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Abstract

THz radiation straddles the microwave and infrared bands of the electromagnetic
spectrum, thus combining the penetrating power of lower-frequency waves and imag-
ing capabilities of higher-energy infrared radiation. THz radiation is employed in
various fields such as cancer research, biology, agriculture, homeland security, and
environmental monitoring. Conventional vacuum electronic sources of THz radia-
tion (e.g., fast- and slow-wave devices) either require very small structures or are
bulky and expensive to operate. Optical sources necessitate cryogenic cooling and

are presently capable of producing milliwatt levels of power at THz frequencies.

We propose a millimeter and sub-millimeter wave source based on a well-known
phenomenon called the two-stream instability. The two-beam source relies on low-

energy and low-current electron beams for operation. Also, it is compact, simple in
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design, and does not contain expensive parts that require complex machining and

precise alignment.

In this dissertation, we perform 2-D particle-in-cell (PIC) simulations of the in-
teraction region of the two-beam source. The interaction region consists of a beam
pipe of radius r, and two electron beams of radius r, co-propagating and interacting
inside the pipe. The simulations involve the interaction of unmodulated (no initial
energy modulation) and modulated (energy-modulated, seeded at a given frequency)
electron beams. In addition, both cold (monoenergetic) and warm (Gaussian) beams

are treated.

Using PIC simulations electromagnetic radiation is demonstrated over the fre-
quency range 0.03 < f < 1 THz. The two-beam source is found to possess an
extremely wide gain bandwidth (over a decade in frequency) from the microwave
to the far infrared region of the electromagnetic spectrum. Moreover, the gain ob-
tained is impressive. For example, the interaction of two 0.7-mm and 0.5-A electron
beams with energies 20 keV and 16.95 keV (typical in this dissertation) yields the
value of gain of 0.35 dB/mm, which is over a factor of 10 greater than that reported
in the literature for a proposed two-stream relativistic klystron amplifier involving
1.0- and 5.0-kA annular relativistic electron beams. Hence, the two-beam amplifier
promises to be a reliable and inexpensive source of millimeter and sub-millimeter

wave radiation and has the potential to generate watts of power at THz frequencies.
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Chapter 1

Introduction

The purpose of this dissertation is to perform 2-D particle-in-cell (PIC) simulations
to study a potential millimeter and sub-millimeter radiation source based on a phe-
nomenon known as the two-stream instability. More specifically, PIC simulations
are performed of the interaction region of the source (discussed in Section 1.2). The
interaction region consists of a beam pipe of radius r, and two electron beams of
radius r, co-propagating and interacting inside the pipe. A detailed discussion of the

simulation structure and parameters is given in Chapter 5.

Simulations are performed on a single personal computer using a software package
called MAGIC, a PIC code developed by ATK/Mission Research [13]. The simula-
tions presented in Chapters 6 and 7 involve the interaction of unmodulated (no
initial energy modulation) and modulated (energy-modulated, seeded at a given fre-
quency) electron beams. In addition, both cold (monoenergetic) and warm (having
a Gaussian energy profile) beams are treated. Moreover, the interaction frequencies
considered range from 30 GHz up to and including 1 THz. The interaction of two
co-propagating electron beams gives rise to exponentially growing waves and the

emphasis in this dissertation is placed on the variation of the gain of exponentially
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growing modes as a function of total beam current (sum of the currents of two in-
teracting beams), beam radius, percent energy spread, and interaction frequency.
Gain obtained from simulations is compared with theoretical gain to validate the

1-D theory presented in Chapter 4.

1.1 Millimeter and sub-millimeter radiation, its

applications, and conventional sources

The region of the electromagnetic spectrum that lies between 50 GHz and 10 THz
(A = 6 — 0.03 mm) is called millimeter and sub-millimeter radiation [4]. This is a
rough designation since some authors refer to the sub-millimeter region as extending
from 300 GHz to 3 THz or 30 THz. Hence, the border between far-infrared and sub-
millimeter regions is somewhat arbitrary. The scientific community has shown much
interest in the terahertz region since as early as the 1920s. Still, this part of the spec-
trum remains one of the least used [2]. Terahertz radiation is not absorbed by most
dry, non-polar materials (e.g., plastic, paper, fat) and it does not transmit through
water. Moreover, waves at terahertz frequency are reflected by metals because of
free electrons [4]. An increased interest in terahertz technology and recent advances
have led to a multitude of applications in such research fields as biology, pharmacy,
medical science, imaging, security, environmental protection, communications, etc.
The following is a list of some of the existing and potential applications of terahertz

radiation:

e Space and Earth applications

Astronomy. Terahertz technology should help to resolve and identify spec-
tral lines coming from interstellar dust clouds (likely emitting 40,000 individual

spectral lines) and observable galaxies. This is important since 98% of photons
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emitted by observable galaxies fall in the sub-millimeter and far-IR range [2].

Radar and satellite communications. Although opacity of water to tera-
hertz waves limits radar and communications applications in the atmosphere,
operation in the stratosphere should be very effective because of low scattering
compared to IR and optical wavelengths and enhanced penetration through

aerosols and clouds [2].

Environmental protection. Terahertz radiation makes it possible to moni-
tor various chemical species (HO, Ogs, etc.), which allows scientists to obtain
information on ozone chemistry, structure and, thus, gain a better understand-

ing of global warming [3].

¢ Biological, medical, industrial applications

Terahertz spectroscopy. This technique, among other things, allows one to

observe inter-molecular vibrations in chemicals and organic molecules.

Cancer research. Opacity of water and other polar molecules to terahertz
waves may enable cancer researchers to identify tumors by distinguishing be-

tween reflections from cancerous tissues and those from healthy ones [3].

Terahertz imaging. This technique has been used to detect defects, such

as voids, in foam insulation used for the space shuttle [3].
Quality control. Sensitivity to water could be used to control food and
agricultural products for damage, water content, etc. [3].
e Security

Detection of explosives, harmful substances. Every explosive, hazardous
substance has a distinct signature in its terahertz spectra. This fact can be

exploited to identify and separate them from harmless substances [3].

Penetrability. A combination of non-ionizing photon energy (1.2 meV at

300 GHz) and the ability of terahertz radiation to detect through smoke, opaque
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containers, even concrete walls, makes them ideal for imaging of hazardous

chemicals/agents through opaque containers and factories [3, 4].

Emerging applications in imaging, medicine, biology, space exploration, home-
land security, etc., necessitate reliable, compact, and high-power terahertz sources.
Table 1.1 compares several commercially available optical techniques for generating

terahertz radiation.

Table 1.1: Optical techniques for terahertz generation [2, 6].

’ Technique ‘ Frequency (THz) ‘ Regime ‘ Power ‘
Optically pumped THz lasers | 0.3 — 10 CW or pulsed | > 100 mW
Time domain spectroscopy | 0.1 — 0.2 Pulsed > 1 W

Multipliers 0.1-1 CW pW-mW
Photomixing 0.1-10 CW W
Ultrashort pulse lasers 0.2-2 Pulsed nW, uW

Two common, currently available optical sources are solid-state and optically
pumped lasers. Quantum-cascade lasers are capable of producing pulses with peak
power of 2 mW at up to 4 THz [5]. Although compact, their room-temperature
operation is virtually impossible without cryogenic cooling. This is due to the fact
that the photon energy at 1 THz is about 4 meV, as compared to thermal energy
of 26 meV at room temperature [6]. Optically pumped lasers are usually based on
a grating tuned CO, pump laser injected into gas cells that lase to emit terahertz
radiation. Power levels of 1 — 20 mW are attainable depending on the selected

spectral line, one of the most pronounced being that of methanol at 2522.78 GHz [2].

Tube-based sources of terahertz radiation offer the most power and frequency tun-
ning range at sub-millimeter frequencies [6]. They use electrons to generate coherent
electromagnetic radiation and can be classified into two groups: slow- and fast-wave

devices. In slow-wave devices, an electron beam drives a wave whose phase velocity
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is less than the speed of light in vacuum. By contrast, waves in fast-wave devices (for
example, FEL) travel at the speed of light. The shortcoming of slow-wave devices
(Smith-Purcell FEL, TWT, BWO) is that they require structures comparable in size
to the wavelength at terahertz frequencies. This leads to low currents, fabrication
issues and output powers on the order of milliwatts or less [1]. Fast-wave devices
(FEL, gyrotron) have no fabrication problems (the physical size is much larger than
than the radiation wavelength), but require large facilities. For instance, although
an ultrarelativistic FEL is capable of producing kW levels of terahertz radiation,
it requires room-size accelerators and extremely large magnetic fields for its opera-
tion [6, 8]. Gyrotrons utilize lower energy beams (10 — 100 keV) and, therefore, have
smaller dimensions. However, they are far from being compact. A good example
is a gyrotron developed by GYCOM [7]. This device, operating at 110 GHz and
producing kW of power in the range 350 — 850 kW, is 3 meters long and weighs
as much as 250 kg without the superconducting magnet. It is interesting to note
that Siegel reports tube-based benchtop units that are commercially available and

produce milliwatt levels of power at up to 1200 GHz [2].

