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Motivation: Science/Technology and Mathematical / Computational

Science / Technology Motivation:

Resistive and extended MHD models are used to
study important plasma physics systems

= Astrophysics: Magnetic reconnection, solar flares, ..

» Planetary-physics: Earth’s magnetospheric sub-
storms, Aurora, geo-dynamo, planetary-dynamos

= Fusion: Magnetic Confinement [MCF] (e.g. ITER),
Inertial Conf. [ICF] (e.g. NIF, Z-pinch)

Mathematical/Computational Motivation:

Achieving Scalable Predictive Simulations of Complex
Highly Nonlinear Multiphysics Systems to Enable Scientific
Discovery and Engineering Design/Optimization
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Magnetic Reconnection: S = 1e+9 (left), Reconn. Rate vs. SP theory (right)
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What are multi-physics systems? (A multiple-time-scale perspective)

These systems are characterized by a myriad of complex, interacting, nonlinear multiple
time- and length-scale physical mechanisms.

These mechanisms:

- can be dominated by one, or a few processes, that drive a short dynamical time-scale
consistent with these dominating modes,

- consist of a set of widely separated time-scales that produce a stiif system response,

+ nearly balance to evolve a solution on a dynamical time-scale that is long relative to
the component time scales,

- or balance to produce steady-state behavior.

Mathematical Approach - develop:

Stable & higher-order accurate fully-implicit / IMEX formulations allowing resolution of dynamical time-scale of interest

Stable and accurate spatial discretizations for complex geom.,
Options enforcing key mathematical properties (e.g. positivity), and structure-preserving-forms (e.g. div B = 0)

Robust and efficient fully-coupled nonlinear/linear iterative solution methods based on Newton-Krylov (NK) methods

Scalable and efficient preconditioners utilizing multi-level (AMG) methods (Fully-coupled AMG, physics-based, approx.
block factorization)

=> Also enables beyond forward simulation & integrated UQ
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3D Resistive MHD Equations: Lagrange-Multiplier Formulation and VMS

Resistive MHD Model in Residual Notation

T=—-[P— g,u(v V)L + pu[Vv + Vv

Rv—apv—i—v pve@v —(T+TH)]+200Q2xv—pg=0 ) 1
ot Tm = —B®B-_—|B|’
o 210
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=0
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R(u)=L(u)—f=0

* Divergence free involution enforced as elliptic constraint with a Lagrange multiplier.

(Dedner et. al. 2002; Codina et. al. 2006, 2011)
- Only weakly divergence free in FE implementation (stabilization of B -/ coupling )

» Can show relationship with projection (e.g. Brackbill and Barnes 1980) when 1st order-splitting is used.

* Issue for using C° FE for domains with re-entrant corners / soln singularities
(Costabel et. al. 2000, 2002, Codina, 2011, see Badia et. al. 2013 for stabilized FE that is unconditionally

stable on on appropriate meshes)




Multiple-time-scale systems: E.g. 2D Tearing Mode
Low Mach number compressible; M ~ 10-4; Fully-implicit (BDF2), IMEX (SSP3)

Time = 0.000

Approx. Computational Time Scales:

 Divergence Constraint (v-B =0):1/cc =0 * Advection (c,): o0 to 101
- Fast Magnetosonic Wave (c;): 10* to 102 ., piffusion: 10 to 10-2
- Alfven Wave (c,): 104 to 102 : : . an2
« Slow Magnetosonic Wave (c.): 102 to 10 Macroscopic Tearing Mode: 10
« Sound Wave (c): 10-2 Fully-implicit (BDF2) / IMEX SSP3
Max CFL.:
CFLy, =0
CFL, ~105to 10*
Wave speeds CFLCL ~105 to104
|al|, [Jal| £ ¢, [[u]] £ ca, [Jul| £ 5, £en CFL., ~103 to102
CFL, ~103to 102 Sandia

CFL,, ~1t00.25 Laboratones




Summary of Structure of Linear Systems Generated in
Newton’s Method
JAx = —F

VMS Stabilize produces SUPG like terms, stabilizing terms
for inf-sup condition (all Q1 interpolants), physics cross-
coupling terms and discontinuity Capturing type operators

F Bg / X = [V,P,B,”I“]T

7 =|Bp Cu F =[Py, Fp,Fp, F]"
Y D BT
i B, Cp

C, = Z/ Pt VP - V& d

CB:Z/ VD - VP d

u P B r
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Three variants of preconditioning

1.

