDCL1*4,£fCDCUL*1, fCRND1*6,
’ fCRNT1*5, fCDAW1*6, £CRRC1*20, fCASTI1*1, fCNGAO*1, £CDCL2*4, fCDCU2*1,
fCRND2*6, fCRNT2*5, fCDAW2*6, fCRRC2*20, fCASI2*1

Real and integer field storage (r for real, i for integer).

nnon

real*4 rCDCL1l,rCDCL2
integer*4 iCRND1, iCDAWL1, iCRND2, iCDAW2 .

Nonarrayed maximum field lengths (1 for length).

nnNa

integer*4 1CSTI,1CCSN, 1CNGAF, 1CDCL1, 1CDCUL, 1CRND1, 1CRNT1, 1CDAW],
1CRRC1,1CASI1, 1CNGAO, 1CDCL2, lCDCUZ 1CRND2, 1CRNT2, 1CDAWZ2, 1CRRC2Z,
1CcAasI2

Nonarrayed null indicators for data transfers (n for null).

eNeNe!

integer*2 nCSTI,nCCSN,nCNGAF,nCDCL1,nCDCUL, nCRND1,nCRNT1, nCDAWL,
. nCRRC1,nCASI1, nCNGAO, nCDCL2, nCDCU2 , nCRND2 , nCRNT2 , nCDAW2 , nCRRC2,
. nNnCASI2

H-14

Nonarrayéd if-modified indicators (m for modified).

nna

integer*2 mCSTI,mCCSN,mCNGAF,mCDCL1, mCDCU1, mCRND1, mCRNT1, mCDAW1,
. MCRRCL,mCASI1, mCNGAO, mCDCL2, mCDCU2, mCRND2, mCRNT2 , mCDAW2 ,mCRRC2,
. mMCASI2 .

2XeXe!

Equivalence statements for data transfers.

equivalence (fidatC(1)(1:12),fCSTI), (ifnulC(1l),nCSTI),
(fidatC(2) (1:60),£CCSN), (ifnulC(2),nCCSN),

(fidatC(3) (1:1), £CNGAF), (1ifnulC(3),nCNGAF),
(fidatC(4) (1:4),fCDCL1), (ifnulC(4),nCDCL1),
(fidatC(5) (1:1), £CDCU1), (ifnulC(5),nCDCUL),
(fidatC(6) (1:6), fCRND1), (ifnulC(6) ,nCRND1),
(fidatC(7) (1:5),£CRNT1), (1 fnulC(7) ,nCRNT1),
(fidatC(8) (1:6) ,fCDAW1), (ifnulC(8) ,nCDhAaWl),
(fidatC(9) {(1:20),fCRRC1), (ifnulC(9),nCRRC1),
(£idatC(10) (1:1),£fCcasIl), (ifnulC(10),nCASI1),

. (fidatC(11) (1:1), fCNGAO), (1ifnulC(11l) ,nCNGAO),

. (fidatC(12) (1:4),fCcDCL2), (1ifnulC(12),nCDCL2),

. (f£idatC(13)(1:1),£fCDCU2), (ifnulC(13),nCDCU2),
(fidatC(14) (1:6),£fCRND2), (1fnulC(14) ,nCRND2),
(fidatC(15) (1:5), fCRNT2), (ifnulC{15) ,nCRNT2),
(fidatC(16) (1:6),£fCDaW2), (ifnulC(16) ,nCDAW2),
(fidatC(17) (1:20), fCRRC2), (1fnulC{17),nCRRC2),

. (fidatC(18)(1:1),£fCASI2), (ifnulC(18),nCASI2),

. (mxnocC(1),1CSTI), (ifmodC (1) ,mCSTI),

. (mxnocC(2),1CCSN), (ifmodC(2),mCCSN),
{mxnocC(3),1CNGAF), (ifmodC (3),mCNGAF),
(mxnocC(4),1CDCL]1), (ifmodC(4),mCDCL1),

. {(mxnocC(5),1CDCUl), (ifmodC (5) ,mCDCUL),

.. (mxnocC(6),1CRND1), (ifmodC(6) ,mCRND1),
{mxnocC(7) ,1CRNT1), (ifmodC(7) ,mCRNT1},
(mxnocC(8),1CDAW1), (ifmodC(8),mCDAW1),
(mxnocC(9),1CRRC1), (ifmodC(9),mCRRC1),
(mxnocC(10),1CASI1), (ifmodC(10) ,mCASIL),

. (mxnocC(11),1CNGAQ), (ifmodC(11),mCNGAO},

. (mxnocC(12),1CDCL2), (ifmodC(12),mCDCL2),

. (mxnocC (13),1CDCU2), (ifmodC(13),mCDCU2)},
(mxnocC(14),1CRND2), (ifmodC(14) ,mCRND2),
(mxnocC(15),1CRNT2), (1fmodC(15) ,mCRNT2),
(mxmocC(16) , 1CDAW2) , (ifmodC(16) ,mCDAW2),
{(mxnocC{17),1CRRC2), (ifmodC(17),mCRRC2),
{mxnocC(18),1CASI2), (ifmodC(18) ,mCASI2)

C
C -Database table and attribute names for screen fields.
C
data atrbtC/ »
. 'GROSS_ALPHA_BETA_AIR_FILTERS’,'SAMPLE_TRACKING_ID’,
* SAMPLE_INFORMATION', "CUSTOMER_SAMPLE_NAME’,
' SAMPLE_INFORMATION'’, "NEED_GROSS_ALPHA_BETA_FILTERS’,
'GROSS_ALPHA_BETA_ATR_FILTERS'’, ’'DETECTOR_COUNT_LENGTH’,
’GROSS_ALPHA_BETA_AIR_FILTERS','DETECTOR_COUNT_LENGTH_UNITS’,
'GROSS_ALPHA_BETA_AIR_FILTERS’, 'RESULTS_NEEDED_BY_DATE’,
'GROSS_ALPHA_BETA_AIR_FILTERS’, 'RESULTS_NEEDED_BY TIME’,
'GROSS_ALPHA_BETA_AIR_FILTERS’, 'DATE_ALL_WORK_COMPLETED',
'GROSS_ALPHA_BETA _AIR_FILTERS’, 'RESULTS_REPORT _CITATION',
'GROSS_ALPHA_BETA_AIR_FILTERS’, 'ANY_SPECIAL_INSTRUCTIONS’,
*SAMPLE INFORMATION', 'NEED_GROSS_ALPHA_ BETA_OTHER’,

H-15

nooonan oXeXe!

nnao

'GROSS_ALPHA_BETA_OTHER', ' DETECTOR_COUNT_LENGTH' ,
'GROSS_ALPHA_BETA_OTHER', ' DET* TOR_COUNT_LENGTH_UNITS’,
'GROSS_ALPHA_BETA_OTHER'’, 'RES..TS_NEEDED_BY_DATE’,
‘GROSS_ALPHA_BETA_OTHER', 'RESULTS_NEEDED_BY_TIME’,
'GROSS_ALPHA_BETA_OTHER', 'DATE_ALL_WORK_COMPLETED' ,
*GROSS_ALPHA_BETA_OTHER', ' RESULTS_REPORT_CITATION',
'GROSS_ALPHA_BETA_OTHER', 'ANY_SPECIAL_INSTRUCTIONS'/

Program variable names (Value4and null indicator) for screen fields.

data varblC/’:£fCSTI:nCSTI’, ’:£fCCSN:nCCSN’, ' :fCNGAF:nCNGAF’,
' :rCDCL1:nCDCL1’, * : £CDCUL:nCDCUL"’, * : 1CRND1 :nCRND1 ',
*:£CRNT1:nCRNT1’, ' : iCDAW1 :nCDAW1”, ' : fCRRC1:nCRRC1",
*:£fCASI1:nCASI1’, ' : £CNGAO:nCNGAO’, ' : rCDCL2 :nCDCL2/,
*: £CDCU2:nCDCU2’, ’ : ICRND2 :nCRND2 /, * : fCRNT2 : nCRNT2’ ,
' : iCDAW2 :nCDAW2 ‘, ’ : £CRRC2:nCRRC2’, ' : fCASI2 :nCASI2' /

Special instruction screen’s field descriptors and field sizes.

character*80 fieldI (32),fidatI(32)

character*30 atrbtI(2,5)

character*14 varblI(5)

character*l fitypI(32)

integer*4 fdlenI(32),fdrowI(32),£fdcolI(32),£ficolI(32),mxnocI(32),
. £fdrndI1(3,32),£firnd1(3,32), !Field renditions (add/update/search).
. numfdIi/32/ iThe number of fields.

integer*2 ifnulI(32), !'Null indicator (-1 if null, 0 otherwise).
ifrqgd1(32)/32*0/, 'Points to if-required dependent field.
idito1(32)/32*0/ 1Points to allowed field for dittoing.
logical ifmodI(32) !Has a field been modified in an Update?

common /dbdatI/ fieldI,fidatI, fdlenI,fdrowl, fdcoll,ficolI,mxnoclI,
fdrndI, £irndI,numfdlI, fitypl, ifnull,atrbtI,varbll,ifrqdl, ifmodI,
iditol :

Length-specified character fields for equivalences (f for field).

character fISTI*12,fICSN*60,fI0S1*16,£f1SI1*50,fI052*16,£1S12*50,
. fI0S3*16,fI1S13*50,£f10S4*16,£15I4*50,£10S85*16,£1S1I5*50, f1056*16,
. £fI816*50,£f1087*16,£f1S17*50,£f10588*16,£1SI8*50,£1059*16,£fISI9*50,
. £fI0S10*16,£18110*50,£10811*16,£f18111*50,£10812*16,£f1IS112*50,
fIOS13*.5.FfISI13*50,£f10814*16,f1I8114*50,fI0S815*16,fISI15*50,
fI0S1t*is,£ISTI1Lt*50 'And spares for inserts and fetchs.

Integer field storage (i for integer).

integer*4 siline !Declared in the main routine.

Nonarraved maximum field lengths (1 for length). .
integer*4 iISTI,lICSN,lIOSl,IISIl,1IOSZ,1ISIZ,1IOS3,1ISI3,IIOS4,
1IS14,11085,11815,11086,11816,11087,11817,11088,1IS1I8,11I089,
1I1s819,110810,118110,110811,1158111,110812,1158112,110813,11I5T13,

110514,11I8114,110815,11IS115,
1I0S1t,1I81I1t tAnd spares for inserts and fetchs.

Nonarrayved null indicators for data transfers (n for null).
integer*2 nISTI,nICSN,nIOSl,nISIi,nIOSZ,nISIZ,nIOS3,nISI3,nIOS4,

. nISI4,nI0S5,nISI5,nI0S6,nISI6, nIOS7,nISI7,nI0S8,nISI8, nI0S9,
. nISIQ,nIOSlO,nISIlO,nIOSll,nISIll,nIOSl2,nISIlZ,nIOSlB,nISIl3,

H-16

. nI0S14,nI18114,nI0S15,nISI1S,
. nI0S1lt,nISIlt IAnd spares for inserts and fetchs.

‘Nonarrayed if-modified indicators (m for modified).

oXeXe!

integer*2 mISTI,mICSN,mIOS1,mISI1,mIOS2,mISI2, mIOS3, mISI3,mIOs4,
. MISI4, mIOSS5, mISI5, mIOS6, mISI6, mIOS7, mISI7, mIOSS8, mISI8, mIOSY,

. . mISI9, mIOS10,mISTI10, mIOS11, mISI11, mIOS12, mIST12, mI0S13,mISI13,
. mIOS14,mISI14,mIOS15,mISI15,
. mIOS1lt,mISIlt IAnd spares for inserts and fetchs.

C
- C Equivalence statements for data transfers.
C

equivalence (fidatI(1)(1:12),£fISTI), (ifnulI(1l),nISTI),

. (fidatI(2) (1:60),fICSN)}, (ifnulI(2),nICSN),
(fidatI (3) (1:16),£fI0S1), (ifnulI(3),nI0Sl),
(fidatI(4) (1:50),£f1I811), (ifnulI(4),nISIl),
(fidatI(5) (1:16),£f1082), (ifnulI(5),nI0S2),
(fidatI(6) (1:50),£f1812), (ifnull(6),nISI2),
(fidatI1(7) (1:16),£f1083), {(ifnulIi(7),nI0S3),
(fidatI(8) (1:50),fISI3), (ifnuli(8),nISI3),
(fidatI(9) (1:16),£10S4), (ifnulI(9),nIOS4),
(fidatI(10) (1:50),f1814), (ifnulIr(10),nisig),
(fidat1(11)(1:16),£f1085), (ifnuli(1ll),nI0S5),
(fidatI(12)(1:50),fI81I5), {(ifnulI{l12),nIsSIs),
(fidatI(13)(1:16),£f1086), (ifnulI(13),nIOS6),
(fidatI(14)(1:50),£f1816), (ifnulI(14),nISIi6),
(fidatI(15)(1:16),£f1087), (ifnulI(15),nI0S7),
(£idatI(16) (1:50),£f1I81I7), (ifnulI(16),nIsS1i7),
(fidatI(17)(1:16),£f10S8), (ifnulI{17),nI0S8),
(fidatI(18)(1:50),f1SI18), (ifnulIr(18),nISI8),
(fidatI (19) (1:16),£I089), (ifnulI(19),nI0S9),
(£idatI(20) (1:50),fIS19), (ifnulIl(20),nISI9),

. (fidatI(21)(1:16),£f10810), (ifnulI(21),nI0S10),

. (fidatI(22)(1:50}),fIS110}, (ifnuli(22),nISI10),

. (fidat1(23)(1:16),£f10811), (ifnul1i(23),nI0S1l),

. (fidatI(24)(1:50),fISI11), (ifnulI(24),nISI1l),

. (fidatI(25)(1:16),£10812), (ifnul1(25),nI0812),
(fidatI(26) (1:50),fISI12), {(ifnulI(26),nISI12),