1.2 Two-stream instability as a better mm and

sub-mm radiation generation technique

From the brief review of conventional sources in Section 1.1 it is clear that conven-
tional tube-based sources are bulky, expensive to operate, and have physical scaling
problems. Optical sources, such as various optically pumped and solid-state lasers,
are either low-power devices (=~ milliwatt) or they must operate at very low energy

levels (=~ millielectronvolt) unless cryogenic cooling is used [2].

We propose a millimeter and sub-millimeter wave source based on a phenomenon
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known as the two-stream instability [1]. The proposed source, shown in Figure 1.1,

comprises two electron guns in the kiloelectronvolt range, two sector magnets with

Partially transmitting
Mirror mirror
Beam pipe Output radiation
Sector Sector
magnet magnet
Electron beams To collector

Figure 1.1: Potential two-beam source of millimeter and sub-millimeter wave radia-
tion [1].

a field gradient n, a beam pipe in which co-propagating electron beams are merged
and interact unstably, a partially transmitting mirror and another mirror with a
frequency-selective grating. As two electron beams with slightly different energies
enter the sector magnet, they merge in the beam pipe, where natural current fluctua-
tions seed the two-stream instability. The generated wave, originally a non-radiative
Coulomb field, is stripped off, reflected back to the front by the mirrors, and inter-
acts with the beams again. The desired frequency of oscillation is selected using the
mirror with the frequency-selective grating and a portion of the saturated wave exits

through the partially transmitting mirror [1].

The merging of the beams can be accomplished by properly choosing the bend

radius, which is a function of beam energy, and the field gradient n. It can be
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shown (to first order) that when 0 < n < 1, the equations of motion in the sector
magnet (Kerst-Serber equations) have sinusoidal functions as their solutions, which
means that the magnet can act as a focusing lens [11]. Moreover, when n = 0.5, the
focal planes in radial and axial directions coincide and the magnet produces a 2-D

image [11].

The source in Figure 1.1 is superior to conventional tube-based and optical sources
in that it is compact, simple in design, and only requires low-energy and low-current
electron beams. This table-top source, which is free from problems associated with
complex machining, precise alignment, expensive parts, and catastrophic failures,
promises to be a reliable and inexpensive source of millimeter and sub-millimeter
wave radiation [1]. Moreover, it has the potential to generate watts of power at

terahertz frequencies.

1.3 Background

The idea to use two streams of electrons in a tube to obtain an increasing wave dates
back to two papers published in 1949 and entitled “A New Type of High-Frequency
Amplifier” and “The Electron-Wave Tube- A Novel Method of Generation and Am-
plification of Microwave Energy”. The former [20], by J. Pierce and W. Hebenstreit,
treats the case of two solid cylindrical beams propagating in a very remote tube,
thus disregarding space-charge depression and electron plasma frequency reduction.
The beams have slightly different average velocities and are subjected to an infinitely
strong, longitudinal dc magnetic field. The authors evaluate conditions for an in-
creasing wave and derive an expression for the gain of the growing wave. They
find the broadness of gain curves to be comparable to that of curves for helix-type
traveling-wave tubes [20]. The latter paper [21], by A. Haeff, has an analysis similar

to that in [20] and also gives expressions and curves for the propagation constant,
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gain, and bandwidth of the so-called “electron-wave tube”. In addition to theory,
however, Haeft’s paper also reports on the design and performance of the “two-
beam”- and “single-beam”-type tubes. In the “two-beam” tube, electron streams
are generated by two separate cathodes. By means of accelerating and focusing elec-
trodes the streams are accelerated into a very long drift tube, where the unstable
interaction takes place. An rf perturbation imposed on one of the streams via an
input helix is amplified along the length of the tube and then extracted at the end
of the tube through an output circuit. Haeff reports electronic bandwidths of over

30% and gains of the order of 80 dB at a frequency of 3 GHz [21].

In 1949 an experimental paper written by A. Hollenberg discusses the construc-
tion and performance of a two-stream amplifier [22]. The two-stream amplifier con-
sists of two cathodes, input and output helices, and a drift tube. Again, an rf signal
imposed on one of the beams by the input helix is amplified in the drift tube and
extracted by the output helix. The electron streams are hollow annular beams that
are separated in space and not intermixed. Space-charge spreading is countered by
an axial magnetic field of approximately 700 gauss. Hollenberg reports gains of 33 dB
at 255 MHz, and a bandwidth of 110 MHz between 3dB points [22].

More recently, Chen et al. proposed a two-stream relativistic klystron amplifier
(RKA) and carried out analytical and numerical studies of the proposed device [23].
Amplification of stimulated beam modulation in the RKA is achieved by means
of the unstable interaction of two concentric annular relativistic electron beams.
The beams propagate and interact in a drift tube that is free from passive circuits,
which eliminates the possibility of rf breakdown at the passive elements. Through
particle-in-cell simulations using MAGIC [13], the intensity growth rate is found to
be 30 dB/m and in good agreement with the theoretical analysis presented. It is also
determined that a substantial difference in beam energies is required to bring about

large instability growth [23].
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1.4 Road map of dissertation

This dissertation is organized as follows. Chapter 2 is a review of single particle
dynamics. Chapter 3 is devoted to space-charge effects such as potential depression,
space-charge waves on unfocused beams, plasma frequency reduction, and space-
charge spreading and focusing. In Chapter 4, we present a small-signal theory of the
two-stream instability and derive a theoretical expression for the gain of exponentially
growing modes. In Chapter 5, the simulation setup and parameters are discussed and
the calculation of numerical gain is presented. Chapters 6 and 7 present simulation
results. Specifically, Chapter 6 discusses the interaction of unmodulated electron
beams, while Chapter 7 is devoted to the interaction of modulated electron beams.

In Chapter 8, conclusions are presented and future work is discussed.



Chapter 2

Single particle dynamics

In Chapter 2, we ignore the interaction between electrons and review single particle
dynamics. In Section 2.1, the components of the equation of motion are derived
and expressed in terms of the cylindrical coordinates (r, ¢, z). In Section 2.2,
the Lagrangian and Hamiltonian formalisms are used to rewrite the components of
the equation of motion in a coordinate-free from. The radial equation of motion
from Section 2.1 is combined with an expression for the conservation of generalized
momenta (derived in Section 2.2) to find analytic and numerical solutions to the

beam envelope equation in Chapter 3.

2.1 The Lorentz force and the equations of motion
The charged particle dynamics is concerned with the motion of charged particles in
the presence of electromagnetic fields. Denoting the force acting on a point charge ¢
by F , the Lorentz force equation reads:

F = ¢(E+7xB), (2.1)

10
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where ¥ is the particle’s velocity, E is the electric field intensity and B is the magnetic
flux density. E and B in Equation 2.1 satisfy Maxwell’s equations, which in vacuum

have the form

. OB
E = —=— 2.2
L -~ 10E
VXxB = /VL(]J—FC?E, (23)
V-E = &, (2.4)
€o
V-B = 0, (2.5)

where €y and p are the permittivity and permeability of free space, J is the current

density, ¢ is the volume charge density, and c is the speed of light in vacuum.

Before deriving the equations of motion due to the force in Equation 2.1, we need
to determine a charged particle’s position in space and its velocity as a function of
time. To describe the motion of a particle, we define a position vector, 7, whose tale
is fixed at the origin of a given coordinate system as the head follows the particle.
Of primary interest to us is the cylindrical coordinate system, in which the position

vector is given as follows
F o= ri+zk, (2.6)

where 7 and k are unit vectors in the radial and axial directions, respectively. Having
defined the position vector, velocity, v, and acceleration, @, vectors and their radial,
azimuthal, and axial components can now be obtained by differentiating Equation 2.6

with respect to time to yield

T = i +rop+ ik, (2.7)

i = (F—red)i+ (20¢ +rd)p + 2k, (2.8)

11
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where “"7 and “"” stand for the first and second derivatives with respect to time,

respectively.