Preconditioning

Domain Decomposition (Trilinos/Aztec & IFPack)

* 1 —level Additive Schwarz DD

* ILU(k) Factorization on each processor
(with variable levels of overlap) .| Tokamak Parallel

- High parallel eff., non-optimal algorithmic scalability /Partition (64 Procs.)
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. Multilevel Methods for Systems: ML pkg (Tuminaro, Sala, Hu, Siefert, Gee)

Fully-coupled Algebraic Multilevel methods
* Consistent set of DOF-ordered blocks at each node (e.g. Stabilized FE)
* Uses block non-zero structure of Jacobian
* Aggregation techniques and rates can be chosen (See Paul Lin Talk)
» Jacobi, GS, ILU(k) as smoothers
« Can provide optimal algorithmic scalability

. Approximate Block Factorization / Physics-based (Teko package)

* Applies to mixed interpolation (FE), staggered (FV), physics compatible
discretization approaches using segregated unknown blocking
» Applies to systems where coupled AMG is difficult or might fail
« Enables specialized AMG, e.g. H(grad), H(curl) to be applied to distinct discretizations.
« Can provide optimal algorithmic scalability for coupled systems Sandia
National
Laboratories



SFE Initial Scaling Studies for Cray XK7 AND BG/Q.
3D MHD Generator [Re = 500, Re,, =1, Ha = 2.5]

Linear Iterations/Newton Step

u
o
(=]

400

300

200

100

0
10°

Weak Scaling: Linear lterations (Ha=2.5)

=+ FC AMG (BG/Q)
| ==+ DD ILU(1),ov=1 (Titan)
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1.753e+00
8.764e-01
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0.000e+00 ﬁ

Weak Scaling: Linear Solve Time (Ha=2.5)

= FC AMG (BG/Q)
+ =« DD ILU(1),ov=1 (Titan)
+ -« FC AMG (Titan)

1.8 Billion max unknowns
4096x increase in prb. size

1
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BG/Q: 256K

_ Titan: 128K

10’

108

Number of Unknowns

10° 10%°

Details: See Paul Lin’s Talk Afternoon Session
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Initial Scaling Study for Cray XK7.
3D Hydromagnetic Kelvin-Helmholtz Instability
[Re =104, Re,, =104 M, =3; CFL,_, ~51]

.500e+00
5.000e+00
2.500e+00
0.000e+00

Weak Scaling: Linear Iterations (Re =10* ,Re,, =10* ,M, =3) Weak Scaling: Linear Solve Time (Re=10* ,Re,, =10* ,M, =3)
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Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off-
Diagonal Physics / Disparate Discretizations and Scalable Multigrid to play well together

Physics-based (Parabolization): Schur Complement, (Approximate) Block Factorization:
Ol = 0,V , 04V = Oyl I —AtC,] [unt!] u™ — AtCLo™
”u+1 —u" 4+ Ata‘_z,'l+l l’”+1 — " 4+ Afa»(—ll”_H. —Ath 1 Un+1_ N — AtC’mu”
i it ) p Dy u ] [1 upy'|[ Di-uD'L o0 I o
( I At“c " U =Uu —+ L\tr)xl? L D, - 0 I i 0 D, DZ—IL I

The Schur complement is then
D, —UD;'L = (I — At*C,C,) = (I — At*0,,)

Result:
1) Stiff (large-magnitude) off-diagonal hyperbolic type operators (blocks) are
now combined onto diagonal parabolic type operator (block).

2) Coupled physics is segregated into partitioned sub-systems to which
specialized solvers can be applied (optimal AMG methods e.g. H(grad), H(curl))

3) Effective Schur complement approximations need to preserve strong cross-
coupling physics and time scales.

Knoll, Chacon et. al. JENK Methods for accurate time integration of stiff-wave systems, Journal of Scientific Computing, 2005

L. Chacon, “An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional visco-resistive magnetohydrodynamics,' Phys. Plasmas, 2008
Elman, Howle, Shadid, and Tuminaro, “A Parallel Block Multi-level Preconditioner for the Three-Dimensional Incompressible Navier-Stokes”, JCP, 2003
Elman, Howle, Shadid, Shuttleworth, Tuminaro, ”A Taxonomy of Parallel Mulit-level Block Preconditioners for the Incompressible Navier-Stokes”, JCP, 2008
Cyr, Shadid, Tuminaro, Pawlowski, Chacon, “A new approximate block factorization preconditioner for 2D incompressible (reduced) reszsn@D SISC 201:



Incompressible Resistive MHD a Nested Schur Complement Approach

Block LU factorization gives

F BY Z 1 F BTt A
B C 0| =|BF! I S —BF 1z
Y 0 D YF~! —YFIBTS-1 | P

S=C—-BF'B?
P=D-YF 'I+B's'BrYHz

» 3x3 system leads to embedded Schur complements

- Embedding is independent of ordering (C-' doesn’ t need to exist!)
 How is P approximated?