. (fidatI(27)(1:16),f10813), (ifnul1i(27),nIosll3),

. (fidatTI(28) (1:50),fIST13), (ifnulI(28),nISI13),

. (fidatI(29)(1:16),f10814), (ifnul1(29),nI0814),
(fidatI(30)(1:50),fISIl4),(ifnulI(30),nISIl4),

. (fidat1(31)(1:16),£f10815), (ifnul1(31),nI0s1s5),

. (fidatI(32)(1:50),fIS115), (ifnulI(32),nISI1S),

. (mmocI(1l),1ISTI), (ifmodI(1),mISTI),
(mxnocI(2),1ICSN), (ifmodI(2),mICSN),
(mxnocI(3),11081), (ifmodI(3),mI0S81),
(mocnocI(4),1I8I1), (ifmodI(4),mISI1),
(mxnocI(5),11082), (ifmodI(5),mI0S2),

. (mxnocI(6),115812), (ifmodI(6),mISI2),

¢ . (mxnocI(7),11083), (ifmodI(7),mIOS3),

. (mxnocI(8),11513), (ifmodI(8),mISI3),
(mxnocI(9),11084), (ifmodI(9),mI0S4),
(mxnocI(10),118I4), (ifmodI (10),mISI4),
(mxnocI(11),1I0S85), (ifmodI(11),mIOS5),
(mxnocI(12),1I815), (ifmodI(12),mISIS),
(mxnocI{(13),1I086), (ifmodI (13),mIOS6),
(mxnocI(14),1I8I6), (ifmodI(14),mISI6),
{(mxnocI(15),11087), (ifmodI(15),mIOS7),

H-17

(mxnocI(16),1IS1I7), (ifmodI(16) ,mISI7),
(mxnocI(17),1I088), (ifmodI(17),mIOS8),
(mxnocI(18),1ISI8), (ifmodI (18) ,mISI8),
(mxnocI(19),1I089), (ifmodI(19) ,mI0S9),
(momocI(20),1ISI9), (ifmodI (20) ,mISIY),
(mxnocI(21),1I0810), (ifmodI(21),mIOS10),
(mxnocI(22),1IS8T10), (ifmodI(22),mISI10),
(mxnocI(23),110811), (ifmodI(23),mIOS11),
(mxnocI (24),11I8111), (ifmodI(24),mISI11),
(mxnocI(25),11I0812), (ifmodI(25),mI0S12),
(mxnocI(26),1IS112), (ifmodI{(26),mISI12),
. {(mxnocI(27),1I0813), (ifmodI(27),mI0S13),)
.. (mxnocI(28),118113), (ifmodI(28),mISI13),
. (mxnocI(29),110s14), (ifmodI(29),mI0S14),
. (mxnocI(30),115114), (ifmodI(30),mISI14),
(mxnocI(31),110815), (ifmodI(31),mIOS1S),
(mxnocI(32),1IST15), (1fmodI(32),mISI15)

Database table and attribute names for screen fields.

Q00N

data atrbtI/
'SPECIAL_INSTRUCTIONS'’, ' SAMPLE_TRACKING_ID’,
*SAMPLE_INFORMATION’ , ' CUSTOMER_SAMPLE_NAME' ,
*SPECIAL_INSTRUCTIONS’, 'ORIGIN_OF_SPECIAL_INSTRUCTION',
'SPECIAL_INSTRUCTIONS’, 'SPECIAL_INSTRUCTION',
'SPECIAL_INSTRUCTIONS',’'SPECIAL_INSTRUCTION_LINE’/

Program variable names (value and null indicator) for screen fields.

[eXoXe]

data varblI/‘:fISTI:nISTI’,’':fICSN:nICSN’,':fI0S1t:nI0S1’,
' fISTI1t:nISTI1’, ':siline:ifnsil’/

Possessor screen’s field descriptors and field sizes.

Q00

character*80 fieldT(23),fidatT(23)

character*30 atrbtT(2,9)

character*14 varblT(9)

character*l fitypT(23)

integer*4 fdlenT(23), fdrowT(23) £fdcolT (23),ficolT(23) ,mxnocT(23),

. £fdrndT(3,23), f1rndT(3 23), !Field renditions (add/update/search).

. numfdT/23/ {The number of fields.

integer*2 ifnulT(23), INull indicator (-1 if null, 0 otherwise).
ifrgdr(23)/23*0/, 'Points to if-required dependent field.
iditoT(23)/23*0/ !Points to allowed field for dittoing.

logical ifmodT(23) {Has a field been modified in an Update?

common /dbdatT/ fieldrT, fidatT, £fdlenT, fdrowT, £dcolT, £icolT, mxnocT,
fdrndT, £irndT, numfdT, fitypT, ifnulT,atrbtT, varblT, ifrqdT, ifmodT,
iditoT

Length-specified character fields for equivalences (f for field).

ReXeXe!

charac¢cter f£TSTI*12,fTCSN*60, £TPSN1*3, £TPN1*25, £fTPPN1*12, fTPA1*60, ¢
. £TPPR1*50, fTDAB1*6, fTDRB1*£, fTPSN2*3, £fTPN2*25, fTPPN2*12, fTPA2*60,
. £TPPR2*50, fTDAB2*6, fTDRB2*6, £TPSN3*3, fTPN3*25, fTPPN3*12, fTPA3*60,
fTPPR3*50, £TDAB3*6, £TDRB3*6,
fTPN1t*25, fTPPNlt*lZ £fTPALL*60, fTPPR1L *50 !Temporary fields.

Integer field storage (i for integer).

oXONP]

integer*4 iTPSN1,iTDAB1,iTDRB1

H-18

oXoNe]

Nonarrayed maximum field lenghts (1 for length).
integer*4 1TSTI,1TCSN,1TPSN1,1TPN1,1TPPN1,1TPAl,1TPPR1, 1TDABL,
1TDRB1, 1TPSN2, 1TPN2, 1TPPN2, 1TPA2, 1TPPR2, 1TDAB2, 1TDRB2, 1TPSN3,
1TPN3, 1TPPN3, 1TPA3, 1TPPR3, 1TDAB3, 1TDRB3

Nonarrayed null indicators for data transfers (n for null).

QN0

integer*2 nTSTI,nTCSN,nTPSN1,nTPN1,nTPPN1,nTPAl,nTPPR1,nTDAB]L,
. . nTDRB1,nTPSN2,nTPN2, nTPPN2,nTPA2 ,nTPPR2, nTDAB2 ,nTDRB2, nTPSN3,
" - . nTPN3,nTPPN3,nTPA3,nTPPR3,nTDAB3, nTDRB3

Nonarrayed if-modified indicators (m for modified).

oXeXe

integer*2 mTSTI,mTCSN,mTPSN1,mTPN1,mTPPN1,mTPAl, mTPPR1, mTDABI1,
. mTDRB1,mTPSN2, mTPN2, mTPPN2 , mTPA2 , mTPPR2, mTDAB2 ,mTDRB2, mTPSN3,
. MTPN3,mTPPN3,mTPA3, mTPPR3, mTDAB3 , mTDRB3

Equivalence statements for data transfers.

N0

equivalence (fidatT(1)(1:12),fTSTI), (ifnulT(1),nTSTI),
. (fidatT(2) (1:60),fTCSN), (ifnulT(2),nTCSN),
(£idatT(3) (1:3),fTPSN1), (ifnulT(3) ,nTPSN1),
(fidatT(4) (1:25) ,£fTPN1), (ifnulT(4) ,nTPN1),
(fidatT(5) (1:12) ,£TPPN1), (ifnulT(5) ,nTPPN1},
(fidatT(6) (1:60) ,fTPALl), (ifnulT(6),nTPALl),
(£idatT(7) (1:50) ,£fTPPR1), (ifnulT(7),nTPPR1),
{fidatT(8) (1:6),fTDABLl}, {(ifnulT(8) ,nTDABR1),
(fidatT(9) (1:6),£fTDRB1), (ifnulT(9) ,nTDRB1),
(fidatT(10) (1:3),£fTPSN2), (ifnulT(10) ,nTPSN2),
(fidatT(11) (1:25),£fTPN2), (ifnulT(11),nTPN2),
(fidatT(12) (1:12), fTPPN2), (ifnulT(12),nTPPN2),
(£idatT(13) (1:60), £TPA2), (ifnulT(13) ,nTPA2),
(£idatT(14) (1:50), £TPPR2), (ifnulT(14),nTPPR2),
(fidatT(15) (1:6),£fTDAB2}, {ifnulT{(15) ,nTDAB2),
(fidatT(16) (1:6) ,fTDRB2), (ifnulT(16) ,nTDRB2),
(fidatT(17) (1:3),£TPSN3), (ifnulT(17),nTPSN3),
{fidatT(18) (1:25), £fTPN3), (ifnulT(18),nTPN3),
(fidatT(19) (1:12), £fTPPN3), (ifnulT(19),nTPPN3),
(£idatT(20) (1:60),£TPA3), (ifnulT(20),nTPA3),
(£idatT(21) (1:50), £fTPPR3), (ifnulT(21),nTPPR3)},
(fidatT(22) {1:6),fTDAB3), (ifnulT(22),nTDAB3),
(fidatT(23) (1:6),£TDRB3), (ifnulT(23) ,nTDRB3),
(mxnocT(1),17STI), (ifmodT (1) ,mTSTI),
(mxnocT(2),1TCSN), (ifmodT(2) ,mTCSN),
' . (mxnocT(3),1TPSN1), (ifmodT(3),mTPSN1),
., . (mxnocT(4),1TPN1), (ifmodT(4) ,mTPN1),
. (mxnocT(5),1TPPN1), {ifmodT(5),mTPPN1),
. {mxnocT(6),1TPAl), (ifmodT(6) ,mTPAL),
. (mxnocT(7),1TPPR1), (ifmodT(7),mTPPR1),

* . (mtnocT(8),1TDABl), (ifmodT(8),mTDABL),
{(mxnocT(9),1TDRB1), (ifmodT (9),mTDRB1),
(mxnocT(10) ,1TPSN2), (ifmodT(10) ,mTPSN2Z),
(mxnocT(11),1TPN2), (ifmodT(11l) ,mTPN2),
(mxnocT(12), 1TPPN2), (ifmodT(12) ,mTPPN2),
(mxnocT(13),1TPA2), {ifmodT(13) ,mTPAZ),
(mxnocT(14),1TPPR2), (ifmodT(14) ,mTPPR2),
(mxnocT(15), 1TDAB2), (ifmodT(15) ,mTDAB2) ,
(mxnocT(16),1TDRB2), (ifmodT(16) ,mTDRB2),

H-19

(mxnocT(17), 1TPSN3)}, (ifmodT(17),mTPSN3),
(mxnocT(18),1TPN3), (ifmodT(18) ,mTPN3),

(mxnocT (19}, 1TPPN3), (ifmodT(19) ,mTPPN3),
(mxnocT(20),1TPA3), (ifmodT{20) ,mTPA3),

(mxnocT(21),1TPPR3), (ifmodT(21),mTPPR3),
(mxnocT(22),1TDAB3), (i1fmodT(22) ,mTDAB3),
(mxnocT(23),1TDRB3), (1fmodT(23) ,mTDRB3)

Database table and attribute names for screen fields.

oXoXe!

data atrbtT/

. ‘TRACKING’, ' SAMPLE_TRACKING_ID’,)

. 'SAMPLE_INFCORMATION', 'CUSTOMER_SAMPLE_NAME',

. ‘TRACKING', ‘POSSESSOR_SEQUENCE_NUMBER',
'TRACKING' , ' POSSESSOR_NAME’,
'TRACKING'’, ' POSSESSOR_PHONE_NUMBER',
*TRACKING', ' POSSESSOR_ADDRESS’,
‘TRACKING', ' POSSESSOR_POSSESSION_REASON',
'TRACKING', ' DATE_ACCEPTED_BY_ POSSESSOR’,

'TRACKING', 'DATE_RELINQUISHED_BY_POSSESSOR’/
C
C Program variable names (value and null indicator) for screen fields.
C

data varblT/’:£TSTI:nTSTI’, *:fTCSN:nTCSN’, ' :iTPSN1:nTPSN1’,
*ETPN1:nTPN1‘, / : £TPPN1:nTPPN1',’ : £TPALl:nTPALl’, ' : £TPPR1:nTPPR1",
' :iTDABLl:nTDAB1’, ‘' : iTDRB1:nTDRB1 '/

Possessor name list field descriptors and sizes.

0onNnon

character*80 fieldN(4,15)

integer*4 fdlenN(4,15),fdrowN(15),£fdcolN(15), ficolN(15},

. numfdN !The number of fields.

common /lsdatN/ fieldN, fdlenN, fdrowN, fdcolN, £icolN, numfdN

For the Main screen,

%

Set defaults for display field renditions now so they can be modified
with each field as necessary. Set all input fields to blanks.