Newton’s equation of motion due to the force in Equation 2.1 reads

—

dP — —
— = a(E+7xB), (2.9)

where ]3, the mechanical momentum, is equal to

— muv

P = ymi = ——. 2.10
In Equation 2.10, « is the Lorentz factor, while 3 is the ratio of the particle’s velocity
to the speed of light in vacuum. Equation 2.10 is suitable for relativistic mechanics

and reduces to P = m¥ in the case of nonrelativistic particles (y = 1, f < 1).

Substituting Equation 2.10 into 2.9, expanding out the LHS and solving for ﬁ, we

have
- dv dry
F = - v—-. 2.11
mo + mu 7 (2.11)
With
dy 5,dB
= htad 2.12
Equation 2.11 becomes
_ dv B dv
F = — 22200, 2.13
il T w (2.13)

Thus, the force and acceleration are not necessarily unidirectional for relativistic

particles. Writing Equation 2.9 in terms of cylindrical coordinates and substituting

12
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Equations 2.7 and 2.8, we have

d. . . . .
—lymir] = ymry® = q(E, +r¢B. — £B,), (2.14)
1d _ . .
-~ hmr*el = q(E, + 2B, —B.), (2.15)
d. . . .
Zhmi = (B + 7B, —roB,). (2.16)

Equations (2.14 — 2.16) are coupled, second-order, inhomogeneous differential equa-
tions. In general, they do not admit solutions in closed form and must be solved
numerically, unless certain simplifying assumptions are made. Moreover, the mathe-
matical form of the above equations depends on a selected frame of reference. In the
following section, we will rewrite the equations of motion in a frame-independent form
via a Lagrange’s function L = L(g;, ¢;,t) and a Hamilton’s function H = H(q;, p;, t),
where ¢;, ¢;, p; represent generalized coordinates, associated velocities, and general-

ized momenta, respectively.

2.2 The Lagrangian and Hamiltonian formalisms

2.2.1 The Lagrangian and Lagrange’s equation of motion

In order to rewrite the equations of motion in a coordinate-independent form, we
make use of generalized coordinates, ¢;, and define a function, L = L(g;, ¢;,t), called
the Lagrangian. Assuming a Lagrangian exists for a given system, Hamilton’s vari-
ational principle states that the motion of the system between two fixed points, one
at time ¢; and the other at t,, is such that the variation of the integral fttf L dt along
the actual path taken vanishes [9]

to 1)
s Lat = [“sLdt=o. (2.17)

t1 t1

13
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For a conservative system, 0L/t = 0, and §L can be written as

oL oL
9 0%+ 9.0 (2.18)

where a summation is implied over the repeated index (i = 1,2,3). Substituting

Equation 2.18 into Equation 2.17 and integrating by parts with d¢;|, = dqils, = 0,

we get
t2 (OL oL
J, (aqi “T B q) -
=0
t
t2 9L oL|” t2 d (0L
L g, di L—f—/aﬁf_ dt = 0

t1 8qz ¢ + ¢ 8q1 t t1 ¢ dt <8q2> =

b (9L d (0L
/tl <8qi_dt<8qi>>6%dt _ (2.19)

Since d¢; are arbitrary, Equation 2.19 is satisfied if and only if the integrand is zero

oL d (0L
8qi_clt<aqi> = 0. (2.20)

Equation 2.20, for a given value of i, is called the Lagrange equation of motion. It is
invariant regardless of the coordinate system chosen. Let us consider a conservative
system (E = —§¢) for which v = 1 and B = 0. The Lagrangian in this case
is defined by the difference between kinetic and potential energy and in cylindrical

coordinates reads [9]
1
L =T-U = im(r2 +1r20? + %) — qo(r, p, 2). (2.21)
Setting ¢; = ¢; = r and substituting Equation 2.21 into 2.20, we have

mit —mr¢® = ¢FE,. (2.22)

14
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Equation 2.22 is seen to be identical to 2.14 when v = 1 and B =0. The Lagrangian
for a system in which forces are derivable from generalized or velocity-dependent

potentials is given as [9]

L = T—qp+qv-A, (2.23)

L = —mé\J(1—p32) —qp+qi- A, (2.24)

where the vector potential, ff, and scalar potential, ¢, are related through the Lorentz

gauge condition

- - 106
V- A+ —-— = 0. 2.25

+ c2 ot ( )

Equations 2.23 and 2.24 are suitable for nonrelativistic and relativistic particles,

respectively. Expressed in cylindrical coordinates, they become

1
L = gm(i®+1°¢" + 2°) = qo(r,¢,2) + q(FA + 19 A, + 242, (2.26)
-2 2,52 22
L — —mc2\/1—r R
C
—qd(r, ¢, 2) + q(F A, + 1A, + 2A,). (2.27)

2.2.2 The Hamiltonian and Hamilton’s equations of motion

In the preceding section we successfully expressed the equations of motion in a frame-
independent form by introducing the Lagrangian, L = L(g;, ¢;,t), which is a function
of generalized coordinates and velocities. An alternative approach to defining the
Lagrangian is to introduce a different function, the Hamiltonian, via the following

transformation [9)]

15



Chapter 2. Single particle dynamics

The Hamiltonian is a function of generalized coordinates, ¢;, and momenta, p;, which

are given by

oL
;= . 2.29

Substituting Equation 2.27 into 2.29, we can obtain the three generalized momentum

components in cylindrical coordinates

pr = ymr+ 44, (2.30)
Dy = ymrip + qri,, (2.31)
p. = ymz+qA,. (2.32)

Comparing Equations (2.30 — 2.32) and Equation 2.10, the components of the me-

chanical momentum can be related to those of the generalized momentum as

P = br — qAra (233>

P, = w’ (2.34)
r

P, = p,—qA,. (2.35)

In order to derive an alternative form of the equations of motion using the Hamilto-

nian, let us write down the total differential of H = H(q;, p;, t)

oOH oH oH
dH = ——dq, + ——dp;, + —dt. 2.36

According to Equation 2.28, dH may also be written as

oL oL .. 0L
dH = pidg; + ¢idp; — a—qdqi - a—qdqi -5 (2.37)

Substituting Equation 2.29 and dL/dq; = p; (from Equation 2.20) into 2.37, we get

L
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Chapter 2. Single particle dynamics

Finally, equating the coefficients of dg;, dp; and dt in Equations 2.36 and 2.38, we

arrive at the following formulas

OH

i = ) 2.3
q o, (2.39)
oH
So— 2.4
pl aqz 9 ( O)
oL OH
— = - — 241
ot ot ( )

Equations 2.39 and 2.40 are Hamilton’s equations of motion. As ¢ takes on val-
ues from 1 to 3, each of the equations represents three differential equations and,
therefore, there are twice as many equations to solve in Hamiltonian dynamics as
there are in Lagrangian dynamics. However, Equations 2.39 and 2.40 are first-order
differential equations and easier to solve, which makes them particularly useful in
numerical codes for calculating particle motion [9]. In general, to solve a problem
using Hamiltonian dynamics, one must first construct the Hamiltonian as a func-
tion of generalized coordinates and momenta. While this might be possible in some
cases, we may still end up setting up the Lagrangian first to calculate the generalized
momenta given by Equation 2.29. Having determined the generalized momenta, the

equations of motion are then derived from Equations 2.39 and 2.40.
Let us calculate the Hamiltonian for a conservative system (ﬁ — —VU, dL Jot =
0) in the nonrelativistic approximation (v = 1). Substituting Equations (2.30 — 2.32)
into Equation 2.28, we have
H = (mr+qA)r+ (mr*p + qrAy)¢ + (mz + qA,)z — L.

In view of Equation 2.26, the above expression becomes

1
H = §m('f’2 + 720 + 22+ qo(r,p,2) = T+ U. (2.42)
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Chapter 2. Single particle dynamics

Therefore, for a conservative system, the Hamiltonian is equal to the total energy

(kinetic plus potential).