» Chacon & Knoll (2004,..) explored compressible flow

( % included in C) and incompressible flow using

stream-function vorticity to simplify factors (i,e, eliminate
V - v = 0 elliptic constraint).
» Can we simplify nested structure? E.g. Operator split prec.
Sandia
National
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Operator split / Residual-based Defect-Correction ABF Preconditioner

1) Residual defect-correction factorization procedure strongly couples operators producing the
pressure wave (infinite speed) and Alfven wave (finite speed) and reduces to two 2x2 blocks for

the ABF:

F BT Z F z] [F-! F BT F B1 z
B C ol = I I B C _ |B o
Y 0 D Y D I I v |YyF!BT| D

2) 3x3 -> two 2x2 sub-systems that contain dominate coupling (pressure wave, Alfven wave)

S=C,— BF'BT P=D-YF 17
Relation to pressure wave (elliptic constraint) Relation to Alfven wave
Formally assume Formally assume a stiff wave linearized analysis
« Stable mixed integration (with ug = 0 & Bg = const.)
* Transient with small time-step-size a2
= 9B, LV"x"(V’xB)xB]xB—‘ 0
S = —B[AtQ;'|B" ~ —AtL, oM " pug S
di‘;l'):l _ ”Bl) |hv . VA:l -~ 0.
ot Plo

Consider NS Schur complement methods (e.g. Pressure Proj., SIMPLEC), Press-Conv-Diff (PCD)
and Least Squares comutator (LSC) type approaches)

See e.g. EIman, Howle, S., Shuttleworth, Tuminaro,” A Taxonomy of Parallel Mulit-level Block Preconditioners for the

Incompressible Navier-Stokes Equations”, JCP, v. 227, 3, pp 1790 - 1808, 2008 Sand’a
Cyr, S., Tuminaro, Pawlowski, and Chacon, “A new approximate block factorization preconditioner for 2D Nab“ onal -

incompressible (reduced) resistive MHD,” SIAM Journal on Scientific Computing, 35:B701-B730, 2013



Transient 2D Hydromagnetic
Kelvin-Helmholtz Problem, SFE
Re = 5e+3, S =1e+3; M, =1.5; CFL_, ~ 10

Linear lterations: At=2.50e-03

Time/Nonlinear Step: At=2.50e-03

200

K 60
— AggC-ILU,, , —  AggC-ILUj,
-- DD / -- DD
Y4
50f -
*— SIMPLEC 1024 cores /' *— SIMPLEC
150} == BlkUp 6400X3200 mesh R 1 i =—=a BlkUp
+—¢ Split Comm 80 M unknowns 8‘ +— Split Comm
N — Split CSC T 401 — Split CSC 1
g — Split Diag , E v Split Diag
“ 100r . {1 2 30} ]
© ’ =
g /, w0
’ N—
= ]
— 1 core ,', € 20f |
200X100 mesh e =
50} 80K unknowns R —
\ 10t —_— h
0 4 !—T ‘ 6 ‘ 7 8 0 4 ‘ 5 ‘ 6 ‘ 7 8
10 10 10 10 10 10 10 10 10 10
Number of Unknowns Number of Unknowns
Comm — comutator; CSC — continuous Schur comp.; Quad-core Nehalems with Infini-band SNL Red Sky

Diag. — diagonal approx of inverse in Schur comp.

Cyr, S., Tuminaro, Pawlowski, and Chacon, “A new approximate block factorization preconditioner for 2D incompressible (reduced) resistive
mhd,” SIAM Journal on Scientific Computing, 35:B701-B730, 2013 Sandi

Cyr, S., and Tuminaro, “Teko an abstract block preconditioning capability with concrete National
example applications to Navier-Stokes and resistive MHD,” Submitted to SISC. laboratories



Extensions to 3D: Initial Approximate Block Preconditioning
3D MHD Generator [Re = 500, Re,, =1, Ha = 2.5], SFE