NO0O0OCOon

do i=1,numfdM
fidatM(i)=blanks
do j=1,3 11 for adding, 2 for updating, and 3 for searching.
fdrndM(j, i) =foptnl
enddo
enddo

fieldM(1)="Tracking ID:’
fdlenM(1)=12
fdrowM(1)=2

fdcolM(1)=1
ficolM(1l)=15
mxnocM(1l)=12
ficypM(1)="1"

fieldM(2)='Date Entered:’
fdlenM(2)=13

fdrowM(2) =2

fdcolM(2) =31
ficolM(2)=46

mxnocM(2) =6

fitypM(2)='4’

do i=1,2
do j=1,2 !Fixed when adding and updating.
fdrndM(j, i) =£ffixed
enddo
enddo

fieldM(3)='Completed:’
fdlenM(3)=10 .
fdrowM(3)=2
- fdcolM(3) =56

: ficolM(3) =68
mxnocM(3) =6
fitypM(3)='4d’

fieldM(4)='Customer’’'s Sample ID:’
fdlenM(4) =22 .
fdrowM(4) =3

fdcolM(4) =4

ficolM(4)=27

mxnocM(4) =12

fitypM(4)='a’

fieldM(5)='Desired Completion Date:’

fdlenM(5) =24

fdrowM(5) =3

fdcolM(5) =45

ficolM(5)=71

mxnocM(5) =6

fitypM(5)="4a-

do j=1,2 'Required when adding and updating.
fdrndM(j,5)=freqd
enddo

fieldM(6)='Project:’
fdlenM(6)=8 '
fdrowM(6) =4
fdcolM(6) =4
ficolM(6)=14
mxnocM(6) =40
fitypM(6)='a’

fieldM(7)='Charge #:'
fdlenM(7)=9
fdrowM(7) =4
fdcolM(7) =58
ficolM(7) =69
mxnocM(7)=9
fitypM(7)="1"

. fieldM(8)='Sample Name:’
fdlenM(8) =12
fdrowM(8)=5
fdcolM(8)=4
ficolM(8)=18
mxnocM(8) =60
fitypM(8)=‘a’
iditoM(8)=4

H-21

fieldM(9)='Sample Type:'
fdlenM(9)=12

- fdrowM(9) =6

fdcolM(9) =4

ficolM(9)=18
mxnocM(9) =10
fitypM(9)='a’

fieldM(10)='Sample Size:’
fdlenM(10)=12
fdrowM(10)=6
fdcolM(10)=32
ficolM(10)=46
mxnocM(10) =5
fitypM(10)='n’

fieldM(11l)='Size Units:’
fdlenM(11)=11
fdrowM(11)=6
fdcolM(11) =55
ficolM(11)=68
mxnocM(11)=5
fitypM(1ll)='a’

fieldM(12)='Collection Date:’
fdlenM(12)=16

fdrowM(12)=7

fdcolM(12)=4

ficolM(12)=22

mxnocM(12) =6

fitypM(12)="4a-

do 1i=7,12
do j=1,2 IRequired when adding and updating.
fdrndM(j,i)=freqd
enddo
enddo

fieldM(13)='Time: '’
fdlenM(13)=5
fdrowM(13)=7
fdcolM(13)=32
ficolM(13)=39
mxnocM(13)=5
fitypM(13)='t’

fieldM(14)='Special Instructions?’
fdlenM({14)=21

fdrowM{(14)=7

fdcolM(14)=48

ficolM(14)=71

mxnocM(14)=1

fitypM(14)="'?2"

fieldM(15)='HP Surveyed?’
fdlenM(15)=12
fdrowM(15) =8
fdcolM(15)=4
ficolM(15)=18
mxnocM(15)=1

H-22

£itypM(15)="2"
ifrqdM(15)=16

fieldM(16)='If Yes, Sample Activity (mrem/h):’
fdlenM(16)=33

fdrowM(16)=8

fdcolM(16)=23

ficolM(16)=58

mxnocM(16) =6

fitypM(16)='n"

ifrgqdM(16)=15

fieldM(17)='Submitter:”
fdlenM(17)=10
fdrowM(17)=9
fdcolM(17)=1
ficolM(17)=21
mxnocM(17) =25
fitypM(17)='a’

linent=7

do 1=18,30,3

lincnt=lincnt+2
fieldM(i)='Phone Number.
fdlenM(i)=13
fdrowM(i)=1lincnt
fdcolM(i) =50
ficolM(i) =65
mxnocM(i)=12
fitypM(i)='a’
ifrgdM(i)=i-1
if(i.ne.18)iditoM(i)=i-3

fieldM(i+1)="Address:’

- fdlenM(i+1)=8
fdrowM(i+1l)=1incnt+1
fdcolM(i+l)=4
ficolM(i+1l)=14
mxnocM{i+1)=60
fitypM(i+l)='a’
ifrgdM(i+l)=i-1
if(i.ne.18)iditoM(i+1)=i-2
enddo

do i=17.,19
do j=1,2 IRequired when adding and updating.
fdrndM(j, i) =freqad
enddo
enddo

f1eldM(20)—'Technlcal Contact:
‘ ' fdlenM(20)=18 .

fdrowM(20)=11

fdcolM(20) =1

ficolM(20)=21

mxnocM(20) =25

fitypM(20)="'a’

iditoM(20)=17

fieldM(23)='Send Results To:’

H-23

fdlenM(23)=16
fdrowM(23)=13
fdcolM(23)=1

ficolM(23)=21
mxnocM(23) =25
fitypM(23)=‘'a’
iditoM(23)=20

fieldM(26)='Sample Pickup By:’
fdlenM(26)=17

fdrowM(26) =15

fdcolM(26)=1

ficolM(26)=21

mxnocM{26) =25

fitypM(26)='a’

iditoM(26)=23

do 1=23,28
do j=1,2 'Required when adding and updating.
fdrndM(j,i) =fread
enddo ’
enddo

fieldM(29)='Current Possessor:’
fdlenM(29)=18

fdrowM(29)=17

fdcolM(29)=1

ficolM(29)=21

mxnocM(29) =25

fitypM(29)="a’

do i=29,31
fdrndM(1l,i)=ffixed !Fixed when adding and updating.
fdrndM(2,i)=ffixed
enddo

fieldM(32)='Chain of Custody Number:’
fdlenM(32)=24

fdrowM(32)=19

fdcolM(32)=1

ficolM(32)=27

mxnocM(32)=10

fitypM(32)='a’

fieldM(33)='Analyses Needed: Gross Alpha-Beta?’
fdlenM(33)=35

fdrowM(33)=20

fdcolM(33)=1

ficolM(33)=38

mxnocM(33) =1

fitypM(33)="?’

fieldM(34)='Alpha?’
fdlenM(34)=6
fdrowM(34)=20
fdcolM(34)=43
ficolM(34)=51
mxnocM(34)=1
fitypM(34)='2"

H-24

fieldM(35)="'Beta?’
fdlenM(35)=5
fdrowM(35)=20
fdcolM(35) =56

. ficolM(35)=63
mxnocM(35)=1
fitypM(35)="2"

fieldM(36)='Gamma?’
fdlenM(36)=6
fdrowM(36)=20
fdcolM(36) =68
ficolM(36)=76
mxnocM(36)=1
fitypM(36)='72"’

Set all input field renditions to the bit-wise .or. of the display
field rendition with finput. Note that all flags are required
when addingvand updating.

oXeNo NN e

do i=1,numfdM
do j=1,3 :
if((j.ne.3).and. (fitypM(i).eq.'?')) fdrndM(j,i)=freqd
firndM(j,i)=finput.or.fdrndM(j, i)
enddo
enddo

For the Alpha screen, .

Set defaults for display field.renditions now so they can be modified
with each field as necessary. Set all input fields to blanks.

nnnoan

do i=1,numfda
fidatA (i) =blanks
do j=1,3 'l for adding, 2 for updating, and 3 for searching.
fdrnda(j,i)=£foptnl
enddo
enddo

fielda(1l)='Tracking ID:’
fdlenA (1) =12
fdrowA (1) =3

fdcola(1l)=1
ficola(1l)=15
mxnocA (1) =12
fitypA(l)="1"

. , fieldA(2)='Sample Name:'’
fdlena(2)=12
fdrowA (2) =4
fdcola(2) =4

* ficola(2)=18
mxnocA(2) =60
fitypA(2)='a‘’

do i=1,2
do j=1,2 !Fixed when adding and updating.
fdrnda(j,i)=ffixed
enddo
enddo ‘

H-25

fieldA(3)='Uranium isotopes?’
fdlenA(3) =17

fdrowA (3) =6

fdcolA{2) =1

ficolA(3)=20

mxnocA(3)=1

fitypa(3)="?2"

lincnt=4

do i=4,34,5
lincnt=lincnt+2
fieldA(i)='Needed by:’
fdlenA (i) =10
fdrowA (i) =lincnt
fdcolAa (i) =36
ficola (i)=48
mxnocA(i)=6
fitypa(i)='4’
ifrgda(i)=1i-1
if(i.ne.4)iditoA(i)=i-5

fielda(i+l)='Completed:’
fdlenA (i+1)=10
fdrowA (i+1)=1incnt
fdcolAa(i+1)=58
ficola(i+l)=70
mxnocA(i+l)=6
fitypa{i+l)="4d’
ifrgda(i+l)=1+2
"if(i.ne.4)iditoA(i+l)=i-4

fieldA(i+2)="Results report citation:’
fdlena(i+2)=24

fdrowA (i+2)=1lincnt+1

fdcolAa(i+2)=4

ficola (i+2)=30

mxnocA (i+2) =20

fitypAa(i+2)='a’

ifrgdA(i+2)=1i+1
if(i.ne.4)iditoA(i+2)=1i-3

fieldA(i+3)='Special Instructions?’
fdlenaA (i+3)=21

fdrowA (i+3)=1lincnt+1
fdcolA(i+3)=54

ficolAa(i+3)=77

mxnocA (i+3)=1

fitypaA (i+3)="?2"

ifrgdA(i+3)=i~-1
if(i.ne.4)iditoA(i+3)=i-2

enddo

fieldA(8)='Thorium isotopes?’
fdlenA(8)=17

fdrowA (8) =8

fdcolA(8)=1

ficolA(8)=20

mxnocA(8)=1

fitypA(8)='?’

H-26

[oNeNeXeXe!

QOO0 N

fieldAa(13)='Plutonium isotopes?’
fdlenA(13)=19 :

fdrowA (13)=10

fdcola(13)=1

ficolAa(13)=22

mxnocA(13)=1

fitypA(13)='2"

fieldA(18)='Am-241 separate from Pu-2387’
fdlenA (18)=28

fdrowA (18)=12

fdcola(18)=1

ficolAa(18)=31

mxnocA(18)=1

fitypA(18)='?’

fielda(23)='Am-241 combined with Pu-2387?’
fdlenA (23)=28

fdrowaA(23)=14

fdcola(23)=1

ficolAa(23)=31

mxnocA{23)=1

fitypA(23)='2?"

fieldA(28)='Total Spectrometric Alpha?’
fdlenA(28)=26

fdrowA (28)=16

fdcola(28)=1

ficolAa(28)=29

mxnocA{(28)=1

fitypa(28)='2"’

fieldA(33)='Other?’

fdlenA(33)=6

fdrowA (33)=18

fdcola(33)=1

ficolA(33)

mxnocA(33)
)

9
_ 1
fitypA(33)="

o R4

Set all input field renditions to the bit-wise .or. of the display
field rendition with finput. Note that some flags are required
when adding and updating.

do i=1,numfdA
do j=1,3
if((j.ne.3).and. (fitypA(i).eqg.’?’) .and.
(fieldA(i).ne.’'Special Instructions?’}))fdrndA(j,i)=freqd
firndA(j,i)=finput.or.fdrnda(j, i)
enddo
enddo

For the Beta screen, . .

Set defaults for display field renditions now so they can be modified
‘with each field as necessary. Set all input fields to blanks.

do i=1,numfdB
fidatB(i)=blanks

H-27

- do j=1,3 !'1 for adding, 2 for updating, and 3 for searching.
fdrndB(j, i) =foptnl
enddo
enddo

fieldB(1l)='Tracking ID:’
fdlenB(1l)=12

fdrowB(1)=2

fdcolB(1l)=1
ficolB(1)=15
mxnocB (1) =12
fitypB(l)="1"

fieldB(2)='Sample Name:'’
fdlenB(2)=12

fdrowB(2)=3

fdcolB(2)=4
ficolB(2)=18
mxnocB(2) =60
fitypB(2)='a’

do i=1,2

do j=1,2 !Fixed when adding and updating.
fdrndB(j,i)=ffixed
enddo

enddo

fieldB(3)='Strontium-90?"
fdlenB(3)=13

fdrowB(3)=5

fdcolB(3)
ficolB(3)
mxnocB(3)
fitypB(3)

. b e

W oHn

6
?I

lincnt=2

do i=4,28,8
lincnt=lincnt+3
fieldB(i)='Length of count:’
fdlenB(i)=16
fdrowB(i)=1lincnt
fdcolB(i)=29
ficolB (i) =47
-mxnocB(i)=4
fitypB(i)='n"’
ifrgdB(i)=1i+1
if(i.ne.4)iditoB(i)=i-8

fieldB{i+l)='min or hr?’
fdlenB(i+1)=10 ‘
fdrowB(i+l)=lincnt
fdcolB(i+1l)=55
ficolB(i+1l)=67

mxnocB (i+1l)=1
fitypB(i+l)='u’
ifrgdB(i+l) =i
if(i.ne.4)iditoB{i+1l)=1i-7

fieldB(i+2)='Results needed by: date:’
fdlenB(i+2)=25

H-28

fdrowB(i+2)=1lincnt+1
fdcolB(i+2)=4
ficolB(i+2)=31
mxnocB(i+2)=6
fitypB(i+2)="4d’
ifrgdB(i+2)=1i-1
if(i.ne.4)iditoB(i+2)=i-6

fieldB(i+3)='time:’
fdlenB(i+3)=5
fdrowB(i+3)=1lincnt+1

. fdcolB{(i+3)=41
ficolB(i+3)=48
mxnocB(i+3)=5
fitypB(i+3)="t"
if(i.ne.4)iditoB(i+3)=1-5

fieldB(i+4)='Completed:’
fdlenB(i+4)=10
fdrowB(i+4)=1lincnt+1
fdcolB(i+4)=57
ficolB(i+4)=69

mxnocB (1i+4)=6
fitypB(i+4)="4d’
ifrgdB(i+4)=i+5
if(i.ne.4)iditoB(i+4)=i-4

fieldB(i+5)=’Results report citation:’
fdlenB(i+5)=24

fdrowB(i+5)=1lincnt+2

fdcolB(i+5)=4

ficolB(i+5)=30

mxnocB (1i+5) =20

fitypB(i+5)="a’

ifrgdB(i+5)=i+4
if(i.ne.4)iditoB(i+5)=1i-3

fieldB(i+6)='Special Instructions?’
fdlenB(i+6)=21
fdrowB(i+6)=1lincnt+2
fdcolB(i+6)=54

ficolB(i+6)=77

mxnocB(i+6) =1

f1typB(1+6)—'°"

ifrgqdB(i+6)=i-1
if(i.ne.4)iditoB(i+6)=i- 2

enddo

fieldB(11l)='Strontium-89 and -907?°
fdlenB(11)=21
fdrowB(11)=8
- fdcolB(11)=1
ficolB(11)=24
mxnocB(11)=1
fitypB(11l)='2"

