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Motivation: Science/Technology and Mathematical / Computational  

Science / Technology Motivation:   

Resistive and extended MHD models are used to 
study important plasma physics systems 
§  Astrophysics: Magnetic reconnection, solar flares, ..  
§  Planetary-physics: Earth’s magnetospheric sub-

storms, Aurora, geo-dynamo, planetary-dynamos"
§  Fusion: Magnetic Confinement [MCF] (e.g. ITER), 

Inertial Conf. [ICF] (e.g. NIF, Z-pinch)"

 MHD Tokamak Equilibrium 

 NASA Magnetic Reconnection Animation (https://www.youtube.com/watch?v=i_x3s8ODaKg) 

Magnetic Reconnection: S = 1e+9 (left), Reconn. Rate vs. SP theory (right)  
Mathematical/Computational Motivation:   
Achieving Scalable Predictive Simulations of Complex 
Highly Nonlinear Multiphysics Systems to Enable Scientific 
Discovery and Engineering Design/Optimization "

 MHD Equilibrium Instability 



What are multi-physics systems? (A multiple-time-scale perspective)!
These systems are characterized by a myriad of complex, interacting, nonlinear multiple 
time- and length-scale physical mechanisms.!
These mechanisms:!
!

•  can be dominated by one, or a few processes, that drive a short dynamical time-scale 
consistent with these dominating modes,!
•  consist of a set of widely separated time-scales that produce a stiff system response,!

•  nearly balance to evolve a solution on a dynamical time-scale that is long relative to 
the component time scales, !
•  or balance to produce steady-state behavior. !

Mathematical Approach - develop:  
§  Stable & higher-order accurate fully-implicit / IMEX formulations allowing resolution of dynamical time-scale of interest 
§  Stable and accurate spatial discretizations for complex geom.,                                                                                    

Options enforcing key mathematical properties (e.g. positivity), and structure-preserving-forms (e.g. div B = 0) 
§  Robust and efficient fully-coupled nonlinear/linear iterative solution methods based on Newton-Krylov (NK) methods 
§  Scalable and efficient preconditioners utilizing multi-level (AMG) methods (Fully-coupled AMG, physics-based, approx. 

block factorization) 
      => Also enables beyond forward simulation & integrated UQ 



3D Resistive MHD Equations: Lagrange-Multiplier Formulation and VMS 

  

Resistive MHD Model in Residual Notation 

"

•  Divergence free involution enforced as elliptic constraint with a Lagrange multiplier.                                   
(Dedner et. al. 2002; Codina et. al. 2006, 2011)"

•  Only weakly divergence free in FE implementation (stabilization of B -    coupling )"

•  Can show relationship with projection (e.g. Brackbill and Barnes 1980) when 1st order-splitting is used."
"

•  Issue for using C0 FE for domains with re-entrant corners / soln singularities "
  (Costabel et. al. 2000, 2002, Codina, 2011, see Badia et. al. 2013 for stabilized FE that is unconditionally"
   stable on on appropriate meshes)"
"
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Multiple-time-scale systems: E.g. 2D Tearing Mode "
Low Mach number compressible; M ~ 10-4; Fully-implicit (BDF2), IMEX (SSP3)   "

Approx. Computational Time Scales:  
•  Divergence Constraint (            ):1/      = 0 
•  Fast Magnetosonic Wave (cf):     10-4  to 10-2  
•  Alfven Wave (ca):                          10-4 to  10-2 

•  Slow Magnetosonic Wave (cs):    10-2 to 10-1 

•  Sound Wave (c):              10-2   
   

 

•  Advection (cv):                               to 101 

•  Diffusion:        10-4 to 10-2 
•  Macroscopic Tearing Mode:  102  
 

1 1r ·B = 0

Fully-implicit (BDF2) / IMEX SSP3  
Max CFL:         