5.0006-02
2500e-02
0.000e+00

-2.500e-02
-5.000e-02

F BI Zz o5
F BT Z
g= |5 O =|B, C
Y D BT s
B, Cg F o Z][F F BT S=C—-BF BT
~ Mspiit = I I B C > A —
TR Mepa =] L ; | P=D-vFz
300 Iterations vs Unknown Count (B=3.3540) 180 Solve Time vs Processor Count (B=3.3540)
+—+ Block Split +—+ Block Split
~ FC AMG 160| +=—+ FC AMG
250 +— |LU(0) ov=1 #=— |LU(0) ov=1
140
2
2200 120}
o
2
= » 100
3 150 v
£ £
€ E 80f
>
£ 6ol
é 100 (2 cores) 1
1024 cores a0k
0 | ) ) 0 M |
10* 10° 10° 10’ 108 10* 10° 10° 107 108
Number of Unknowns Number of Unknowns

Weak scaling of FC-AMG and block preconditioners reasonable to 1024 cores
Both suffer some performance degradation on this capacity machine (Redsky)
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New residual defect-correction ABF strongly couples Alfven wave operators and

reduces to three 2x2 blocks

Mz =b; My@Z—2)=(b—JZ) ;leads to this ABF & = M, (M, + M, — J)M;'b

F, BT 0

B Cp 0 0] _
0o Fg BT|7

0 0 B Cy,

0 0

I 0 O

0 I

0 0 I
BT
Cp

YF,nTLlBT

0

F—l

0

0 0
0

F, BT 0 0
B Cp 0 0

0 Fg BT
0 B Cy

* Order-of-magnitude analysis of structural error terms for ABF and previous work
on 2D and 3x3 systems suggests diagonal, and comutator approaches should be
workable in appropriate parameter regimes.

* Reduction to 2 problem types that are similar to what we have studied and
developed Schur complement approaches for

- Saddle pointsystems S = —= (Cp — Bﬁ’;leT

SB =C¢ —BﬁElBT

« Momentum-magnetics coupling P = Fg — Yﬁ’ﬂ_,blZ

Sandia
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Extensions to 3D: Initial Approximate Block Preconditioning
3D HMKH [Re =104, Rem=104, M, = 3; CFL ~0.125], SFE

FC-AMG - ILU(0), V(3,3); 3x3, 4x4 SIMPLEC and Gauss-Seidel

lterations vs Unknown Solve Time vs Unknown Count
200 ‘ ‘ 2048 cores 20 ‘ ‘ ‘

»—x ML x ML

— LU — LU
n »—  Split-3x3 »—+  Split-3x3
S 150|| = Split-4x4 1s|| = Split-4x4
o
g
= @
-g 100} GgJ 10}
— = (256 cores]
;.5
GLJ 50+ 5k
Z

—-;é ///
0 = : ‘ : 0 4 ‘5 ‘6 ‘7 8
10* 10° 108 10’ 108 10 10 10 10 10
Number of Unknowns Number of Unknowns
Fully coupled Algebraic Block Preconditioners
ML: Uncoupled AMG with repartitioning Split-3x3: 3x3 (SIMPLEC everywhere)
DD: Additive Schwarz Domain Decomposition Preliminary Split-4x4: 4x4

ABF preconditioners scale algorithmically, more relevant for mixed and physics-
compatible discretizations
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General Structure of Newton System: jAX — —f

) . _ T
7 F g x=v,PB |
o Yp 8 D F:[FvanaFB ]T

Exact Penalty Formulation: (Q2/Q1 Navier-Stokes, Q2 B field; see e.g. Gunzburger et. al. 1991, Phillips et. al. 2014)

Mixed basis*:

E} D Weak correspondence to parabolic divergence cleaning
method for V - B errors (see e.g. Dedner 2002).
u P B



Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off-
Diagonal Physics / Disparate Discretizations and Scalable Multigrid to play well together

(w/ H. ElIman, UMD)

Mixed basis*:
Exact Penalty Formulation: (Q2/Q1 Navier-Stokes, Q2 B field; see e.g. Gunzburger) [ *

F Bt Z A -7t 0 . CI P é
Ap=| B 0 0 Pra=| 0 x B | X=F+2A7Z,
_Zt 0 A 0 0 };,a Y=—BX_IBt.

X:[u,PjB]T X:[B,u,P]T

Picard: R = 256, Rm = 256 Picard: R = 256, Rm = 256
250 : ' : 120
—— o = 1 —— = 1
o =0, | o= 0O, ||
200} — 1 100 ——
® DD DD
S 80+ -
© 150} 1 —
— 2]
g @ 60} |
@ £
: 100} = sol |
S 0% — o2 /
501 . o0l |
e
- 0 G VY Y
10 10 10 10 10 10 10 10 10 10
Number of Unknowns Number of Unknowns

National
Phillips, EIman, Cyr, S., Pawlowski, A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD, SISC 2014 @J Laboratories