fieldB(19)="Total Strontium?’
fdlenB(19)=16
fdrowB(19)=11
fdcolB(19)=1

H-29

ficolB(19)=19
mxnocB(19)=1
fitypB(19)='2"

fieldB(27)='"Tritium?"’
fdlenB(27)=8
fdrowB(27)=14
fdcolB(27)=1
ficolB{27)=11
mxnocB{(27)=1
fitypB(27)="2"

fieldB(35)='0Other?’
fdlenB(35)=6
fdrowB(35)=17
fdcolB(35)=1
ficolB{(35)=9
mxnocB{35)=1
fitypB(35)="2’

fieldB(36)='Length of count:’
fdlenB(36)=16

fdrowB(36)=17

fdcolB(36)=29

ficolB(36)=47

mxnocB(36)=4

fitypB(36)='n’

iditoB(36)=28

fieldB(37)='min or hr?’
fdlenB(37)=10
fdrowB(37)=17
fdcolB(37) =55
ficolB(37)=67
mxnocB(37)=1
fitypB(37)='u’
ifrqdB(37)=36
iditoB(37)=29

fieldB(38)='Nickel-637?'
fdlenB(38)=10
fdrowB(38)=18
fdcolB(38)=4
ficolB(38)=16
mxnocB(38) =1
fitypB(38)="2"
ifrgdB(38)=3%

fieldB{39)='Iron-55?"
fdlenB(39)=8 .
fdrowB(39)=18
fdcolB(39)=21
ficolB(39)=31
mxnocB(39)=1
fitypB(39)="?'
ifrgdB(39)=35

fieldB(40)='Sulfur-35?"
fdlenB(40)=10
fdrowB(40}=18

H-30

fdcolB(40)=36
ficolB(40)=48
mxnocB(40) =1

fitypB(40)="2"
ifrqgqdR(40)=35

fieldB(41)='Plutonium-2417"
fdlenB(41)=14
fdrowB(41)=18
fdcolB(41)=53
ficolB(41)=69

mxnocB(41)=1

fitypB(41)="'2"
ifrqdB(41)=35

fieldB(42)='Results needed by: date:’
fdlenB(42)=25

fdrowB(42)=19

fdcolB(42)=4

ficolB(42)=31

mxnocB(42)=6

fitypB(42)='a"

ifrqgdB(42)=35

iditoB(42)=30

fieldB(43)='time:"
fdlenB(43)=5
EdrowB (43)=19
fdcolB(43) =41
ficolB(43)=48
mxnocB(43)=5
fitypB(43)="'t"
iditoB(43)=31

fieldB(44)='Completed:’
fdlenB(44)=10
fdrowB{(44)=19
fdcolB(44)=57
ficolB(44)=69
mxnocB(44)=6
fitypB(44)='4a"
ifrgdB(44)=45
iditoB(44)=32

fieldB(45)='Results report citation:’
fdlenB(45)=24

fdrowB(45)=20

fdcolB(45)=4

ficolB(45)=30

mxnocB(45) =20

fitypB(45)='a’

ifrgdB(45)=44

iditoB(45)=33

fieldB(46)='Special Instructions?’
fdlenB(46)=21
fdrowB(46)=20
fdcolB(46) =54
ficolB(46)=77
mxnocB(46)=1

oNeNeoXeXe!

eXoXoXeXeXe!

fitypB(46)='72"
ifrqdB(46)=35
iditoB(46)=34

Set all input field renditions to the bit-wise .or. of the display
field rendition with finput. Note that some flags are required
when adding and updating.

do i=1,numfdB
do j=1,3
if{(j.ne.3).and. (fitypB(i).eq.’?').and. (i.le.35).and.
(fieldB(i) .ne. ‘Special Instructions?’))fdrndB(j,i)=£fread
firndB(j,i)=finput.or.fdrndB(j,1i)
enddo
enddo

For the Gamma screen,

Set defaults for display field renditions now so they can be modified

with each field as necessary. Set all input fields to blanks.

do i=1l,numf
fidatG(i =blanks

do j=1,3 {1 for adding, 2 for updating, and 3 for searching.
fdrndG(j,i)=foptnl
enddo

enddo

fieldG(1)='Tracking ID:’
fdlenG(1) =12

fdrowG (1) =2

fdcolG(1l)=1
ficolG(1)=15
mxnocG({1l)=12
fitypG(1l)="1"

fieldG(2)='Sample Name: '’
fdlenG(2)=12
fdrowG(2)=3

fdcolG(2) =4
ficolG(2) =18
mxnocG(2) =60
fitypG(2)="a’

do i=1,2
do j=1,2 |Fixed when adding and updating.
fdrndG(j,i)=ffixed
enddo
enddo

fieldG(3)='Screening/Shipping Count?’
fdlenG(3) =25

fdrowG(3) =6

fdcolG(3) =1

ficolG(3)=28

mxnocG(3)=1

fitypG(3)='?"

lincnt=1
do i=4,26,11

H-32

lincnt=lincnt+5 ,
fieldG(i)='Length of count:’
fdlenG(i) =16

fdrowG (i)=1incnt
fdcolG (i) =37

ficolG(i)=55

mxnocG (i) =4

fitypG(i)='n"
if(i.ne.4)iditoG(i)=1i-11

fieldG(i+l)='min or hr?’
= fdlenG(i+1)=10
fdrowG(i+l)=1lincnt
fdcolG(i+1)=63
ficolG{i+1l)=75
mxnocG(i+l)=1
fitypG(i+l)="u’
ifrqdG(i+l)=1i
if(i.ne.4)iditoG(i+1)=i-10

fieldG(i+2)='Results needed by: date:’
fdlenG(i+2)=25

fdrowG{(i+2)=1lincnt+1

fdcolG(i+2)=4

ficolG(i+2)=31

mxnocG(i+2)=6

fitypG(i+2)='4a’

ifrgdG(i+2)=i-1
if(i.ne.4)iditoG(i+2)=i-9

fieldG(i+3)='time: "
fdlenG{i+3)=5
fdrowG(i+3)=1lincnt+1
fdcolG(i+3)=41
ficolG(i+3)=48
mxnocG({i+3)=5
fitypG(i+3)="t"
if(i.ne.4)iditoG(i+3)=1i-8

fieldG(i+4)="Completed:’
fdlenG(i+4)=10

fdrowG (i+4)=1lincnt+1
fdcolG(i+4) =57
ficolG(i+4)=69

mxnocG (i+4) =6
fitypG(i+4)="4’
ifrgdG(i+4)=1i+8
if(i.ne.4)iditoG(i+4)=1i-7

fieldG(i+5)='bate counted:’
fdlenG(i+5)=13

fdrowG (i+5)=1lincnt+2
fdcolG(i+5)=4
ficolG(i+5)=19

mxnocG (1+5) =6
fitypG(i+5)='4d’
ifrgdG(i+5)=i+4

fieldG(i+6)='RML Spectral ID:'
fdlenG(i+6)=16

H-33

fdrowG (i+6)=1lincnt+2
fdcolG(i+6)=29
ficolG(i+6)=47
mxnocG(i+6)=14
fitypG(i+6)="1"
1frqdG(i+6)=1i+5

fieldG(i+7)='Recount?’

fdlenG(i+7)=8

fdrowG (i+7)=lincnt+2

fdcolG(i+7) =65 :
ficolG(i+7)=75 *
mxnocG (i+7) =1

fitypG(i+7)="2"

AfrgqdG(i+7) =145

fieldG(i+8)='Results report citation:’
fdlenG(i+8)=24

fdrowG(i+8)=1lincnt+3

fdcolG(i+8) =4

ficolG(i+8)=30

mxnocG(1+8) =20

fitypG(i+8)='a’

ifrgdG(i+8)=1i+4
if(i.ne.4)iditoG(i+8)=i-3

fieldG(i+9)='Special Instructions?’
fdlenG(i+9)=21

fdrowG (1+9)=1lincnt+3
fdcolG(i+9) =54

ficolG(i+9)=77

mxnocG({i+9) =1

fitypG(i+9)='2"

1frgdG(i+9)=i-1 :
if(i.ne.4)iditoG(i+9)=i-2

enddo

fieldG(14)='Full Isotopic Gamma Analysis?’
fdlenG(14)=29

fdrowG(14)=11

fdcolG(14) =1

ficolG(14)=32

mxnocG{14)=1

fitypG(14)="2"

fieldG(25)='Other Gamma Analysis?’

fdlenG(25)=21 _

fdrowG(25)=16 .
fdcolG(25)=1

ficolG(25)=24

mxnocG(25)=1

fitypG(25)="2"

Set all input field renditions to the bit-wise .or. of the display
field rendition with finput. Note that some flags are required
when adding and updating. v

eXeXoXeoXe!]

do i=1,numfdc |
do j=1,3 .
if((j.ne.3).and. (fitypG{i).eq.’?’) .and.

H-34

(fieldG (i) .ne. 'Recount?’) .and.
(fieldG (i) .ne. 'Special Instructions?’))fdrndG(j,i)=freqd
firndG(j,i)=finput.or.£fdrndG(j, i)
enddo
enddo

For the Gross Alpha-Beta screen, . . .

Set defaﬁlts for display field renditions now so they can be modified
with each field as necessary. Set all input fields to blanks.

NOO0OO0n

- do i=1,numfdcC
fidatC(i)=blanks
do j=1,3 '1 for adding, 2 for updating, and 3 for searching.
fdrndC(j, i) =foptnl
enddo
enddo

fieldC(1)='Tracking ID:’
fdlenC(1)=12
fdrowC (1) =5

fdcolC(1l)=1
ficolC(1l)=15
mxnocC(1)=12
fitypC(1)="1"

fieldC(2)='Sample Name:'’
fdlenC(2)=12
fdrowC(2) =6

fdcolC(2)=4
ficolC(2)=18
mxnocC(2) =60
fitypC(2)="a’

do i=1,2 .
do j=1,2 |Fixed when adding and updating.
fdrndC(j,i)y=ffixed .
enddo
enddo

fieldC(3)='Gross Alpha-Beta for Air Filters?’
fdlenC(3)=33

fdrowC (3) =8
" fdcolC(3)=1

ficolC(3)=36"

mxnocC{(3)=1

fitypC(3)='?2"

lincnt=4

do i=4,12,8
lincnt=1lincnt+5
fieldC(i)="Length of count:’
fdlenC(i)=16
fdrowC(i)=1lincnt
fdcolC(i)=4
ficolC(i)=22
mxnocC (i) =4
fitypC(i)='n"
if(i.ne.4)iditoC(i)=1i-8

H-35

fieldC(i+1)='min or hr?’
fdlenC(i+1)=10 '
fdrowC(i+1)=1lincnt
fdcolC{(i+1)=30
ficolC(i+l)=42
mxnocC(i+l)=1
fitypC(i+l)="u’
ifrqgdC(i+l)=1i
if(i.ne.4)iditoC(i+1)=1-7

fieldC(i+2)='Results needed by:
fdlenC(i+2)=25
fdrowC(i+2)=1lincnt+1
fdcolC(i+2)=4

ficolC(i+2)=31

mxnocC (1i+2)=6

firwpC(i+2)="4"

if: HC(1i+42)=1i-1

if .ne.4)iditoC(i+2)=1i-6

fie.3C(i+3)="time: "’
fdlenC(i+3)=5

fdrowC (i+3)=1lincnt+1
fdcolC(i+3)=41
ficolC(i+3)=48

mxnocC (i+3)=5
fitypC(i+3)='t"’
if{i.ne.4)iditoC{i+3)=1-5

fieldC(i+4)='Completed:’
fdlenC(i+4)=10
fdrowC(i+4)=lincnt+1l
fdcolC(i+4)=57
ficolC(i+4)=69
mxnocC(i+4)=6
fitypC(i+4)='4’
ifrgdC(i+4)=i+5
if(i.ne.4)iditoC(i+4)=1i-4

date:’

fieldC(i+5)='Results report citation:’

fdlenC(i+5)=24

fdrowC (1+5)=1lincnt+2
fdcolC(i+5)=4
ficolC(i+5)=30

mxnocC (1+5)=20
fitypC(i+5)='a’
ifrgdC(i+5)=i+4
if(i.ne.4)iditoC(i+5)=1i-3

fieldC(i+6)='Special Instructions?’

fdlenC(i+6)=21
fdrowC(i+6)=1lincnt+2
fdcolC(i+6)=54
ficolC(i+6)=77

mxnocC (i+6)=1
fitypC(i+6)='2"
ifrgqdC(i+6)=i-1
if(i.ne.4)iditoC(i+6)=1i-2
enddo

H-36

fieldC(11)='Gross Alpha-Beta for Other Samples?’
fdlenC(11)=35 .
fdrowC(11)=13

fdcolC(11l)=1

ficolC(11)=38

mxnocC(11)=1

fitypC(11l)='2"

C .
C Set all input field renditions to the bit-wise .or. of the display
C field rendition with finput. Note that some flags are required
C when adding and updating.
- C
do i=1,numfdC
do j=1,3
if((j.ne.3).and. (fitypC(i).eq.’?’) .and.
(fieldC(i) .ne. 'Special Instructions?’))fdrndC(j,i)=£freqd
firndC(j,i)=finput.or.fdrndC(j, 1)
enddo
enddo
c .
C For the Special Instruction screen,
C
C Set defaults for display field renditions now so they can be modified
C with each field as necessary. Set all input fields to blanks.
C

do i=1,numfdl
fidatI(i)=blanks
do j=1,3 11 for adding, 2 for updating, and 3 for searching.
fdrndI(j,i)=foptnl
-enddo
enddo

fieldI(l)='Tracking ID:’
fdlenI(1)=12
fdrowI(1l)=2

fdcolI(1l)=1
ficolI(1)=15
mxnocI(1)=12
fitypI(l)='1"

fieldI(2)='Sample Name:’
fdlenI(2)=12
fdrowI(2) =3

fdcolI(2)=4
ficolI{2)=18
mxnocI{2)=60
fitypI(2)='a’

do i=1,2
do j=1,2 !Fixed when adding and updating.
fdrndI(j,i)=ffixed
enddo
enddo

do i=3,31,2
fieldI(i)='From’
fdlenI(i)=4
fdrowI(i)=3+(1i+1)/2
fdcolI(i)=4
ficolI(i)=9

mxnocI(i)=16
fitypI(i)='a"’
fdrndI(l,i)=ffixed IFixed when adding.

fdrndI(2,1i)=ffixed IFixed when updating.

fieldI{(i+l)=":"

fdleni(i+l)=1

fdrowI(i+1)=3+(i+1)/2 .
fdcolI(i+1)=25

ficolI(i+1)=28

mxnocI(i+1l)=50

fitypIi(i+l)='a’
enddo

Set all input field renditions to the bit-wise .or. of the display
field rendition with finput.