2.2.3 Conservation of energy and generalized angular mo-

mentum

The equations of motion given in terms of the Hamiltonian are very useful for deriving
various conservation laws. Here we will derive the conservation of total energy and
that of generalized momenta. The latter is very important for charged particle
motion in axisymmetric fields. Again considering a conservative system (Z3 = _VU ,

JL/0t = 0), we can write [9]

dL OLdq; OLdg;

— = . 2.43

dt ~ g dt 0 dt (2.43)
Putting Equation 2.20 into 2.43 and rearranging terms

dL d (0L dg; OLdg; d )

T 1tk o SRS

i( g —L) = 0 (2.44)

dt ple - . .
Combined with Equation 2.28, Equation 2.44 becomes

dH

prl 0= H = const. (2.45)

According to Equation 2.42, H represents the total energy for a conservative system.

Thus, the total energy is a constant of the motion.

When H does not depend on g; explicitly, from Equation 2.40 it follows that the

generalized momenta are invariant quantities

pi = 0= p;, = const.
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Chapter 2. Single particle dynamics

In axisymmetric systems, H is not a function of ¢» = ¢, and p, (Equation 2.31) is

conserved

P, = ymrip+qrA, = const. (2.46)
Equation 2.46 can be rewritten as

ymr?p + %w = const, (2.47)

where 9 is the magnetic flux flowing through an open surface S enclosed by a charged

particle trajectory and
b = /55-qu - /Sﬁxﬁ.dig. (2.48)

Using Stokes’s theorem, the above surface integral may be transformed into a line

integral along the particle trajectory to give

b o= PAdl = fAgdp = 2mrA, = A, = v (2.49)

2T

Upon substitution of Equation 2.49 into 2.47, the latter reduces to Equation 2.46. In
some applications, the initial angular velocity, ¢y, is zero (for example, at the surface
of a cathode). If the angular velocity and flux away from the cathode (at some point

downstream) are denoted by ¢ and 1, then from Equation 2.47 we have
Ly = mrtp+ Ly =
2 2
¢ = s — ) (2:50)
2mmeyr? ’

where 1)y is the flux at the cathode. Equation 2.50 represents Busch’s theorem [16].

According to Equation 2.50, the angular velocity of a given electron is proportional
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Chapter 2. Single particle dynamics

to the difference between the amount of flux it crosses at the cathode and at some
point downstream. Moreover, the angular velocity does not depend on the path
between those two points [12, 16]. Busch’s theorem will be used in Chapter 3 to

solve the radial equation of motion in the presence of a focusing solenoid.

Let us conclude this chapter by considering the motion of an electron in a uniform

magnetic field B = (0,0, B). The vector equation of motion (Equation 2.9) reads

d -

—(ymv) = —eUx B. (2.51)
dt

The magnetic force is always perpendicular to v and does not change the particle’s

kinetic energy. Therefore, the electron will move in the z direction with uniform

velocity. In addition, the total velocity is conserved and v in Equation 2.51 can be

taken out of the time derivative. Rewriting Equation 2.51 in cylindrical coordinates

with the help of Equation 2.8, the radial force equation takes the form

F—r?p = —LUSOB ==
ym
v? B
o= e 2 (2.52)
r o ym

In the z = 0 plane, the magnetic field is directed radially inward and is again normal
to the electron motion: the particle moves in a circle of constant radius. This means
that » = 7 = 0 and, according to Equation 2.52, the outward centrifugal force is

exactly balanced by the focusing force

vi eB
2 = —, =
Tq ym
ym Uy
T — — = -, (253)
g eB ¥ Wy
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Chapter 2. Single particle dynamics

and

eB
Wy = —. (2.54)

ym
rq is known as the cyclotron radius or gyroradius and w, is the angular frequency
of rotation of the electron, called the cyclotron frequency or gyrofrequency. By

combining the electron motion in the z direction with that in the z-y plane, we see

that the particle orbit in a uniform magnetic field is a helix.
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Chapter 3

Space-charge effects

In Chapter 2, we presented a review of single particle dynamics relevant to the two-
stream instability problem. In this chapter, we cover space-charge effects due to
the interaction between electrons. Section 3.1 discusses potential depression of an
electron beam in a beam pipe. In Section 3.2, we give a quantitative analysis of
space-charge waves supported by a focused electron beam. In addition, we introduce
the plasma frequency reduction factor, F', which is used in Chapters 4, 6, and 7 to
determine the theoretical gain of exponentially growing modes resulting from the
interaction of two co-propagating electron beams. Finally, in Section 3.3, space-

charge spreading and focusing are discussed.

3.1 Potential depression

The space charge of a charged particle beam propagating in a drift tube causes a
potential distribution inside the tube. As a result, according to energy conservation,
the kinetic energy of the beam will be reduced [9]. This is called potential or space-

charge depression. In this section, we present a quantitative treatment of space-
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Chapter 3. Space-charge effects

charge depression for an electron beam of radius r;, inside a beam pipe of radius r,
and derive analytic expressions for the variation of the kinetic energy of the beam as

a function of radial distance.

Consider a cylindrical electron beam of radius r, propagating in a beam pipe of
radius r,. Let us determine the electric potential, ®, both outside and inside the
beam in the static case (0/0t = 0). Assuming that @ is only a function of r, Poisson’s
equation in cylindrical coordinates becomes

1d (qu)> — (3.1)

€0

where p is the uniform volume charge density and ¢, is the permittivity of free space.

Outside the beam, r > r}, the right-hand side of Equation 3.1 vanishes and we have

Ld [ dboy)
v dr ( ar )‘0:‘
Qout(r) = Cylnr + Cy, (3.2)

where the integration constants C and Cy are determined by appropriate boundary
conditions. Inside the beam, r < r, and ¢ # 0, Equation 3.1 may be simplified to

give

dQCI)in 1 dq)in Y
< __° 3.3
d?"2 + r dr €0 ( )

Since Equation 3.3 does not contain the dependent variable explicitly, we can define

a new variable Y such that

_ Py, dY P,

Y —_— = . 3.4
dr dr dr? (3.4)
Substituting Equation 3.4 into Equation 3.3, the latter becomes
ay 1 0
Iy = & 3.5
d?“ + T €0 ( )
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Chapter 3. Space-charge effects

Equation 3.5 is a linear first-order ODE, whose solution is given by
Y(ir)=——r+—. (3.6)

The solution to Equation 3.3 can now be found by integrating Equation 3.6 and

reads

Bip(r) = =12+ DyIn7 + Dy, (3.7)
460
where Dy and D, are integration constants. At the center of the beam, where r = 0,

the second term in Equation 3.7 becomes undefined, which means that D; needs to

be set to zero and the electric potential inside the beam takes the form

Din(r) = =712 + Da. (3.8)

460
To determine the rest of the integration constants, C', Cy, and D,, three equations
are necessary. We can obtain two of the required three equations by demanding that
Pyt () vanish on the beam pipe wall (r = r,) and that ®(r) must be continuous

at the beam edge (r = rp,). Imposing the said boundary conditions at r = r, and

r =7, we get
Cl In T + Cg = O, (39)

Cl lnrb—l—CQ = —ATI?—FDQ (310)
460

According to Gauss’ law, the radial electric field outside the beam of length L is
given by

fﬁ-cfs:Q— Q/dV:>

€0 €0
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Chapter 3. Space-charge effects

2
R

E, = .
2¢q T

(3.11)

Expressing the volume charge density, g, in terms of the beam current, I, and velocity,

v = B¢, Equation 3.11 becomes

B 1
- 2mepBer’

(3.12)

Having determined the radial electric field, the remaining third equation may be

written as
d®out
E . =———. 3.13
dr ( )
Substituting Equations 3.12 and 3.2 into Equation 3.13 yields
1
Ci=——— 3.14
! 2meoBc’ (3.14)
and, from Equation 3.9,
C ! 1 (3.15)
= nrg. )
2 2meg e

In view of Equations 3.14 and 3.15, the electric potential outside the beam is

1
2meq e

(I)out( ) In — (3-16>

Solving Equation 3.10 for Dy and using Equations 3.14 and 3.15, we have

0 I Ta
D — In —
2T 4€0r + 2megBe . Ty

(3.17)

With D, thus given, the electric potential inside the beam, Equation 3.8, becomes