 CFLdiv =  
      CFLcf   ~ 105 to 104 

     CFLcA  ~ 105 to104 

     CFLcs   ~ 103 to102 
     CFLc     ~ 103 to 102 

    CFLcv   ~ 1 to 0.25 

1

kuk, kuk± cs, kuk± ca, kuk± cf ,±ch

Wave speeds 
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Summary of Structure of Linear Systems Generated in 
Newton’s Method 

x = [v, P,B, r]T

VMS Stabilize produces SUPG like terms, stabilizing terms 
for inf-sup condition (all Q1 interpolants), physics cross-
coupling terms and discontinuity Capturing type operators 
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Preconditioning 
Three variants of preconditioning 

1. Domain Decomposition (Trilinos/Aztec & IFPack)  
•  1 –level Additive Schwarz DD 
•  ILU(k)  Factorization on each processor                    
              (with variable levels of overlap) 
•  High parallel eff., non-optimal algorithmic scalability  

3. Approximate Block Factorization / Physics-based (Teko package)    
•  Applies to mixed interpolation (FE), staggered (FV), physics compatible   
  discretization approaches using segregated unknown blocking 
•  Applies to systems where coupled AMG is difficult or might fail 
•  Enables specialized AMG, e.g. H(grad), H(curl) to  be applied to distinct discretizations.  
•  Can provide optimal algorithmic scalability for coupled systems 

2. Multilevel Methods for Systems: ML pkg (Tuminaro, Sala, Hu, Siefert, Gee) 
    Fully-coupled Algebraic Multilevel methods 

•  Consistent set of DOF-ordered blocks at each node (e.g. Stabilized FE) 
•  Uses block non-zero structure of Jacobian  
•  Aggregation techniques and rates can be chosen 
•  Jacobi, GS, ILU(k) as smoothers 
•  Can provide optimal algorithmic scalability 

(See Paul Lin Talk) 



SFE Initial Scaling Studies for Cray XK7 AND BG/Q.   
3D MHD Generator [Re = 500, Rem = 1, Ha = 2.5] 

~20x 

Titan: 128K 

BG/Q: 256K 

1.8 Billion max unknowns 
14K unknowns per core (Titan) 1.8 Billion max unknowns 

4096x increase in prb. size 
 

(DOE/ORNL Titan Cray XK7: Joule Metric) 

Details: See Paul Lin’s Talk Afternoon Session  



Initial Scaling Study for Cray XK7.   
3D Hydromagnetic Kelvin-Helmholtz Instability 

[Re = 104, Rem = 104, MA = 3; CFLmax ~5 ] 

170 Million max unknowns 
10K unknowns per core 

170 Million max unknowns 



Physics-based (Parabolization): 


I ��tC
x

��tC
x

I

� 
un+1

vn+1

�
=


un ��tC

x

vn

vn ��tC
x

un

�

D1 � UD�1
2 L = (I ��t2C

x

C
x

) = (I ��t2@
xx

)

The Schur complement is then 

Schur Complement, (Approximate) Block Factorization: 

Result:  
1) Stiff (large-magnitude) off-diagonal hyperbolic type operators (blocks) are 
now combined onto diagonal parabolic type operator (block).  
 
2) Coupled physics is segregated into partitioned sub-systems to which 
specialized solvers can be applied (optimal AMG methods e.g. H(grad), H(curl)) 
 
3) Effective Schur complement approximations need to preserve strong cross-
coupling physics and time scales.  

Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off- 
Diagonal Physics / Disparate Discretizations and Scalable Multigrid to play well together  

Knoll, Chacon et. al. JFNK Methods for accurate time integration of stiff-wave systems, Journal of Scientific Computing, 2005 
L. Chacon, ``An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional visco-resistive magnetohydrodynamics,'' Phys. Plasmas, 2008 
Elman, Howle, Shadid, and Tuminaro, “A Parallel Block Multi-level Preconditioner for the Three-Dimensional Incompressible Navier-Stokes”, JCP, 2003 
Elman, Howle, Shadid, Shuttleworth, Tuminaro,”A Taxonomy of Parallel Mulit-level Block Preconditioners for the Incompressible Navier-Stokes”, JCP, 2008 
Cyr, Shadid, Tuminaro, Pawlowski, Chacon, “A new approximate block factorization preconditioner for 2D incompressible (reduced) resistive MHD,” SISC, 2013  