(oXoXoKe!

do i=1,numfdIl
do j=1,3
firndI(j,i)=finput.or.fdrndI(j,1i)
enddo
enddo

For the Possessor screen,

Set defaults for display field renditions now so they can be modified
with each field as necessary. Set all input fields to blanks.

eNeNoXoXoXe)

do i=1,numfdT
fidatT(i)=blanks »
do j=1,3 11 for adding, 2 for updating, and 3 for searching.
fdrndT(j,1i)=foptnl
enddo
enddo

fieldT(1)='Tracking ID:’
fdlenT(1)=12

fdrowT (1) =3

fdcolT (1) =1
ficolT(1)=15
mxnocT (1) =12
fitypT(1)="1"

fieldT(2)='Sample Name: "’

fdlenT(2)=12

fdrowT(2) =4

fdcolT(2) =4

ficolT(2)=18 .
mxnocT(2) =60

fitypT(2)='a’

do i=1,2
do j=1,2 IFixed when adding and updating.
fdrndT(j,i)=ffixed
enddo
enddo

lincnt=1

do i=3,17,7
lincnt=1lincnt+5

H-38

fieldT(i)='Possessor #’

fdlenT(i)=11

fdrowT(i)=1lincnt

fdcolT (i) =1

ficolT(i)=13

mxnocT (1) =3

fitypT(i)='n’

fdrndr(l,i)=£ffixed 'Fixed when adding and
fdrndT(2,i)=ffixed 'updating.

fieldT(i+l)=":"
- fdlenT(i+1)=1
‘ fdrowT (i+1l)=1incnt
fdcolT(i+1)=16
ficolT(i+1)=22
mxnocT(i+1)=25
ficypT(i+l)="a’
if(i.eg.3)then
fdrndT (1, (i+1))=ffixed IFixed when adding and
fdrndT (2, (i+1))=ffixed tupdating.
else
ifrgdT(i+1)=i-1
endif

fieldT (i+2)='Phone Number:
fdlenT(i+2)=13
fdrowT(i+2)=1lincnt
fdcolT(i+2) =51
ficolT(i+2)=66
mxnocT (1+2) =12
fitypT(i+2)='a’
if(i.eqg.3)then
fdrndT (1, (i42))=ffixed |Fixed when adding and
£fdrndT (2, (i+2))=ffixed lupdating.
else
ifrgdT(i+2)=i+1
endif

fieldT(i+3)='Address:’
fdlenT(i+3)=8
fdrowT(i+3)=1lincnt+1
fdcolT(i+3)=4
ficolT(i+3)=14
mxnocT (i+3) =60
fitypT(i+3)='a’
if(i.eqg.3)then
fdrndT (1, (i+3))=ffixed {Fixed when adding and
fdrndT (2, (i+3))=ffixed lupdating.
else
ifrqdT(i+3)=1i+1
endif

fieldT(i+4)='Reason for possession:’
fdlenT(i+4)=22

fdrowT (i+4)=1lincnt+2

fdcolT(i+4)=4

ficolT(i+4)=28

mxnocT{(i+4) =50

fitypT(i+d4)='a’

if(i.eq.3)then

H-39

[oXeXeXe!

oNeXoNe]

£drndT (1, (i+4))=ffixed !Fixed when adding and
fdrndT (2, (i+4))=ffixed lupdating.

else ,
ifrqdT(i+4)=1+1

endif

fieldT(i+5)='Date sample accepted:’

fdlenT(i+5)=21

fdrowT (i+5)=1lincnt+3

fdcolT(i+5)=4

ficolT (i+5)=27

mxnocT (i+5) =6

fitypT (i+5)="4d’

if(i.eq.3)then
fdrndT (1, (i+5))=ffixed IFixed when adding and
fdrndT (2, (i+5))=ffixed lupdating.

else
ifrgdT (i+5)=1i+1
endif
if{i.ne.3)iditoT(i+5)=i-1 I'To las- :te sample relinguished.

fieldT (i+6)='Date sample relinquishe
fdlenT (i+6)=25
fdrowT (i+6)=1incnt+3
fdcolT(i+6)=37
- ficolT(i+6) =64
mxXnocT (1+6) =6
fitypT(i+6)="4d"’
enddo

Set all input field renditions to the bit-wise .or. of the display
field :endition with finput.

do i=1,numfdT
do j=1,3
flrndT(J i)=finput.or.fdrndT (], 1)
enddo
enddo

Possessor name list data (set up to ease adding and removing
names - note that the current limit is fifteen names).

numfdN=1

fieldN(1l,numfdN)='J. L. DOHERTY (JODIE)’
fdlenN(1l,numfdN)=21

fieldN(2,numfdN)='6-6573"

fdienN(2,numfdN)}=6

£fieldN(3,numfdN)="RML, MS 7111; TRA-604, ROOM 123’
fdlenN (3, numfdN) =31

fieldN(4,numfdN)='GAMMA SPECTRUM ACQUISITION'
fdlenN(4,numfdN) =26

numfdN=numfdN+1

fieldN(1l,numfdN)="T. J. HANEY (TOM) "’
fdlenN(1l,numfdN)=17

fieldN{(2,numfdN)='6-4158"

fdlenN(2,numfdN) =6

fieldN(3,numfdN)='RML, MS 7111 TRA-604, ROOM 126’
fdlenN(3,numfdN)=31

fieldN{(4,numfdN)='SAMPLE ROUTING COORDINATION’

H-40

fdlenN (4, numfdN) =27

numfdN=numfdN+1

fieldN(1l,numfdN)="R. K. MURRAY (RON)’
fdlenN(1l,numfdN) =18

fieldN(2,numfdN)="6-4182"

fdlenN(2,numfdN) =6

fieldN(3,numfdN)='RML,, MS 7111; TRA-604, ROOM 123’
fdlenN (3, numfdN) =31

fieldN(4,numfdN)="GAMMA SPECTRUM ACQUISITION’
fdlenN(4,numfdN)=26

numfdN=numfdN+1

fieldN(1l,numfdN)='C. L. ROWSELL (CAL)"’
fdlenN{(1l,numfdN)=19

fieldN(2,numfdN)='6-4182"

fdlenN (2, numfdN) =6

fieldN(3,numfdN)="RML, MS 7111; TRA-604, ROOM 123’
fdlenN(3,numfdN) =31 '
fieldN(4,numfdN)='GROSS ALPHA-BETA COUNTING'
fdlenN(4,numfdN) =25

numfdN=numfdN+1

fieldN(1,numfdN)='C. W. SILL (CLAUDE)’

fdlenN(1l,numfdN)=19

fieldN(2,numfdN)='6-0605"

fdlenN (2, numfdN)=6

fieldN(3,numfdN)='RADIOCHEMISTRY, MS 7111; TRA-604, ROOM 111°
fdlenN(3,numfdN) =42

fieldN(4,numfdN)='ALPHA ANALYSES’

fdlenN (4, numfdN)=14 :

numfdN=numfdN+1

fieldN(1l,numfdN)='D. S. SILL (DAVE)’

fdlenN(l,numfdN)=17

fieldN(2,numfdN)='6-8031"

fdlenN(2,numfdN) =6

fieldN(3,numfdN)='RADIOCHEMISTRY, MS 7111; TRA-604, ROOM 110‘
fdlenN (3, numfdN) =42

fieldN(4,numfdN)="ALPHA ANALYSES’

fdlenN (4, numfdN)=14

numfdN=numfdN+1

fieldN(1l,numfdN)='1L,.. D. SMITH (LARRY)"'
fdlenN (1, numfdN)=19

fieldN(2,numfdN)='6-4405"

fdlenN(2,numfdN)=6

fieldN(3,numfdN)='RML, MS 7111; TRA-604, ROOM 123°
fdlenN(3,numfdN) =31

fieldN(4,numfdN)='GAMMA SPECTRUM ACQUISITION’
fdlenN(4,numfdN)=26

numfdN=numfdN+1

fieldN(1l,numfdN)='G. K. TAYLOR (GENE)'’

fdlenN(1l, numfdN)=19

fieldN(2,numfdN)='6-4041"

fdlenN (2, numfdN) =6

fieldN(3,numfdN)="RML, MS 7111; TRA-604, ROOM 123°
fdlenN (3, numfdN) =31

fieldN(4,numfdN)='GAMMA SPECTRUM ACQUISITION’

H-41

fdlenN(4,numfdN)=26

numfdN=numfdN+1

fieldN(1l,numfdN)="'L. A. WEINRICH (LOU)’

fdlenN (1, numfdN)=20

fieldN(2,numfdN)='6-4404"

fdlenN(2,numfdN)=6

fieldN(3,numfdN)='RADIOCHEMISTRY, MS 7111; TRA-661, ROOM 129/130°
fdlenN(3,numfdN) =46

fieldN(4,numfdN)="BETA ANALYSES’

fdlenN(4,numfdN)=13

nunfdN=numfdnN+1

fieldN(1l,numfdN)='R. P. WELLS (RICH)'’

fdlenN(1l,numfdN)=18

fieldN(2,numfdN)=*6-7870"

fdlenN(2,numfdN) =6

fieldN(3,numfdN)='RADIOCHEMISTRY, MS 7111; TRA-661, ROOM 129/130’
fdlenN(3,numfdN) =46

fieldN(4,numfdN)='BETA ANALYSES’

fdlenN(4,numfdN) =13

do i=1,numfdN
fdrowN(i)=1i+1
fdcolN (i) =2
ficolN(i)=25
enddo

I. DISPLY - FORTRAN ROUTINE FOR DISPLAYING DATA INPUT
SCREENS USING VMS SCREEN MANAGEMENT SYSTEM ROUTINES

subroutine disply(field, fdatin, f1dlen, fldrow, f1dcol, fincol, maxnoc,
fldrnd, finrnd, numfld, indaus, fintyp, ifnulf, ifreqd, ifmodi, iditto,
ifclst, ibegin, subttl)
Subroutine for displaying data-entry fields.
Component of SAMPLE_TRACKING Version 1 completéd June 6, 1991 by D. A. Femec.
Screen désign based on E. Wayne Killian’s ADD_SAMPLE routine of 3/21/90.

Declaration statements.

»
[oRoNeNe X Ne X X K®]

include ‘ ($smgdef)’ 1SMG Definitions.
include ‘ ($smgmsg) ’ ISMG Condition values.
" include ' {$smgtrmptr)’ 1SMG Terminal and printer definitions.
include ’ (Strmdef)’ '
include ’gap$src:vterm.inc’
integer*4 termod, ipaste,mvideo, lvideo,hvideo, keybrd | Pasteboard values.
indaus, {Add/Update/Search indicator.
ibegin, {The field on which to begin the cursor.
iwhich !Which custodian has been selected from CHOOSE.
logical ifcont, {Flag whether to continue in display loops.
ifclst - !Flag whether custodian name list applies.
common /paste_board/ termod, ipaste,mvideo, lvideo, hvideo, keybrd
integer*4 ferror, ffixed, finput, foptnl, freqd
common /fldscr/ ferror,ffixed, finput, foptnl, freqd
character subttl*(*) !Subtitle for display.
character*80 field(*), fdatin(*),findat,blanks
character*l spaces(80)/80*’ '/, fintyp(*)
integer*4 fldlen(*),fldrow(*),fldcol(*), fincol(*),maxnoc(?*),
fldrnd (3, *), finrnd (3,.*), IField renditions (add/edit/search).
. numfld !The number of fields.
integer*2 daymnt(12)/31,28,31,30,31,30,31,31,30,31,30,31/,
ifnulf(*), !Null indicator (-1 if null, 0 otherwise).
ifreqd(*), 'Points to if-required dependent field (except for Search).
iditto(*) Points to allowed field for dittoing. _
logical ‘ifmodi (*) {Have any of the fields been modified?
equivalence (blanks(1l:1),spaces(1l))

. .

[eXeXe!

Custodian name list field descriptors and sizes.
character*80 fieldN(4,15)
integer*4 fdlenN{(4,15), fdrowN(15), £dcolN(15)}, ficolN(15},
. numfdN {The number of fields.
common /lsdatN/ fieldN, fdlenN, fdrowN, fdcolN, ficolN, numfdN
Beginning of the subroutine.

Renew the keyboard.

QOO0

call smgSdelete_virtual_keyboard(keybrd)
- call smgScreate_virtual_keyboard(keybrd)

Display the subtitle if there is one.