1

1 | Tq
drregri Be

n—.
2megfe 1y

Dy (r) = g (1 —7°) + (3.18)
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Equations 3.16 and 3.18, ®yu¢(r) and P;,(r), are plotted in Figure 3.1 for a
0.7-mm and 0.3-A electron beam with the energy of 20 keV propagating in a 2-mm
beam pipe. The potential variation from the vertical axis (r = 0) to the edge of
the beam and from there to the beam pipe wall is shown by the solid (®;,(r)) and
dashed (®;,(r)) curves, respectively. As required by the boundary conditions, ®(r)

is continuous at the beam edge and tends to zero on the beam pipe wall. From

Fotential inside the beam

100 - — -Potential between the beam and beam pipe

30
= }
5 [
= 60 |- i ~
= e S =
[w] !(D ~ =
o = ~ @
i“’ -~ =
40 L ' ~ o
1 o ~
Ig \?out(r) §
i N =
20 i e
i
i
i

0 1 1 1 1 1 1 1 1 1
o0 0.z 0.4 0.8 0.3 1.0 1.2 1.4 16 1.8 2.0

Radial distance [mm]

Figure 3.1: Variation of electric potential inside and outside of a 0.7-mm and 0.3-A
electron beam propagating in a 2-mm beam pipe. The beam energy is 20 keV. &y, (r)
is given by the solid line, whereas ® () is represented by the dashed line.

energy conservation, the kinetic energy of the particles inside the pipe is

T(r) =Ty — q®(r), (3.19)

where T} is the initial kinetic energy of the particles, at the entrance to the beam

pipe, and ®(r) is the electric potential. With the help of Equations 3.18 and 3.16,
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the kinetic energy distribution within the beam (73,(r)) and between the beam and

the pipe (Toyut(r)), respectively, has the form

ql re —r? T
T: =Ty — In — 3.20
in(7) 0 2meo S { 2r2 i ry |’ ( )
T —T 4l Ta
out(r) =Ty — dmeafic DT' (3.21)

Therefore, according to Equations 3.20 and 3.21, a potential distribution inside the
beam pipe will reduce the kinetic energy. Equations 3.20 and 3.21 are plotted in

Figure 3.2 for the same beam parameters as in Figure 3.1. As in the case of the

20.00 : " s
— Kinetic energy within the beam o geiem
= = -Kinetic energy between the beam and beam pipe  _ = 7
T T
o o 19.95 | i i
5 -
B | -
==
a i !
|
E T, (D :
o 19.890 i
oL .
- 1
= | =
= i =
L I o
19.85 Ig =
| E £
o ©
B 7]
len @
!
19.80 1 1 1 1 1 1 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 16 1.8 2.0
Radial distance [mm]

Figure 3.2: Kinetic energy distribution versus radial distance for the same beam as

in Figure 3.1. Tj,(r) corresponds to the solid line, while T\t (r) is represented by
the dashed line.

electric potential in Figure 3.1, the variation of kinetic energy within the beam

and between the beam and the beam pipe is shown by the solid and dashed lines,

27



Chapter 3. Space-charge effects

respectively. The kinetic energy is continuous at the edge of the beam and tends to

Ty on the beam pipe wall.

In this dissertation, we study the interaction of two electron beams of radius 7,
and energies E; and F, co-propagating in a beam pipe of radius r,. In Chapter 4,

a theoretical formula for the interaction frequency, of two electron beams

fi bunching>
is derived and it is shown that fbunching is a function E; and FE5. According to
Figure 3.2, space-charge depression will modify E; and E,, which means that the
interaction frequency of two beams will also be affected. A discussion of this issue is

presented at the beginning of Chapter 6.

3.2 Space-charge waves on focused electron beams

In this section, we present a quantitative analysis of space-charge waves that can be
supported by a focused (axially confined) electron beam of radius 7, propagating in a
beam pipe of radius r,. Space-charge waves are mainly longitudinal oscillations of the
electrons and they interact with electromagnetic fields to produce amplification [15].
We examine two cases: 1) r, and r, are infinite, and 2) 7, and r, are finite. It
will be shown that in both cases we obtain slow and fast space-charge waves, whose
velocities are slightly greater and less than the dc velocity of the beam. However, in
the second case, the electron plasma frequency is reduced by a factor of F', where F

is the space-charge reduction factor.

Consider a cylindrical electron beam of radius r, propagating in a beam pipe of
radius 7,. The uniform charge density and dc velocity are given by — gy and vy = vok.
The dc current density, Jy = —ogpvg, is in the z direction and all dc quantities are
independent of time and spatial coordinates. Their ac counterparts, o, v., and J,,
are functions of spatial coordinates and time and have e/“*=%2) dependences, where

k is a yet-to-be-determined propagation constant. For our analysis, in addition to
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Maxwell’s equations (Equations 2.2 — 2.5), we will need the following set of equations:

Lo o

7 _ _Ye 29

V-J e (3.22)
dv L

o = —nE — ntv X By, (3.23)

Jo+J = (0—00)(v)+7), (3.24)

where Equations 3.22 and 3.23 are the continuity and Lorentz force equations, while
Equation 3.24 is the total current density and n = ¢/m in Equation 3.23. The
left-hand side of Equation 3.23 can be expanded as [15]

dv ov  ovdr Ovdy 0vdz ov o
— — — = a—i—[(vo—i-v :

at ot T ordt oydt " oxdi
which, on neglecting the second-order term, (¥ - 6)17, becomes

dv ov -
o A [0g - V]U.

b 2
dt ot (3:25)

Substituting Equation 3.25 into Equation 3.23 and assuming a large By (no transverse

velocity components), the axial component of Equation 3.23 yields

=0
—_——
ov, ov,

By +voaz = —nE,—n(Ux 50)2.

Differentiating v, with respect to time and z (recalling that v, is proportional to

el (wt—kz) )

ne.
= = 2
v J(w — kvg) (3:26)

Writing Equations 3.22 and 3.24 in component form, we get

J., = —o, (3.27)
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Jo = —oovo, (3-28)

and
J. = ovy— 0ov:, (3.29)

where the second-order term, ov,, has been neglected. With the help of Equa-
tions 3.26, 3.27 and 3.29, ¢ can be written in terms of F, as

0okn

mE (3.30)

Substituting Equation 3.30 into Equation 3.27, J, can likewise be expressed as a

function of F,

/B (3.31)

BT ek

Having derived Equations 3.30 and 3.31, we could combine them with Maxwell’s
equations and seck wave solutions. However, we will take a different approach [15]

and use the vector potential, ff, which satisfies the inhomogeneous Helmholtz equa-

tion [15]
VA+ KA = —uol, (3.32)

and is related to £ and H as follows

— ]_ — —
H = —V x A, (3.33)
Ho
. L V(V-A
E = —ij+v,(V ) (3.34)
JWloco
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where kg in Equation 3.32 is the free-space wavenumber and ky = w./Jip€p. Assuming
azimuthal symmetry, all boundary conditions can be satisfied by the z component of

A, where [15]
A(r,z) = &(r)e %= (3.35)
Taking the z component of Equation 3.34
J

E, = — (ki — kM)A, (3.36)

Wo€o

Solving Equation 3.31 for E,, putting the result in Equation 3.36 and multiplying
both sides by pg, we get

wp\2 o [ k& —K?
pod: = —(wp) ko{(ko_k)Q Az, (3.37)

where wf, = no/eo is the electron plasma frequency and ky = w/vg. Writing the
z component of the Helmholtz equation in cylindrical coordinates and substituting

Equation 3.37 yields

10 [ 0A _(92_1: 3 2 kE — k2
9 : : 24, — (“’P> 2) S0 7R Ly
ror (T or > i 022 ho w Ko (ko — k)? —

igr (ﬁg{:)) (- R {1 _ (‘f)z (kok_gk)z}g(r) = 0. (3.38)

Inside the beam, 0 < r < r,, Equation 3.38 takes the form

(%) v -

where
o= (k2 k) {1 _ (‘f)z Uf()]i(%lc)?}’ (3.40)
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while in the region between the beam and beam pipe, 7, < r < rg, it reduces to

10 o&(r) 9 B
where
h? = k- k. (3.42)

Our next task is to solve Equations 3.39 and 3.41 subject to the appropriate
boundary conditions. First consider the case of an infinitely large beam and beam
pipe. When r, and r, tend to infinity, A, is no longer a function of the transverse

coordinate, r, and Equations 3.39 and 3.41 become (assuming a nontrivial solution,

A, #0)
p? = 0 and h® = 0.