General Structure of Newton System: jAX — —f

_ T - T
j—g gn z x = |v,P B,r]|

- YP D BT F:[FvvaaFBaFT]T

B

S
o

Shotzau Formulation: (Q2/Q1 Navier-Stokes, B -edge, Q1 Lagrange Multiplier, see e.g. Shotzau 2004 )

Mixed basis*:

11 J V -J =0 to machine precision.
u P B r
Drekar — Element types implemented with Sandia
*Intrepid (PI-Bochev, Ridzal, Peterson) National
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Shotzau Formulation: (@2/Q1 Navier-Stokes, B -edge, Q1 Lagrange Multiplier)
Mix.ed basis*:

] fBﬁ

Structure of preconditioner and Maxwell ABF (w/ H. Eiman, UMD)

Mp -zt 0
Pp = 0 X Bt
1'%

C o o ¢
v
1

t t

Ap = 0 0

~ [ A+tD'QF'D 0
MP,Q—( 0 %C_Jr

A
D
Z
0

cood

~Zt 0
0 0
F B
B 0

X~F+2M5'2", Y=-BX '8

Segregation into

* H(grad) system AMG for velocity,
» Scalar H(grad) AMG for pressure,
* H(curl) AMG for magnetic field

Lid Driven Cavity: Newton

Lid Driven Cavity: Newton

700

N
(S
o

) Q
& 600}~ GD - GD .
S mpe DD c 20()"”"l DD T
< 500} -
3 3
= 400} < 150¢ 1
& g
24 o
5 300 £ 100¢ 7
© = .
3 200} S
‘q-j S 50' » T
qC) 100- : / ] a “ /
J 0 ‘I. - wm = —‘.i-'" _— 5 ) § 0 - ) )
10* 10° 10° 10 10° 10* 10° 10° 10 108
Number of Unknowns Number of Unknowns
7 e s S gl kg | Drekar — Element t implemented with Sm(h
@ Number of processors: 1, 8, 64, 512, 4096, h = 3. 1¢., 35 64+ 108 ekar — Element types impiemente National
*Intrepid (Bocheyv, Ridzal, Peterson) Laboratories

@ Re=100,Re,, =10,5=1



General Structure of Newton System: jAX — —f

F BT
J =B ¢
Y

? x=[v,P, Ar]"
D B;:” F = [FV,FP, Fa ,FT]T
B, Ca

<

Magnetic Vector Potential Formulation: (Q2/Q1 Navier-Stokes, A -edge, Q1 Scalar Potential )

Mix‘ed basis*:

1 V - B = 0 to machine precision.
P A r

[ J

C o o
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Magentic Vector-Potential Formulation: (Q1 Navier-Stokes, A-edge, Q1 Lagrange Multiplier)

Structure of preconditioner and Maxwell ABF Mixed basis™

L)

F Bt Z F 0 Z F~1 0 0 F Bt 0 u P
B C D = 0O I 0 0O [ O B C 0
Y 0 G Y 0 G o 0 |/ 0o 0 [/
F B 0 F~1 0 0 F 0 Z
or B C 0 0o [ O 0O [/ 0
o 0 [/ o 0 |/ Y 0 G
Segregation into
» H(grad) system AMG for velocity,
 Scalar H(grad) AMG for pressure, Lagrange multiplier
* H(curl) AMG for magnetic vector potential
Laplacian Gauge Laplacian Gauge
80 : 2 80 :
o |[=—=1A 2 |[==—=1A
% 70fjnm 1u = 70H"
c 2A 2
% 6011,.a. o 2 60}
= S50}
2 40; 2
é 30l E 40r
2 5o} S %0
g 10} %20-
e 10° 10’ 10° 10° o 10° 10 10° 10

Number of Unknowns Number of Unknowns




Conclusions

* Initial results for 3D Stabilized/VMS FE Lagrange multiplier and structure preserving
discretizations for low-flow Mach number resistive MHD system is very encouraging.

* Robustness, efficiency and scalability of parallel Newton-Krylov solvers is very good.

Preconditioning critical:
* FC-AMG (ML) scales well for stabilized / VMS 3D resistive MHD systems

- ABF methods must have effective approximation of dominate off-diagonal
coupling and time-scale represented.

 ABF & AMG H(grad) results are encouraging for VMS Lagrange multiplier
formulations.

* Initial ABF & AMG [H(grad) + H(curl)] results for structure preserving
formulations is promising

* Fully-implicit Newton-Krylov solvers have enabled initial adjoint based UQ capabilities
* a posteriori error-estimation
* Integrated sensitivity analysis

- efficient surrogate model construction for UQ
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