000

if{len(subttl) .ne.0)then
if (subttl.ne.blanks(l:len(subttl)))then 'If there is a subtitle . .

call smgSput*chars(mvideo,subttl,Z,(78-1en(subttl)),,freqd)
endif
endif

1

C
C
C

[eNeXe]

anon

nonon

o
C
C

Begin display of fields.

do i=1,numfld
call smg$put_chars (mvide:, field(i) (1:f1dlen(i)), fldrow(i),
£ldcol (i), ,fldrnd(indaus,i))
if(fdatin(i) .ne.blanks)then !Display what data already exists.
call smg$put_chars (mvideo, fdatin(i) (1:maxnoc (1)),
- fldrow(i), fincol(i),, finrnd(indaus,i)) .
else tOtherwise display blanks.
call smg$put_chars (mvideo,blanks (1l:maxnoc(i)),
fldrow(l) fincol(i),,finrnd(indaus,i))
endif

Set all if—modified flags to false.

ifmodi(i)=.false.
enddo

Screen directives.

call smg8Sput_chars(mvideo, ‘'~ .22,4,,smg$m_reverse)

call smg$put_chars (mvideo, 'wiren finished with screen.’,22,7)
call smgSput_chars (mvideo, 'PF1’,22,36,,smgém_reverse)

call smgSput_chars (mvideo, ‘aborts program.’,22,40)

call smg$Sput_chars (mvideo, ‘PF2’,22,58,,smgSm_reverse)

call smg$put_chars(mvideo, 'displays help.',22,62)

Begin scanning the screen as requested.

ifcont=.true.
ifield=ibegin-1
100 ifield=ifield+1
if(fldrnd{indaus,ifield) .eq.ffixed)goto 100
110 if(ifclst.and.((ifield.eq.1l).or.(ifield.eq.18)))then
call choose(iwhich, fieldN, fdlenN, fdrowN, fdcolN, ficolN, numfdN)
if (iwhich.ne.0)then tAssign list values to appropriate fields.
do i=1,4
ii=zifield+i-1
fdatin(ii) (1:maxnoc(ii))=£ieldN(1i, iwhich) (1l:maxnoc(ii})
call smg$put_chars(mvideo, fdatin(ii) (1:maxnoc(ii)),
fldrow(ii), fincol (ii),, finrnd(indaus, ii))
ifmodi(ii)=.true.
enddo
call idate(imonth, iday, iyear)
write(fdatin(ifield+4) (1:6), fmt='(312.2) ')imonth, iday, iyear
call smg$put_chars(rmvideo,
fdatin(ifield+4) (1:maxnoc(ifield+4)), fldrow(ifield+4),

. fincol(ifield+4),, finrnd(indaus, (1f1eld+4)))
’ ifmodi(ifield+4)=.true.
goto 600
endif
endif

120 call smg$set_cursor_abs (mvideo, fldrow(ifield), fincol(ifield))
call smgSread_string(keybrd, findat,, (maxnoc(ifield)+1),termod, ,,
. nchrin, itrmch, mvideo, , finrnd(indaus, ifield))

Was PF1 the terminator character? Then cleanly terminate the program.

if (itrmch.eq.smg$k_trm_pfllithen
call smgSerase_display (mvideo)
call smg$unpaste_virtual_display (mvideo, ipaste)
close(l,status="delete’)
stop
endif

-2

Was "Insert Here" the terminator character? Then ditto entry if possible.

[eXeXe!

if(itrmch.eq.smg$k_trm_insert_here)then
if(iditto(ifield) .ne.0)then
fdatin(ifield)=fdatin(iditto(ifield)) tDitto the data.
call smgSput_chars (mvideo, IWrite the dittoed data.
. fdatin(ifield) (1l:maxnoc(ifield)), fldrow(ifield),
; . - fincol(ifield),, finrnd{indaus,ifield))

goto 400 tAssume that ditto data is correct since original is.
endif '
endif
. C
C Was PF2 or Help the terminator character? Then display keypad.
C
if ((itrmch.eq.smgSk_trm_help).or. (itrmch.eq.smg$k_trm _pf2))then
call keypad .
goto 120 !Go back to accept new input from current field.
endif
C
C Check data input against requirements.
P .

300 if (nchrin.gt.maxnoc(ifield))then
call smg$erase_chars(mvideo,nchrin, fldrow(ifield),
fincol(ifield))

goto 500
endif
if(nchrin.ne.0)then 1So as to save entries.
ifmodi(ifield)=.true.
if(nchrin.lt .maxnoc(ifield)) !Pad each entry with blanks.
findat((nchrin+l) :maxnoc(ifield))=blanks(1l: (maxnoc(ifield) -
nchrin))

if(fddatin(ifield) .ne.blanks)then IRewrite the entry.
call smgSerase_chars (mvideo, (maxnoc(ifield)+1),
fldrow(ifield), fincol(ifield))
call smg$put_chars (mvideo, findat (l:maxnoc(ifield)),
fldrow(ifield), fincol(ifield),, finrnd(indaus,ifield))
endif .
fdatin(ifield)=findat (l:nchrin)//blanks{(l: (80-nchrin})) !Add blanks.
if(fintyp(ifield).eqg.’a’)goto 400 !Free entry field.
if(fintyp(ifield) .eq.‘d’)then !Dates between 1/1/19%0-12/31/2079.
if (nchrin.ne.6)goto 500 !Must have 6 characters.
read(findat (5:6),fmt="(i2) ', err=500, end=500) iyear
if((iyear.1t.0).or.
. ((iyear.ge.80) .and. (iyear.le.89)))goto 500
if (mod(iyear,4) .eq.0)then
daymnt (2) =29 129 days in February in a leap year.
else :
daymnt (2) =28 128 days in February in a non-leap year.
endif
read(findat(1:2), fmt='(1i2) *,err=500, end=500) imonth
if ({(imonth.lt.1).or. (imonth.gt.12))goto 500
read(findat (3:4),fmt=’(i2)’,err=500,end=500)iday
if((iday.1lt.1).or. (iday.gt.daymnt (imonth)))goto 500
goto 400
endif .
. ’ if (fintyp(ifield).eqg.’1’)then !Required field length.
if (nchrin.eqg.maxnoc(ifield))goto 400 v
goto 500
endif
if(fintyp(ifield).eqg.'n’)then !{Number, real or integer.
ndecml=0 ‘ :
do 350 i=1,nchrin
inumbr=ichar{findat(i:i))
if ((inumbr.ge.48).and. (inumbr.le.57))goto 350 !Digits okay.

-3

if (inumbr.eq.46)then tA single decimal point is okay.
ndecml=ndecml+1" '
if (ndecml.eq.1l)goto 350
endif
goto 500 {Bad input.
350 continue
goto 400
endif :
if(fintyp(ifield).eq.’'t’)then 1Time of the form hh:mm.
ncolon=0 »
do 360 i=1,nchrin
inumbr=ichar(findat (i:i))
if((inumbr.ge.48) .and. (inumbr.le.57))goto 360 !Digits okay.
if({(inumbr.eq.58) .and.(i.ge.2) .and.(i.le.4))then

A single colon is okay in positions 2-4.

anan

ncolon=ncolon+1
icolon=1i
if(ncolon.eqg.l)goto 360
endif
goto 500 !Bad input (not a number or colon, or a 2nd colon).
360 _ continue

After the colon is located, the digits 0-5 are okay in the
following position, and a 0 or 1 in the second position
before the colon if that position is available.

[oNeNe N Xe!

if (ichar(findat ({icolon+1l):(icolon+1l))).gt.53)goto 500
if((icolon-2).ge.l)then
if (ichar(findat((icolon-2):{(icolon-2))).gt.49)goto 500
endif
goto 400
endif
if(fintyp(ifield) .eq.’u’)then !Time units field (m or h).
Aif((findat(l:1).eq.'M’).or.(findat(1:1).eq.'m’).or.
(findat(1l:1) .eq.'H’).or. (findat(1:1).eq.’'h’))goto 400
goto 500 :
endif
if (fintyp(ifield).eq.’?’)then !Yes or no (y or n).
if((findat(1:1).eq.’Y’).or.(findat(1:1).eq. N’})goto 400
goto 500
endif
goto 400
else !Check for missing but required entries.
if (fdatin(ifield) .eqg.blanks)then
if(f1ldrnd(indaus, ifield) .eq.freqd)goto 500 !Explicitly?
if((ifreqd(ifield).ne.0) .and. (indaus.ne.3))then 1 Implicitly?
if (fdatin(ifreqd(ifield)) .ne.blanks)then
if((fintyp(ifreqgd(ifield)).eq.’?’).and. !Skip "No*s.
. (fdatin(ifreqd(ifield)) (1:1).ne.’Y’))goto 400
goto 500
endif
endif
endif
endif
C
C See if an error has been corrected.
C
400 if(.not.ifcont)then
. ifcont=.true.
call smg$put_chars (mvideo, IRewrite the field name.
field(ifield) (1:fldlen(ifield)), fldrow(ifield),
fldcol(ifield),, fldrnd{indaus,ifield))
call smgS$put_chars (mvideo, IRewrite the data.

-4

fdatin(ifield) (1:maxnoc(ifield)), fldrow(ifield),
fincol(ifield),, finrnd{indaus,ifield))

endif
- goto 600 'Entry okay, so now check terminator for next step.
C Error in data entry - do not proceed to next step until entry
C corrected.
ps v
500 call smg$put_chars(mvideo,field(ifield) (1:fl1dlen(ifield)),
fldrow(ifield), fldcol(ifield),, (fldrnd(indaus, ifield) .or.ferror))
call smg$put_chars(mvideo,blanks(1l:maxnoc(ifield)},
fldrow(ifield), fincol(ifield),, (finrnd(inaes,ifield) .or.ferror))
call smgSring_bell (mvideo, 3)
fdatin(ifield)=blanks !Reset the input field (erase the error).
ifcont=.false.
goto 110
C
C Check the terminator for the next step.
C

600 call trmntr(ifcont,itrmch, ifield, numfld, fldrnd, maxnoc(ifield),
fldrow, fincol (ifield), finrnd(indaus,ifield), fdatin(ifield),
indaus, fintyp(ifield),ifmodi(ifield}, fdatin(1) (1:12))
if(({.not.ifcont) .and. (itrmch.eq.smg$k_trm_pf2))then
if(fdatin(ifield) .eg.blanks)then {Can the error be erased?
if (fldrnd(indaus, ifield) .eq.freqd)goto 620 1Explicitly required?
if ((ifreqd(ifield) .ne.0).and. (indaus.ne.3))then {Implicitly required?
if(fdatin(ifregd(ifield)).ne.blanks)then

if((fintyp(ifreqgd(ifield)).eq.’?’) .and. !1Skip "No's.
. (fdatin(ifreqd(ifield))(1:1).ne.’Y’))goto 610

goto 620

endif

endif
endif
610 ifcont=.true. tIf an error has been erased . .
call smg$put_chars{mvideo, !Rewrite the field name.

field(ifield) (1l:fldlen(ifield)), fldrow(ifield),
fldcol(ifield),,fldrnd(indaus,ifield))
call smg$put_chars (mvideo, IRewrite the data.
fdatin(ifield) (1:maxnoc(ifield)), fldrow(lfleld),
fincol(ifield),, finrnd(indaus, 1f1e1d))
endif
620 if(ifcont)goto 110
C
C Check for missing required data and flag null fields before proceeding.
C .
findat=blanks
do i=1,numfld ,
if(fdatin(i) .eq.blanks)then
if (fldrnd(indaus, i) .eq.freqd) then 1Explicitly?

ifield=i
goto 500
endif
if((ifreqd(i).ne.0) .and. (indaus.ne.3))then HImplicitly?
if(fdatin(ifreqd(i)) .ne.blanks)then '
if((fintyp(ifreqd(i)).eq.‘?’).and. I'Skip "No's.
(fdatin(ifreqd(i)) (1:1).ne.’¥Y’))goto 700
ifield=i
goto 500
endif
endif
700 ifnulf(i)=-1 -1 if null, . . .
else »
ifnulf(i)=0 !0 otherwise.
endif
enddo

-5

C
C Renew the keyboard.
P -
call smgS$delete_virtual_keyboard(keybrd)
call smgScreate_virtual_keyboard(keybrd)
return
C
C End of the subroutine DISPLY.
C -
end -

-6

J. TRMNTR - FORTRAN ROUTINE FOR INTERPRETING
TERMINATOR CODES FROM VMS SCREEN MANAGEMENT SYSTEM
ROUTINE CALLS

subroutine trmntr(ifcont, itrmch, ifield, numfld, £1drnd, maxnoc,
fdsrow, fincol, finrnd, findat, indaus, fintyp, ifmodi, smplid)

Subroutine to act on "terminators."
Component of SAMPLE_TRACKING Version 1 completed June 6, 1991 by D. A. Femec.
Remember to skip "fixed® fields, i.e. those fields which cannot be modified.

Declaration statements.

[eXeNo oo N XoNo XD!

include '’ ($smgdef)’ 1SMG Definitions.

include ‘ ($smgmsg)’ ISMG Condition values.

include ‘ ($smgtrmptr)’ !SMG Terminal and printer definitions.

include ‘ ($trmdef)’ :

include ‘gap$src:vterm.inc’

integer*4 termod, ipaste,mvideo, lvideo, hvideo, disply, !Pasteboard values.
indaus {Add/Update/Search indicator.

logical ifcont, 'Flag whether to continue in display loops.
ifskip !Flag whether to skip to next required.

common /paste_board/ termod, ipaste,mvideo, lvideo, hvideo,disply

character*80 findat,blanks

character*12 smplid

character*l spaces(80)/80*’ ’/,fintyp

integer*4 fldrnd(3, *), fdsrow(*), fincol, finrnd

logical ifmodi, tHas the field been modified (here, erased)?
iffrwd/.true./ 1Is the currently selected direction forward°

equivalence (blanks(1:1),spaces(1l))

integer*4 ferror, ffixed, flnput foptnl, freqd !Display field renditions.

common /fldscr/ ferror, ffixed, finput, foptnl, freqd

Beginning of the subroutine.

anon

ifcont=.true. {Set ifcont to true as default. Leave ifmodi as it is.
ifskip=(fldrnd(indaus, ifield) .eq.freqd) .and. (fintyp.eg.’?’) and
. {(findat{1:1).eq.’'N")

Advance? Then set direction as forward, but do not move.