According to Equations 3.40 and 3.42, the above expressions yield the following four

roots

ko= +ko, (3.43)
ko= ko (u:“p). (3.44)
w

Equation 3.43 represents traveling wave solutions, whereas Equation 3.44 corresponds
to space-charge waves. As will be shown in Chapters 6 and 7, the interaction fre-
quencies considered are in the range from 30 GHz to 1 THz. Taking a typical 0.7-mm
and 20-keV beam, the ratio of w, to w (for 30 GHz) is about 0.04 and 0.05 for 0.3 A

and 0.5 A, respectively. This enables us to expand Equation 3.44 in a binomial series

—1
v = % - ;;<1i°:f) zv0<1q:°:f>. (3.45)
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To estimate the error incurred in approximating v by Equation 3.45, we need to
consider the next term, (w,/w)?, in the series. Using the same beam parameters as
above, it can be shown that the error is about 0.1% and 0.2% for 0.3 A and 0.5 A,
respectively. According to Equation 3.45, the wave velocities are slightly greater and
less than the dc velocity of the beam. Hence, the solutions given by Equation 3.44

are referred to as fast and slow space-charge waves.

In the case of finite r, and r,, Equation 3.39 may be rewritten to read

0% | 98
"5 + U +preg 0. (3.46)

Equation 3.46 is Bessel’s equation of order zero and has the solution [17]
§(r) = Aido(pr) + AsYo(pr), (3.47)

where Jy(pr) and Yy (pr) represent the Bessel functions of the first and second kind,
respectively. Since the region of interest (0 < r < r},) contains the origin, where
Yo (pr) becomes undefined, the constant A, in Equation 3.47 needs to be set to zero

and
§(r) = Avdo(pr), 0<r <. (3.48)

Equation 3.41, which looks identical to Equation 3.46 except for the minus sign, is
easily reduced to the modified Bessel equation of order zero and admits the solu-

tion [17]
§(r) = Bulo(hr) + BaKo(hr), 1y <1 <7, (3.49)

where Iy(hr) and Ky(hr) are the modified Bessel functions of the first and second
kind, respectively. To determine the arbitrary constants A;, B, and B,, three equa-

tions are required and we can generate those by imposing the appropriate boundary
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conditions on the longitudinal and transverse filed components. Expressing Equa-

tions 3.33 and 3.34 in component form, we have

104,

1 [0A, O0A, B
Hy = m ( 0z 87‘) o Or (3.50)
and
1 0 (0A k O0A
E, = —jwA, + - — 2l = — z. .51
Jw e Jwgeg OT < 0z > W€y Or (3.51)

Thus, Hy and E, are the nonzero field components that are present in addition to
E.. We are now in a position to determine Ay, By, and B, by requiring that: a) E,
vanish on the beam pipe wall (r = r,), and b) E, and E, (or Hy) be continuous at
the edge of the beam (r = r}). After some algebraic manipulations, we arrive at the

following set of linear equations involving Ay, By, and Bs:

J()(p?”b)Al — Io(hrb)Bl - K()(th)BQ =0
OAl — [o(hra)Bl — Ko(h?“a)Bg = 0. (352)
pJy(pry) A1 — hlg(hry) By — hK{(hry)By = 0

This system will admit a nontrivial solution if and only if the determinant of the
coefficient matrix vanishes. Setting the determinant of the coefficient matrix equal

to zero and performing some algebraic manipulations, we have

pJ(’)(prb) _ hKo(hra)](’](hrb)—K(’)(hrb)lo(hra)

Jo(pryp) Ko(hry)Io(hry) — Ko(hry)Io(hr,)

(3.53)

Equation 3.53 is transcendental and in general needs to be solved numerically. Nev-
ertheless, we will first attempt to solve Equation 3.53 for a special case of the beam
filling the beam pipe (r, = r,). Having accomplished that, Equation 3.53 will be

solved for an arbitrary ratio of r, to ry.

34



Chapter 3. Space-charge effects

Inverting Equation 3.53 and taking the limit as 7, tends to r,, we get Jo(pry,) =0

and

Pom
= 3.54
p - (3.54)

where pg,, is the mth zero of Jy. Substituting Equation 3.54 into Equation 3.40, we

have

P ' e gy ) (2 2k_§2 , (3.55)
Tq w (k’o k?)

As was discussed above, w, is over a factor of 20 less than w. Hence, k ~ k¢ and

from Equation 3.44
k= ko(1+49), (3.56)

where 0 < 1. Substituting Equation 3.56 into Equation 3.55 and solving for ¢
yields [15]

Wp
w

R (3.57)
Vi+(Be)

With 6 thus given, Equation 3.56 becomes [15]

E o= kdl+ _ ko{liF}, (3.58)

where F'is called the space-charge reduction or plasma frequency reduction factor.
Equation 3.58 looks almost identical to Equation 3.44 (infinitely large r, and r,), ex-
cept that the electron plasma frequency is reduced by a factor of F. For the infinitely
large 7, and r, discussed earlier, F'is unity and both E, (Equation 3.51) and H,
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(Equation 3.50) are zero. By contrast, due to the presence of the beam pipe and a
new set of imposed boundary conditions, F, and H, are no longer zero when 7, and
r, are both finite. This leads us to conclude that the reduction in plasma frequency
for the beam of finite radius 7, results from transverse variations in the field (nonzero

E, and H, components).

When the beam radius r; is different from the beam pipe radius r,, the solution
of Equation 3.53 is no longer trivial. Nevertheless, the propagation constant k£ can be
expressed in terms of the plasma frequency reduction factor similar to Equation 3.58

and reads [15]

1
F=— (3.59)

1 ()’

where h and p are determined by numerically solving Equation 3.53 for a given
pipe-to-beam ratio. In this dissertation, we only treat nonrelativistic beams. Hence,
k* > k2 and h? ~ k? ~ (w/vg)? (Equation 3.42). Equation 3.59 represents a plasma
frequency reduction factor for finite r, and r,. The plot of F' as a function of hry,
(hry =~ WU—?) is shown in Figure 3.3 for 5 different ratios of the beam pipe radius, r,,

to beam radius, 7.

According to Figure 3.3, the smaller the ratio of r, to r, the smaller the mag-
nitude of F. For hr, = 0.1, the reduction factor for the open squares (r,/r, = 1) is
approximately 54% less than that for the stars (r,/rm, = 4). The percent difference
between the former and the latter decreases to about 33% for hr, = 1.0. For values
of hry, greater than or equal to 6.0, as can be seen in Figure 3.3, the curves become
indistinguishable and asymptotically approach unity, which is the same value as that

for the ratio of r, to r, when both tend to infinity.

The plasma reduction factor plotted in Figure 3.3 is used in Chapter 4 to calculate

the theoretical gain (Equation 4.38) of exponentially growing modes resulting from
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F, plasma frequency reduction factor

—x— 1 =20mm, r, =05mm
—h— ra:2.0 mrm, rb:O.?' mim
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—-—ra:2.0mm, r=14mm
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Figure 3.3: Plasma frequency reduction factor versus hry for 5 different pipe-to-beam
ratios. 1, is kept fixed at 2 mm, while r, is 0.5 mm (stars), 0.7 mm (triangles), 1.0 mm
(solid squares), 1.4 mm (circles), and 2.0 mm (open squares).

the interaction of two electron beams of radius r,. Moreover, Equation 4.38 is used
extensively in Chapters 6 and 7 to make a comparison between theory and simulations
involving the interaction of two beams at frequencies ranging from 30 GHz up to
and including 1 THz. It should be noted that in the case of two co-propagating and
interacting beams of radius 7y, vy in hr, (the abscissa of Figure 3.3) becomes v, where

v is the average velocity of two beams.

3.3 Space-charge spreading and beam focusing

Typical microwave sources use high-density electron beams and space-charge spread-

ing due to mutual repulsion of individual electrons is always a concern [16]. A com-
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mon way to prevent space-charge spreading and to confine beams is to use a magnetic
field parallel to the direction of motion. This can be accomplished with the help of
a solenoid. Two well-known focusing techniques that use axial magnetic fields for
radial confinement are called immersed flow and Brillouin flow. In the former, the
solenoid surrounds both the source of electrons and the tube. Electrons start to
traverse helical paths as they intersect magnetic flux lines, the deviations from the
equilibrium radius being inversely proportional to the applied magnetic field. The
disadvantage of the this technique is that in theory an infinite magnetic field is

required to eliminate radial excursions [16].