Incompressible Resistive MHD a Nested Schur Complement Approach  
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Block LU factorization gives  

•  3x3 system leads to embedded Schur complements 
•  Embedding is independent of ordering (C-1 doesn’t need to exist!)  
•  How is P approximated? 
•  Chacon & Knoll (2004,..) explored compressible flow   
      
    (         included in C)  and incompressible flow using  
 
     stream-function vorticity to simplify factors  (i,e, eliminate                      
                       elliptic constraint).  
•  Can we simplify nested structure? E.g. Operator split prec. 
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Operator split / Residual-based Defect-Correction ABF Preconditioner   

1)  Residual defect-correction factorization procedure strongly couples operators producing the 
pressure wave (infinite speed) and Alfven wave (finite speed) and reduces to two 2x2 blocks for 
the ABF:  

 
 

2)  3x3 -> two 2x2 sub-systems that contain dominate coupling (pressure wave, Alfven wave) 

 S = Cu �BF̂�1BT P = D � Y F̂�1Z

See e.g. Elman, Howle, S., Shuttleworth, Tuminaro,”A Taxonomy of Parallel Mulit-level Block Preconditioners for the 
Incompressible Navier-Stokes Equations”, JCP, v. 227, 3, pp 1790 - 1808, 2008  

Consider NS Schur complement methods (e.g. Pressure Proj., SIMPLEC), Press-Conv-Diff (PCD) 
and Least Squares comutator (LSC) type approaches) 

Cyr, S., Tuminaro, Pawlowski, and Chacon, “A new approximate block factorization preconditioner for 2D 
incompressible (reduced) resistive MHD,” SIAM Journal on Scientific Computing, 35:B701-B730, 2013 

Relation to pressure wave (elliptic constraint) 
Formally assume  

•  Stable mixed integration 
•  Transient with small time-step-size 
 
Ŝ = �B[�tQ�1

L ]BT ⇡ ��tL̃p

Relation to Alfven wave 
Formally assume a stiff wave linearized analysis 
(with                                                )    

   
u0 = 0 & B0 = const.



Transient 2D Hydromagnetic  
Kelvin-Helmholtz Problem, SFE 

Re = 5e+3, S = 1e+3; MA = 1.5; CFLmax ~ 10 

Quad-core Nehalems with Infini-band  SNL Red Sky 

1024 cores 
6400X3200 mesh 
80 M unknowns 

1 core 
200X100 mesh 
80K unknowns 

Cyr, S., Tuminaro, Pawlowski, and Chacon, “A new approximate block factorization preconditioner for 2D incompressible (reduced) resistive 
mhd,” SIAM Journal on Scientific Computing, 35:B701-B730, 2013 
 Cyr,  S., and Tuminaro, “Teko an abstract block preconditioning capability with concrete 
example applications to Navier-Stokes and resistive MHD,” Submitted to SISC. 

Comm – comutator; CSC – continuous Schur comp.; 
Diag. – diagonal approx of inverse in Schur comp. 



Weak scaling of FC-AMG and block preconditioners reasonable to 1024 cores 
Both suffer some performance degradation on this capacity machine (Redsky) 
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Extensions to 3D: Initial Approximate Block Preconditioning 
3D MHD Generator [Re = 500, Rem = 1, Ha = 2.5], SFE 

P̂ = D̂ � Y F�1Z

S = C �BF�1BT



New residual defect-correction ABF strongly couples Alfven wave operators and 
reduces to three 2x2 blocks  

•  Order-of-magnitude analysis of structural error terms for ABF and previous work 
on 2D and 3x3 systems suggests diagonal, and comutator approaches should be 

workable in appropriate parameter regimes.  