[eXeKe!

ifkitrmch.eq.smg$k_trm_kp4)then
iffrwd=.true.

return

endif
C
C Backup? Then set direction as reverse, but do not move.
it .

if (itrmch.eq.smg$k_trm_kp5)then
iffrwd=.false.
return
. endif

C .
C Return, Enter, right arrow, .or horizontal tab? Advancing and
C Keypad 1 or 3? Then move to the next field.
C

if((itrmch.eq.smgSk_trm_cr) .or. (itrmch.eq.smg$k_trm_enter) .or.
(itrmch.eq.smg$k_trm_right) .or. (itrmch.eq.smg$k_trm_ht) .or.
({(itrmch.eq.smgSk_trm_kpl) .or. (itrmch.eq.smg$k_trm_kp3)) .and.
iffrwd))then
100 ifield=ifield+1

[XeNe XS] OO()O_

[eXoXe]

0onn

nnon

anon

Do

if(ifield.gt.numfld)then
ifield=1
ifskip=.false. 'ifskip is no longer meaningful.
endif
if(fldrnd(indaus, ifield) .eq.ffixed)goto 100 I18kip if fixed.

If the starting field is required, needs a yes or no answer, and was
answered no, then skip to the next required field.

if ({ifskip) .and. (fldrnd(indaus, ifield) .ne.freqgd))goto 100
return
endif

or ~Z? Then data input has ended for this screen and the

display loop should not be continued.

PF1l

PF2

PF4,

_Lef

200

if{(itrmch.eq.smg$k_trm_do) .or.{itrmch.eq.smg$k_trm_ctrlz))then
"ifcont=.false.

return
endif
? Then abort éxeéution of the program.
if(itrmch.eq.smgSk_trm pfl)then
call smg$erase_display(hvideo) {Help display.
call smg$unpaste_virtual_display (hvideo, ipaste)
call smg$erase_display(lvideo) t"Choose" display.
call smgSunpaste_virtual_display(lvideo, ipaste)
call smgSerase_display(mvideo) IMain display.

call smg$unpaste_virtual dlsplay(mv1deo ipaste)
close(l,status=‘'delete’)

stop

endif

? Then display keypad.

if ({(itrmch.eq.smgSk_trm_help).or. (itrmch.eq.smgSk_trm_pf2))then
call keypad
return
endif

Remove, or Keypad minus, 6, or comma? Then erase the field.

if((itrmch.eq.smg$k_trm_pf4).or. (itrmch.eq.smgSk_trm_minus) .or.
. (itrmch.eq.smgSk_trm comma) .or. (itrmch.eq.smgSk_trm_kp6) .or.
(itrmch.eq.smgSk_trm_remove))then
call smgSerase_chars (mvideo,maxnoc, fdsrcw(lfleld),
fincol)
call smg$put_chars (mvideo, blanks(1l:maxnoc),
fdsrow(ifield), £incol,, £inrnd)
findat=blanks
ifrmodi=.true. {Erasing a field changes it.
return .
endif

t arrow? Backing up and Keypad 1 or 3? Then move to the previous field.

if((itrmch.eq.smg$k_trm_left) .or.(({itrmch.eq.smg$k_trm_kpl) .or.
(itrmch.eq.smgSk_trm kp3)) .and. (.not.iffwrd)))then
ifield=ifield-1
if(ifield.1t.1l)ifield=numfld
if (fldrnd(indaus,ifield) .eq.ffixed)goto 200 Igkip if fixed.
return
endif

J-2

[eXeXe!

[eReNeXe]

C
C
C

Up arrow? Backing up and end-of-line? Then move up one line.

if((itrmch.eq.smg$k_trm_up) .or.((itrmch.eq.smgSk_trm_kp2) .and.
(.not.iffwrd)))then
iforig=ifield
300 if(ifield.eq.1l)then
ifield=numfld
if(f1drnd(indaus, ifield) .eq.ffixed)goto 310 I1Skip if fixed.
return
endif
310 ifield=ifield-1
if(ifield.1lt.1)ifield=numfld
if (fldrnd(indaus, ifield).eq.ffixed)goto 300 iSkip if fixed.

if{(fdsrow(ifield) .ne.fdsrow(iforig)) .or. 'If new row found or
(ifield.eq.iforig))return 1if no new row findable.

goto 300

endif

Down arrow or Keypad 0? Then move down one line.

if((itrmch.eq.smg$k_trm_down) .or. (itrmch.eq.smgSk_trm_kp0))then
iforig=ifield
400 if(ifield.eq.numfld)then
ifield=1
if (fldrnd(indaus, ifield) .eq.ffixed)goto 410 18kip if fixed.
return
endif
410 ifield=ifield+1
if(ifield.gt.numfld)ifield=1
if(fldrnd(indaus,ifield) .eq.ffixed)goto 400 1Skip if fixed.

if((fdsrow(ifield) .ne.fdsrow(iforig)) .or. {If new row found or
(ifield.eq.iforig))return !if no new row findable.

goto 400

endif

Advancing and end-of-line? Then move to end of current line, or, if
presently at end of current line, move to end of next line.

if((itrmch.eq.smg$k_trm_kp2) .and.iffwrd)then
iforig=ifield
500 if(ifield.eq.numfld)then
ifield=1 -
if(fldrnd(indaus,ifield) .eq.ffixed)goto 510 '1Skip if fixed.
return
endif
510 ifield=ifield+1
if(ifield.gt.numfld)ifield=1
if (fldrnd(indaus,ifield) .eq.ffixed)goto 500 tSkip if fixed.

if ((fdsrow(ifield) .eq.fdsrow(iforig)) .and. 'End of current row.
. (fdsrow(ifield+1) .ne.fdsrow(iforig)) .and.
. (ifield.ne.iforig))return
if(((fdsrow(ifield) .ne.fdsrow(iforig)).and. !End of next row found or
(fdsrow(iforig) .ne.fdsrow(iforig+l))) .or.
(ifield.eq.iforig))return 1if no next row findable.
goto 500
endif

Prev Screen? Advancing and Keypad 7? Go to the first not-fixed field.

if((itrmch.eq.smg$k_trm_prev_screen) .or.
{{itrmch.eq.smgSk_trm_kp7).and.iffrwd))then
ifield=1 :
600 if(fldrnd(indaus, ifield) .ne.ffixed)return 1gkip if fixed.
‘ ifield=ifield+1l
goto 600

J-3

ana

[eNeX®]

naao

noo

endif

Next Screen? Backing up and Keypad 77 Go to the last not-fixed field.

700

F172

if{(itrmch.eq.smg$k_trm_next_screen) .or.
{((itrmch.eq.smg$k_trm_kp7).and.(.not.iffrwd)))then

ifield=numfld

if (fldrnd(indaus, ifield) .ne.ffixed)return !Skip if fixed.
ifield=ifield-1

goto 700

endif

Print the barcode (field 1) if not blank.

if ((itrmch.eq.smgSk_trm _£f17) .and. (smplid.ne.blanks(1:12)))then

print *,char(155),’'5i’ !Turn on printer controller mode.
print *,char(24),’;‘,char(27), 'E1;D, ’',smplid, *;‘,char(23), ;"
print *,char(155), '4i’ {Turn off printer controller mode.
endif

Unrecognized terminator? Stay at current field.

return

End of the subroutine TRMNTR.

end

J-4

K. CHOOSE - FORTRAN ROUTINE FOR PRESENTING A LIST OF
CHOICES USING VMS SCREEN MANAGEMENT SYSTEM ROUTINES

subroutine choose (iwhich, fldata, fldlen, fldrow, fldcol, fincol,
. numfld)
Subroutine to choose from a list while in a data entry display.
The list is created as a separate screen. Selection of an entry
terminates display of the list.
Component of SAMPLE_TRACKING Version 1 completed June 6, 1591 by D. A. Femec.

Declaration statements.

OO0 0000

include ’ ($smgdef)’ ISMG Definitions.

include ' ($smgmsg)’ !SMG Condition values.

include ‘ ($smgtrmptr)’ I1SMG Terminal and printer definitions.
include ‘ ($trmdef)

include ‘gap$src:vterm.inc’

character*80 fldata(4, *),blanks, findat(20)

character*l spaces(80)/80*’ */

integer*4 fldlen(4,*),fldrow(*),fldcol(*),fincol(*),

. numfld, !The number of fields.
iwhich, IWhich custodian has been selected.. - :
termod, ipaste,mvideo, lvideo, hvideo, keybrd, 1Pasteboard values.
fldrnd(4,1) /4*smgSm_underline/ !Dummy renditions for trmntr.
logical ifcont,ifmodi

equivalence (blanks(1l:1),spaces(l))

common /paste_board/ termod, ipaste,mvideo, lvideo, hvideo, keybrd

Beginning of the subroutine.

Present the list subscreen.

0OO0000N

call smgScreate_virtual_display(17, 45, 1lvideo, smg$m_border)
call smgspaste_virtual_display(lvideo,ipaste,3,30)

[eNeXe!

Renew the keyboard.

call smg$delete_virtual_keyboard(keybrd)
call smg8create_virtual_keyboard(keybrd)

[eNeXp]

Begin display of fields.

do i=1,numfld
findat (i) =blanks
call smg$Sput_chars(lvideo, fldata(l,i)(1l:fldlen(1;1i)),
fldrow(i), fldcol(i))
call smg$put_chars(lvideo,blanks(1l:1), fldrow(i), fincol (i), ,
_ smg$m_underline)
" enddo

Screen directives.

[eNeXe]

~ call smg$put_chars{1lvideo, '*2’,17,2,,smgsSm_reverse)
call smg8put_chars{lvideo, ‘when done.’,17,5)
call smg$put_chars(lvideo, ‘PF1/,17,17,,smg$m_reverse)
call smg$put_chars(lvideo, ‘to abort.’,17,21)
call smg$put_chars(lvideo, 'PF2’,17,32, ,smgém_reverse)
call smg8put_chars(lvideo, 'for help.’,17,36)

C
C Begin scanning the screen as requested.
C

ifcont=.true.

anon [eXeXK?] aQn

[eXeXe]

(e NeX?]

ifield=1

100 call smg$set_: ~sor_abs(lvideo, fldrow(ifield),fincol(ifield))

call smg$read_-:ring(keybrd, findat(ifield),,2,termod,,,
. nchrin, itrmch, ivideo, , smgSm_underline)
if(nchrin.gt.1l)then

call smg$Serase_chars(lvideo,nchrin, fldrow(ifield),
fincol({ifield)) :

call smg$put_chars(lvideo, fldata(l,i) (1:fldlen(1,1i)),
fldrow(i), fldcol (i))

call smg$put_chars(lvideo,blanks(1:1), fldrow(i), fincol(i),,
smgSm_underline)

goto 100 :

endif . '

Check the terminator for the next step.

call trmntr(ifcont, itrmch, ifield, numfld, £1drnd, 1,

fldrow, fincol(ifield), smgSm_underline, findat (ifield),3,’a’,
ifmodi,blanks(1:12))

if (ifcont)goto 100

Return the first entry marked to the calling routine.

iwhich=0

do i=1l,numfld

if(findat(i){(1:1) .ne.blanks(1l:1))then 'Pick the first item marked.
iwhich=i
goto 900
endif

enddo

Remove the list subscreen before returning to calling routine.

900

call smgSerase_display(lvideo)

call smgSunpaste_virtual_display(lvideo, ipaste)

Renew the keyboard.

End

call smg$delete_virtual_keyboard(keybrd)
call smgS$create_virtual_keyboard(keybrd)
return

of the subroutine CHOOSE.

end

K-2

L. KEYPAD - FORTRAN ROUTINE FOR DISPLAYING KEYPAD
MAPPING USING VMS SCREEN MANAGEMENT SYSTEM ROUTINE

subroutine keypad

C
C Subroutine to display the keypad assignments.
c - .
C Component of SAMPLE_TRACKING Version 1 completed June 6, 1981 by D. A. Femec.
C .
C Declaration statements.
2 C
include ‘ ($smgdef)’ I1SMG Definitions.
include ’ ($smgmsg)’ ISMG Condition values.
include ' ($smgtrmptr)’ {SMG Terminal and printer definitions.
include '’ ($trmdef)’
include ’‘gap$src:vterm.inc’
character*80 findat
character*7 asgmnt(2,34)/
‘ Help ',' ‘, !1*Help* box.
. ' Next ',’ Screen’, {*"Do* box.
. ! r ! ‘, {*Pind" box.
. ' Ditto ',’ Entry ', " t*Insert here® box.
. ' Delete’,’ Entry ', { *"Remove* box.
. oo, ', i*Select® box.
. " Top of’,’ Screen’, {"Prev Screen" box.
. ' End of’,’ Screen’, 1 *Next Screen" box.
. ! Move ',’ Up ’, 'Up arrow box.
. ' Move ‘,' Left. ', tLeft arrow box.
. ' Move. *',' Down ', Down arrow box.
.- ' Move ',’ Right ’, IRight arrow box.
. ' Print ’, ‘Barccde’, 1F17 box.
’ ', ‘, {F18 box.
. ', ’, tF19 box.
. e, ‘, 1F20 box.
. ’ Abort ‘,’Program’, 1PF1l box.
. ' Help ',* ‘o, IPF2 box.
. ! ‘, IPF3 box.
. " Delete’,’ Entry ’/, {PF4 box.
. 'Top/End’,’ Screen’, 17 box.
. r,r ’, '8 box.
. ', ’, 19 box.
’ Delete’,’ Entry °’, - (minus) box.
. 'Advance’,’ o, 14 box.
. ' Backup’, ' ', 15 box.
.. ' Delete’,’ Entry ‘, 16 box.
. ' Delete’,’ Entry ‘, {, (comma) box.
. " Next ',’ Entry , t1 box.
. ' End of’,’ Line ‘', 12 box.
. 7 Next ’,’ Entry ’, {3 box.
. ' Next ’,’ Entry ', !Enter box.
" . " Next ’,’ Line ', 10 box.
. ! L Tt . (period) box.
integer*4 termod, ipaste,mvideo, lvideo, hvideo, keybrd, !Pasteboard values.
. keybox(4,34)/
- . .-1,2,4,10, !*Help" box.
1,10,4, 26, {*Do"* box.
. 5,2,8,10, ! *Find" box.
. 5,10,8,18, 1*Insert here" box.
. 5,18,8,26, ! *Remove” box.
. 8,2,11,10, {*"Select" box.
8,10,11,18, {"Prev Screen" box.
8,18,11,2s6, I "Next Screen" box.
. 11,10,14,18, {Up arrow box.
. 14,2,17,10, Left arrow box.