As opposed to immersed flow focusing, in Brillouin flow focusing the source is

Flux-free region

Electron gun

Magnetic flux lines

Figure 3.4: Setup for Brillouin flow focusing [12].

shielded from the external magnetic field as shown in Figure 3.4. The beam here
first interacts with the predominantly radial component of the field at the entrance
to the focusing structure. Having acquired an angular velocity, the electrons start

to follow helical trajectories about the axis of the solenoid. As the rotating beam
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interacts with the predominantly axial component of the focusing field, each of the
electrons in the beam begins to experience an inward radial focusing force in addition
to a centrifugal one. If the magnitude of the external magnetic field and the beam
radius are adjusted such that there is a balance between the focusing and defocusing
forces, then the beam will maintain constant radius as it propagates. Brillouin flow

focusing is discussed in the next two subsections.

In the next subsection, we explore Equation 2.14, the radial equation of motion, in
the presence of an axial focusing filed. In Subsection 3.3.2, we write an approximate
solution to a beam envelope equation, which is the same as the radial equation
of motion at the edge of an electron beam. In Subsection 3.3.3, approximate and

numerical solutions to the beam envelope equation are compared with simulations.

3.3.1 Radial equation of motion in the presence of a focusing

solenoid

Consider a nonrelativistic electron beam of radius r, moving in the z direction with
uniform velocity fc. Space-charge spreading is counteracted by an axial magnetic
field whose magnitude is B,. The radial component of the equation of motion,

Equation 2.14, is modified as

. mv,
mit = qE, + qu,B, — qu.B, + — + Fyia (3.60)

where F;,, is due to the rotation of the beam and is given by [24]
roBio

Fiia = —g 5 (gr—1%), (3.61)

where ¢ is the volume charge density and pg is the permeability of free space. In

Equation 3.60, the first and third terms are directed radially outward and cause
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the beam to spread. By contrast, the second and fourth terms are directed radi-
ally inward, towards the axis of the beam, and keep the beam from spreading. By

combining the first and third terms, we have
Fs¢ = qFE, —qu,B,. (3.62)

The sum of the second and fourth terms yields

mu?

Feocusing = qUeB= + T¢- (3.63)

In Equations 3.62 and 3.63, Fgc and Ffocusing are the space-charge and focusing
forces, respectively [24]. To solve Equation 3.60, we make the following simplifying

assumptions:

1. Paraxial approximation: v,, v, < v, = fc.

2. Charge density, p, is uniform over the beam cross-section. J, o, and v, are

independent of r.
3. External magnetic field is uniform inside the tube: B,(r, z) = B.(0,z2) = B.

4. The cathode is shielded from the external magnetic field. Electrons are born
with zero initial transverse velocity components (in other words, zero canonical

angular momentum).

Combining Assumption 2 with Ampere’s law and Poisson’s equation, it is straight-

forward to show that B, and £, are given as

fiol 7
B S 3.64
v 2mr 2’ (3:64)
1
b, = , 3.65
27r607’§ﬁcr (3.65)
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where [ is the total beam current and ¢ is the permittivity of free space. From
Busch’s theorem, Equation 2.50, and Assumptions 3 and 4 it follows that 1y (mag-
netic flux at the emitter) is zero and v = 772 B, where ¢ is the magnetic flux away

from the emitter. As a result, v, away from the emitter has the form

qB
om

(3.66)

Vv, =

On substituting Equations 3.64 through 3.66 into Equations 3.62 and 3.63, Fgc and

Ftocusing become
ql
F 3.67
i QWEOTgﬁCT’ (3.67)
2 p2
q°B
Ffocusing T (3.68)

With the expressions for Fge, and Fy;, determined, we are in a position

F focusing
to solve the radial equation of motion (Equation 3.60), which is nonlinear because
Fy;4 1s proportional to r*. To simplify Equation 3.60 further, we will now compare
the three forces for an equilibrium flow of a 1.0-mm and 1.0-A beam with a beam
energy of 20 keV (typical parameters in dissertation). Plotted in Figure 3.5 are

Equations 3.67, 3.68, and 3.61 as functions of radial distance, r, for the above beam

parameters and an axial magnetic field of 0.065 T.

According to Figure 3.5, Fy;, is about four orders of magnitude smaller than
Fye and Ffocusing over the entire range shown. This means that the Fyg;, term is
negligible and can be dropped from Equation 3.60. Hence, the radial equation of

motion (Equation 3.60) may be rewritten as

¢*B? ql

r — = 0. 3.69
R 27r607’§ﬁcmr (369)
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Figure 3.5: The variation of Fyc, Ffocusingv and Fy;, with radial distance, r.

In the next subsection, Equation 3.69 is solved for electrons on the outer edge
of a beam and the beam envelope expression is derived for small deviations from its

equilibrium radius.

3.3.2 Beam envelope equation for Brillouin flow

According to Equations 3.67 and 3.68, both Fgc and Ffocusing are proportional to ra-
dial position. Consequently, the radial acceleration is proportional to radial position
and the beam is laminar, which means that electron trajectories do not intersect [12].
Hence, the analysis to follow will apply equally well to electrons within the beam
and at the edge of the beam. Let us examine and solve Equation 3.69 at the beam

boundary, where r = 7. If we replace r with r, and define a new quantity r., such
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that

2 2 ql
- 1t 3.70
Teg“L 2megSem’ ( )

where wy, is equal to half the cyclotron frequency (¢B/m) and is called the Larmor

frequency, then Equation 3.69 can be rearranged to read [12]

r2
P o= —w (rb — eq) . (3.71)

Ty

According to Equation 3.71, the right-hand side vanishes when 7., = 1. This situa-
tion represents a balance between the focusing and defocusing forces: electrons make
no radial excursions and the beam maintains its shape as it travels downstream.
Because of the nonlinear nature of Equation 3.71, we will now look for a solution

that is slightly deviated from r.,, the equilibrium radius, and has the form [12]
Ty = Teg(1+9), (3.72)

where 0 < 1. Substituting Equation 3.72 into Equation 3.71 and expanding the

right-hand side in a binomial series, we get

04 2rewd = 0. (3.73)
The general solution to Equation 3.73 is

d(t) = Cycos(y/2rewrt) + Cosin(y/2reqwrt), (3.74)

where C] and Cs are constants. Substitution of Equation 3.74 into Equation 3.72

and some algebraic manipulations yield

ry = req+ASin(\/ﬁ%z+¢), (3.75)
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where A = 1,4\/C} + C% and ¢ = tan"'(C;/C5). Assuming that the beam enters
the magnetic field at z = 0, where r, = 19 and dry/dz = tan(d), Equation 3.75 may

be transformed as

_ : wrL -1 Tvo — Teq
Ty = Teq+ Tesin (,/27"6,1%2 + tan {tan(ﬁ)/(\/ﬁ‘;j) }) , (3.76)

where 7. = \/(7”1)0 — Teg)? + ((tan(9)v.)/ (v/Zreqwr))’.

According to Equation 3.76, for small deviations from the equilibrium radius 7,
(Equation 3.72), the beam envelope is a sinusoidal function. Therefore, its mag-
nitude, phase, and shape are functions of initial conditions. If the beam’s initial
radius is r,(z = 0) = r, and it enters the magnetic field parallel to the z axis
(tan(d) = 0), then from Equation 3.76 it follows that the beam will maintain con-
stant radius (1, = ;) as it propagates. A beam emitted from a field-free cathode
and undergoing this type of motion is called a Brillouin beam. The magnitude of

the Brillouin magnetic field, B,,, may be determined from Equation 3.70 and reads

2ml

—
meoBeqre,

By = (3.77)
Increasing the current and decreasing the radius and velocity lead to more space

charge. Hence, we require larger B, to keep the beam focused.

Equation 3.77 is used in all simulations presented in this dissertation with minor
modifications. Specifically, I is replaced by the sum of the currents of two interacting
electron beams. In addition, Sc is replaced by the average velocity of two electron

streams, Sec.

According to Equation 3.76, when the electron beam enters a focusing structure
at a radius that is either greater or less than the equilibrium radius, the balance

between focusing and defocusing forces no longer exists and the beam radius starts
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to oscillate about the equilibrium value. This periodic variation of beam radius is
called scalloping. It should be noted that, despite our efforts, we were unable to
eliminate scalloping in simulations involving the interaction of two electron beams.
However, the scalloping amplitude never exceeded 6% of the beams radius and, as

shown in Appendix C, the gain was virtually unaffected.