•  Reduction to 2 problem types that are similar to what we have studied and 
developed Schur complement approaches for 

•  Saddle point systems 

•  Momentum-magnetics coupling P = FB � Y F̂�1
m Z



Extensions to 3D: Initial Approximate Block Preconditioning 
3D HMKH [Re =104, Rem=104, MA = 3; CFL ~0.125], SFE 

Block Preconditioners 
Split-3x3: 3x3  (SIMPLEC everywhere) 

Preliminary Split-4x4: 4x4 
 

Fully coupled Algebraic 
ML: Uncoupled AMG with repartitioning 

DD: Additive Schwarz Domain Decomposition 

ABF preconditioners scale algorithmically, more relevant for mixed and physics-
compatible discretizations  

FC-AMG – ILU(0), V(3,3); 3x3, 4x4 SIMPLEC and Gauss-Seidel 



Exact Penalty Formulation: (Q2/Q1 Navier-Stokes, Q2 B field; see e.g. Gunzburger et. al. 1991, Phillips et. al. 2014)  

u  P  

Mixed basis*: 

B  
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x = [v, P,B, r]T

J�x = �F

J = F = [Fv, FP ,FB, Fr]
T

General Structure of Newton System: 

Z 

Y D 0 
0 0 0 

Weak correspondence to parabolic divergence cleaning  
method for              errors (see e.g. Dedner 2002). r · B = 0



Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off- 
Diagonal Physics / Disparate Discretizations and Scalable Multigrid to play well together  

(w/ H. Elman, UMD)  

u  P  

Mixed basis*: 

B  

Exact Penalty Formulation: (Q2/Q1 Navier-Stokes, Q2 B field; see e.g. Gunzburger)  

Phillips, Elman, Cyr, S., Pawlowski, A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD, SISC 2014 

x = [B,u, P ]T
x = [u, P,B]T



Shotzau Formulation: (Q2/Q1 Navier-Stokes, B -edge, Q1 Lagrange Multiplier, see e.g. Shotzau 2004 )  

u  P  B  r  

Mixed basis*: 

Drekar – Element types implemented with 
*Intrepid (PI-Bochev, Ridzal, Peterson) 
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x = [v, P,B, r]T
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General Structure of Newton System: 

0 

0 

                 to machine precision. r · J = 0



u  P  B  r  

Mixed basis*: 
Shotzau Formulation: (Q2/Q1 Navier-Stokes, B -edge, Q1 Lagrange Multiplier)  

Structure of preconditioner and Maxwell ABF   (w/ H. Elman, UMD)  

Drekar – Element types implemented with 
*Intrepid (Bochev, Ridzal, Peterson) 

Segregation into  
•  H(grad) system AMG for velocity,  
•  Scalar H(grad) AMG for pressure,  
•  H(curl) AMG for magnetic field 
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Ŷ D̂

3

5
x = [v, P,B, r]T

J�x = �F

J = F = [Fv, FP ,FB, Fr]
T

General Structure of Newton System: 

0 0 

Magnetic Vector Potential Formulation: (Q2/Q1 Navier-Stokes, A -edge, Q1 Scalar Potential )  

u  P  A  r  

Mixed basis*: 

A 

A
FA 

                 to machine precision. r · B = 0



Segregation into  
•  H(grad) system AMG for velocity,  
•  Scalar H(grad) AMG for pressure, Lagrange multiplier 
•  H(curl) AMG for magnetic vector potential 

Magentic Vector-Potential  Formulation: (Q1 Navier-Stokes, A-edge, Q1 Lagrange Multiplier)  

Structure of preconditioner and Maxwell ABF   

u  P  A  r  

Mixed basis*: 



 
 
 

Conclusions 
•  Initial results for 3D Stabilized/VMS  FE Lagrange multiplier and structure preserving 
discretizations for low-flow Mach number resistive MHD system is very encouraging. 

•  Robustness, efficiency and scalability of parallel Newton-Krylov solvers is very good.   
  
  Preconditioning critical: 

•  FC-AMG (ML) scales well for stabilized / VMS 3D resistive MHD systems 

•  ABF methods must have effective approximation of dominate off-diagonal 
coupling and time-scale represented. 

•  ABF & AMG H(grad) results are encouraging for VMS Lagrange multiplier 
formulations. 

•  Initial ABF & AMG [H(grad) + H(curl)] results  for structure preserving 
formulations is promising 

•  Fully-implicit Newton-Krylov solvers have enabled initial adjoint based UQ capabilities  

•  a posteriori error-estimation 

•  Integrated sensitivity analysis 

•  efficient surrogate model construction for UQ 