L1

14,10,17,18, !Down arrow box.
14,18,17,26, !Right arrow box.

1,34,4,42, IF17 box.
1,42,4,50, !F18 box.
1,50,4,58, !F19 box.
1,58,4,66, {F20 box.
. 5,34,8,42, !PF1 box.
. 5,42,8,50, !PF2 box.
. 5,50,8,58, !PF3 box.
. 5,58,8,66, !PF4 box.
. 8,34,11,42, !'7 box.
8,42,11,50, {8 box.
8,50,11,58, !9 box.
8,58,11, 66, !- (minus) box.
11,34,14,42, t4 box.
. 11,42,14,50, !5 box.
. 11,50,14,58, {6 box.
. 11,58,14,566, !, (comma) box.
. 14,34,17,42, !1 box.
. 14,42,17,50, 12 box.
. 14,50,17,58, 13 box.
14,58,20,66, {Enter box.
. 17,34,20,50, 10 box.
. 17,50,20,58/, !. (period) box.
. numbox/34/ .
common /paste_board/ termod, ipaste,mvideo, lvideo, hvideo, keybrd
c
C Beginning of the subroutine.
C
C Present the list subscreen.
C
call smg$create_virtual_display (20, 67,hvideo, smgém_border)
call smg$paste_virtual_display(hvideo, ipaste,3,10)
C
C Renew the keyboard.
C

call smg$delete_virtual_keyboard(keybrd)
call smg$create_virtual_keyboard(keybrd)

Display the keypad key assignments.

[SXeNe!

call smg$put_chars_highwide (hvideo, 'Keypad Help’, 18, 3)

do i=1, numbox
call smgSdraw_rectangle (hvideo, keybox(1l,i), keybox(2,1i),
keybox(3,1),keybox(4,1)) !Draw the outline of the box.

if{asgmnt(1,1i) .ne.’ ‘Ycall smg$put_chars(hvideo,
. asgmnt (1,1), (keybox(1,1i)+1), (keybox(2,1i)+1))
if(asgmnt(2,1i) .ne.’ Yeall smg$put_chars (hvideo,
asgmnt (2, 1), (keybox(1,i)+2), (keybox(2,i)+1))
enddo
(o
C Prompt to stop display.
C
call smg$put_chars(hvideo,
. '‘Please strike any key to return.’,19,1)
call smg$set_cursor_abs (hvideo, 20,1)
call smg$read_string(keybrd, findat,,1, termed,,, nchrin, itrmch,
. hvideo)
Cc

C Remove the list subscreen before returning to calling routine.
C
900 call smgferase_display(hvideo)
call smgSunpaste_virtual_display(hvideo, ipaste)

[eXe)]

Renew the keyboard.

L-2

C
call smg$delete_virtual_keyboard(keybrd)
call smg$create_virtual_keyboard(keybrd)
return

C

C End of the subroutine KEYPAD. .

C
end

L-3

OO0 000 OO0 0 o000

[eXeXoXe!

[eXeK®]

M. RVALUE - FORTRAN ROUTINE FOR CHARACTER STRING-TO-
- NUMERICAL VALUE CONVERSIONS

real*d function rvalue (cstrng, maxnoc)

Function to obtain the real numerical value corresponding to the
contents of a character string consisting only of a real or integer
number and padding blanks. Works properly for integers, real, or real
-exponential numbers.

Component of SAMPLE_TRACKING Version 1 completed June 6, 1991 by D. A. Femec.
Declaration statements.

character*(*) cstrng .
integer*4 maxnoc,nochar, idecml, inumbr

Beginning of the function.
Find the length of the string, excluding trailing blanks.

do i=maxnoc,1,-1
if(cstrng(i:i).ne.’ ‘)then
nochar=i
goto 100
endif
enddo

Locate the decimal point in the character string, if there is one.
100 idecml=index(cstrng,’."’)

If there is no decimal point, treat the character string as
representing an integer.

if(idecml.eqg.0)then
read{cstrng(l:nochar), fmt=' (i<nochar>) ') inumbr
rvalue=real (inumbr)}

If there is a decimal point, treat the character string as
representing an real (or real-exponential) number.

else i .
read(cstrng(l:nochar), fmt=' (f<nochar>.<nochar-idecml>) ')
rvalue

endif
return

End of the function RVALUE.

end

M-1

QOO0 O00000

N0 000

[eXeXe!

OO0

N. CVALUE - FORTRAN ROUTINE FOR NUMERICAL-TO-
CHARACTER STRING VALUE CONVERSIONS

subroutine cvalue (cstrng,maxnoc, rnumbr)

Subroutine to return the most complete character string representation
of real numerical value. Works properly for real or real-exponential
numbers. Will return an integer representation if appropriate.

‘Most complete’ here refers to how close the real numerical value
obtained from the character string produced is to the original real
numerical value.

Declaration statements.

character*(*) cstrng

character*80 cstrgl, ¢cstrg2, blanks
character*l spaces(80)/80** '/
real*4 rnumbr, rnmbrl, rnmbr2,rvalue
integer*4 maxnoc,n

logical ifFbad,ifEbad

equivalence (blanks(l:1),spaces(l))

Beginning of the routine.

In both F format and E format cases, use ‘err’ to determine whether
the number can even be successfully written in the desired character
string. The greatest number of figures beyond the decimal point
obtainable is desired in both cases.

Using the F format .

n=maxnoc
100 write(cstrgl(l:maxnoc), fmt=' (f<maxnoc>.<n>)’,err=110)rnumbr
ifFbad=.false.
goto 120
110 n=n-1
if(n.eq.0)then {Cannot use F format.
ifFbad=.true. o
cstrgl='0.0’//blanks(1:77)
goto 120
endif
goto 100
120 rnmbrl=rvalue(cstrgl,maxnoc) IThe real value described by the string.

Using the E format (which should work even when the F format does not) . .

n=maxnoc
200 write(cstrg2(l:maxnoc), fmt=’' (e<maxnoc>.<n>) ', err=210) rnumbr
ifEbad=.false.
goto 220
210 n=n-1
if(n.eqg.0)then !Cannot use E format.
ifEbad=.true.
cstrg2='0.0’//blanks(1:77)
goto 220
endif
goto 200
220 rnmbr2=rvalue (cstrg2,maxnoc)

Check for unusable format cases.

if (ifFbad)then iUse E format value, then return.
cstrng=cstrg2 (1l :maxnoc))

N-1

return
endif
if (ifEbad)then 'Use F format value, or I format if appropriate.
if (aint (rnumbr) .eq.rnumbr)then 'I format is appropriate.
write{cstrng(l:maxnoc), fmt=' (i<maxnoc>) ') int (rnumbr)

else {Use F format.
cstrng=cstrgl (1:maxnoc)
endif
return
endif

C
C Compare the back translated results to see which character string

C representation is the most complete.

Cc
if (abs (rnmbrl-rnumbr) .le.abs{(rnmbr2-rnumbr)) then 'F is most complete.
if (aint (rnumbr) .eq.rnumbr) then {T format is appropriate.
write(cstrng(l:maxnoc), fmt=' (i<maxnoc>) ‘) int (rnumbr)
else 1Use F format.
cstrng=cstrgl (1:maxnoc)
endif
else
cstrng=cstrg2 (1:maxnoc) 'E format value is the most complete.
endif
return
C
C End of the subroutine CVALUE.
C
end

N-2

QAO00 OO0 0N00

[eXeXe!

[eXeXKe!

000N

[eNeXe!

O. DAYCNT AND CHRDAT - FORTRAN ROUTINES FOR
CONVERSIONS BETWEEN MMDDYY DATES AND INTEGER DATE
COUNTS

Functions for converting dates from mmddyy to day count from January 1,
1990 (day 1) and back again.

Component of SAMPLE_TRACKING Version 1 completed June 6, 1991 by D. A. Femec.

For counting days, note that all years evenly divisible by four for
the next 100+ years are leap years (the year 2000, being evenly
divisible by 400, is a leap year).

The function daycent is good through December 31, 2079; beyond this the
value of daycnt is too large to store in an integer*4 variable.

The nth element of edamnt contains the cumulative number of days
expired in all months prior to the nth month.

function daycnt (datchr)
Declaration statements.

character*6 datchr

integer*4 daycnt

integer*2 edamnt(12)/0,31,59,90,120,151, 181 212,243,273,304, 334/,
. mm,dd,yy

Beginning of the function.

read(datchr(1:2), fmt=’(i2) *)mm

read(datchr(3:4), fmt=' (i2)’)dad

read(datchr(5:6), fmt=’' (i2)*)yy

if(yy.1lt. 90)yy—yy+100 !Correct for change of century
daycnt=(yy~-90) *365+int ((yy-89)/4) +edamnt (mm) +dd ,
if((mod(vy,4).eq.0).and. (mm.gt.2))daycnt=daycnt+1l !Past leap day.
return

End of the function DAYCNT.

end
function chrdat (cntday).

Declaration statements.

character*6é chrdat

integer*4 cntday

integer*2 daymnt(12),/31,28,31,30,31,30,31,31,30,31,30,31/,
. mm,dd,yy

Beginning of the function.

vy=90+int (cntday/365) |Rough guess of year (no leap years counted).
vy=90+int ((cntday-int ((yy-89)/4)-1)/365) iRefined guess.
dd=cntday- (yy-90)*365-int ({yy-89)/4)
if (mod(yy.4) .eq.0)then

daymnt (2) =29 £129 days in February in a leap year.

else
daymnt (2) =28 128 days in February in a non-leap year.
endif ‘
do i=1,11
if((dd- daymnt(l)) le 0)then
l'mn..

O-1

10

C End

goto 10
endif .
dd=4d-daymnt (1)
enddo
mm=12
if(yy.ge.100)yy=yy~-100

write (chrdat, fmt=’(3i2.2) *)mm,dd, yy

return
of the function CHRDAT.

end

0-2

P. SRCBLD - FORTRAN ROUTINE FOR CONSTRUCTING SQL
SEARCHES

subroutine srcbld(comndl, lcmndl, comnd2, icmnd2, numfld, fdatin,
. maxnoc, fintyp, atrbut)

Subroutine for building the search command.
Component of SAMPLE_TRACKING Version 1 completed June 6, 1991 by D. A. Femec.

Declaration statements.

NnOoOnNOnn

character*3000 comndl, comnd2

integer*4 lcmndl, lcrand2

character*80 fdatin(*),blanks:

character*30 atrbut(2,*)

character*6 datchr :

character*1l spaces(80)/80*’ */,fintyp(*)

integer*4 daycnt,maxnoc(*),numfld {The number of fields.
equivalence (blanks(1l:1),spaces(1l))

Beginning of the subroutine. -

Find the ;erm' in the *from" clause.

NOOOO

locfrm=index (comndl (1:1lcmndl), ' from’)
do i=1l,numfld
if(fdatin(i) .ne.blanks)then

if {(index(comndl (locfrm:1lcmndl), 1Entity not in *from* clause.
atrbut (1,1i) (1:(index(atrbut(l,i),’ *)-1))).eq.0)then
call apstrg{(comndl, lemndil, 1Add entity to "from® clause.
. (', *//atxrbut(1l,i) (1: (index(atxrbut(l,i),’ *)-1))),
. .false.)

if (lcmnd2.eq.6)then tAdd SAMPLE_TRACKING_ID match.
call apstrg(comnd2,lcmnd2, (* *//
. atrbut(l,i) (1:(index(atrbut(i,i), ")-1))//
. ! ,.SAMPLE_TRACKING_ID=SAMPLE_INFORMATION’//
. * .SAMPLE_TRACKING_ID'), .false.)
else ,
call apstrg(comnd2,lcmnd2, (' and *//
atrbut(l,1i) (1:(index(atrbut(1,1i),’ ")-1))//
* .SAMPLE_TRACKING_ID=SAMPLE_INFORMATION'//
¢ .SAMPLE_TRACKING_ID’), .false.)
endif
endif
if(lcmnd2.eq.6)then 'First entry to *where® clause.
call apstrg(comnd2, lemnd2, (* ‘//
atrbut(1l,i) (1:(index(atrbut(1,1i}," *)=-1))//"."//
atrbut(2,1i) (1: (index(atrbut(2,1i),’ ')}-1))), .false.)
else {Include the "and" for subsequent entries.
call apstrg(comnd2, lemnd2, (* and ‘//
atrbut(1,1i) (1:(index(atrbut(l,1i), “)-1))//*.*//
atrbut (2,1i) (1: (index(atrbut(2,i),’ ‘)-1))), .false.}
endif
if(fintyp(i).eqg.’d’)then tDate field.
write(datchr, fmt=’(i6) ')daycnt (fdatin(i) (1:maxnoc(i))}
call apstrg(comnd2, lemnd2, ('='//datchr), .false.)
else
if (fintyp(i).eq.’n’)then !Numeric fields.
call apstrg(comnd2, lemnd2, ('='//
fdatin(i) (1:maxnoc(i))), .false.)
else {Enclose character fields in "s.
call apstrg(comnd2, lemnd2, (="*//
fdatin(i) (1:maxnoc(i))//'**), .false.)

P-1

endif

endif
endif
enddo

return
C .
C End of the subroutine- SRCBLD.
C

end

P-2

Q. APSTRG - FORTRAN ROUTINE FOR APPENDING CHARACTER
STRINGS IN A SPACE-CONSERVING FASHION

subroutine apstrg(main,mainln,segmnt,ifsnew)

Subroutine to space-efficiently concatentate string SEGMNT to string
MAIN. The total length of MAIN is kept track of in MAINLN.

w

Component of SAMPLE_TRACKING Version 1 ccmpleted'June 6, 1991 by D. A. Femec.

Declaration statements.

o000 00n0n

character*3000 main

character*(*) segmnt

integer*4 mainln, seglen

logical ifsnew !Whether a string is being started anew.

Beginning of the subroutine. -

[oNeXKe]

if (ifsnew)mainln=90

seglen=1len (segmnt)

main((mainln+1): (mainln+seglen))=segmnt
mainln=mainln+seglen

return

End of the subroutine APSTRG.

ano

end

Q-1