3.3.3 Beam envelope equation versus simulations

In this subsection, we compare Equation 3.76 and a numerical solutions to the beam
envelope equation (Equation 3.71) with simulations for a 1-A and 20-keV electron
beam entering a focusing structure parallel to its axis. Recall that Equation 3.76
is also a solution to the beam envelope equation, but it is valid provided deviations

from the equilibrium radius are small.

Shown in Figure 3.6 are Equation 3.76 (green triangles), a numerical solution to
Equation 3.71 (red squares), and a 1-A and 20-keV electron beam from simulations
(blue particles). The focusing magnetic field, B,,, and the corresponding equilibrium
beam radius, 7, from Equation 3.77 were 0.0695 T and 1 mm. In Figure 3.6, the

initial radius, 79, was 0.8 mm and 1.1 mm for the top and bottom plots, respectively.

In the top plot, the initial beam radius, 0.8 mm, is less than the equilibrium
radius, which is equal to 1.0 mm. Since there is more space charge than necessary
for equilibrium flow, the magnitude of B., (0.0695 T) is not large enough to focus
the beam. As a result, the beam scallops outward and begins to oscillate about
the equilibrium radius in a sinusoidal fashion. In the bottom plot, the initial radius,
1.1 mm, is greater than the equilibrium radius, 1.0 mm, which means that the amount
of space charge is less than that required for equilibrium flow. Consequently, the
beam starts to scallop inward and then oscillates about the equilibrium radius, the

shape of the beam envelope again being a sinusoid.
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Figure 3.6: Comparison of approximate (triangles, Equation 3.76) and numerical
(squares) solutions to Equation 3.71 with simulations (particles) for a 1-A and 20-
keV electron beam. 749 is 0.8 mm and 1.1 mm for the top and bottom plots. Also,
Teq = 1.0 mm and B, = 0.0695 T.

In Figure 3.6, 1y and r., differ by 9.1% and by as much as 20% in the bottom
and top plots, respectively. Nevertheless, the approximate (triangles) and numerical
(squares) solutions in Figure 3.6 differ by less than 1%. Moreover, the former and
the latter are within 2% of the edge of the beam (particles) from simulations. Hence,
the agreement between theory and simulations is excellent. Note that if r., is kept
at 1.0 mm and 7y is chosen to be 1.4 mm (= 28.6% difference), the largest percent
deviation between the approximate (triangles) and numerical (squares) solutions in
Figure 3.6 increases from less than 1% to about 8.9%. Hence, the larger the devi-
ation between 7., and ry, the poorer the agreement between the approximate and

numerical solutions to the beam envelope equation (Equation 3.71).
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A small-signal derivation of the

two-stream instability

The two-stream instability is a well-known phenomenon and it falls into the cat-
egory of longitudinal instabilities, which cause randomization of the axial velocity
distribution of a charged particle beam [25]. This phenomenon may be caused, for
instance, by counter-propagating or co-propagating electron beams. As the beams
flow through each other, free energy is available to cause axial bunching of the beams.
This leads to a growing wave amplitude at the expense of the kinetic energy of the
electrons. In this and subsequent sections we will show that, under the right condi-
tions, the two-stream instability can be used to generate radiation in the millimeter

and sub-millimeter range of the electromagnetic spectrum [1].

In Section 4.1, we use a small-signal theory to derive and solve a dispersion
relation for a single electron beam of infinite cross section. The expressions for current
density and volume charge density derived in Section 4.1 are used in Section 4.2 to
solve a dispersion relation for the case of two co-propagating electron beams of infinite

cross section. The focus is on complex conjugate roots that yield exponentially
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growing and decaying solutions. The results obtained in Section 4.2 are employed
in Section 4.3 for two co-propagating electron beams of finite cross section. Namely,
we derive expressions for a velocity separation condition for maximum gain and the

gain per unit length.

4.1 Dispersion relation for a single electron beam
of infinite cross section
Let us consider a nonrelativistic electron beam of infinite cross section and use a

small-signal analysis to derive linearized expressions for current and charge density.

We start with the following equations

. OH
E = — — 4.1
V x Ho ot ( )
5 = - OE
H = — — 4.2
V x J+ €0 ot y ( )
V- E = -2, (4.3)
€0
- o 0o
J = — == 4.4
d - ~
ﬁ(mﬁ) = —qF — qUx B, (4.5)
J = ot (4.6)

where Equations (4.1 — 4.3) represent Maxwell’s equations, whereas Equations 4.4
and 4.5 are the continuity and Lorentz force equations. Also, ¢y and py are the
permittivity and permeability of free space, while ¢ is the volume charge density.
In order to simplify the mathematics, we now make the following assumptions: a)
Quantities can be written in terms of dc and ac parts, where dc components are
denoted by the subscript 0 and ac components by the subscript z. b) There are no

transverse variations and ac components are much smaller than dc components. c)
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All ac quantities vary as e/“*=*2) In view of the assumptions, Equations 4.4 and 4.6

become
0. = f,JZ’ (4.7)
and
Jo + J. = (00 + 0:)(vo + v2) = 0ovo + 00v. + 000 + 0.0 =
Jo = 0ovo, (4.8)
J. = 00v: + 0200, (4.9)

where we have neglected a second-order term p,v,. Substituting Equation 4.7 into

Equation 4.9, we have

w0
J, = 2 4.10
{w — ]{ZUQ } v ( )

Transforming Equation 4.5 and solving for v,, we get

dvz_(%z_i_@vz%__gE N
dt ot  Ozdt m

n
Vy, = —~ Ez, 411
J(w — kug) ( )

where 7 = g/m. Let us now express J, and g, in terms of F, by first putting Equa-
tion 4.11 into Equation 4.10 and then substituting Equation 4.10 into Equation 4.7,

to yield
w2
_ P
J. = jwe = kv0)2EZ’ (4.12)
w2
— P
QZ - ]keo ((.U - k”l}o)2EZ’ (413)
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where wﬁ = 100/ €o is the electron plasma frequency. Taking the curl of Equation 4.1

and substituting Equations 4.2 and 4.3, the linearized wave equation takes the form

PE. OB 9J. 10de
922 Mg T TGS T s,
. k
(K —k)E. = jwiot, — Je e (4.14)

where kg = w/c is the free-space wavenumber. Combining Equations 4.12; 4.13,

and 4.14, we obtain

(k:Q—kg){1—<w;}Ezzo, (4.15)

w — kvg)?

which has the following four solutions (assuming F, # 0)

k= 4k, (4.16)
o= L4 (4.17)
Vo Vo

Equation 4.16 corresponds to waves traveling in free space, while Equation 4.17

represents fast and slow space-charge waves.

4.2 Dispersion relation for two electron beams of

infinite cross section

In this section, we are going to apply the results of Section 4.1 to derive a dispersion
relation for the case of two co-propagating electron beams of infinite cross section
and different velocity. By analyzing the solutions of the dispersion relation, we will
identify a range of values for the velocity difference, plasma frequency, and wave

number that yields growing waves.
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In the case of two nonrelativistic electron beams of infinite cross section, J, and
0. are identical to those in Equations 4.12 and 4.13. This can be verified by writing
Equations 4.7, 4.9, and the equation motion for each beam separately. Hence, for two
electron beams of infinite cross section, the total ac current density and ac charge

density read

2 2
J, = jwe()(( Wip 4 Wap )2> E,, (4,18)

W — ]{31)10)2 (w - k'UQ()

w? w2
0, = jkeo<< 1p + 2p )E (4.19)

w — kvlo)Q (Cd — kZ’UQ())Q

where wy, and wy, are plasma frequencies for the two beams and v,9 and vy are their

dc velocities. Substituting Equations 4.18 and 4.19 into Equation 4.14, we obtain

2 2

(K* — kJ) {1 1 — E } E.=0. (4.20)

W — kvlo)Q (w - ]{?1}20

Two solutions to Equation 4.20 can be written be inspection and they are £ky. These
are purely traveling waves and are the same as those in Equation 4.16. Setting the

expression in curly braces to zero (assuming E, # 0)
w%p(w — kvg)? + wgp(w — kvig)? = (w — kvig)}(w — kvg)?. (4.21)

Equation 4.21 is extremely tedious to solve for an arbitrary set of beam parameters.
Hence, we will limit our analysis to a special case when w;, = ws, = w,. This will
enable us to relate the beams’ velocities and currents. To simplify Equation 4.21

more, let us define the following average and difference quantities

V10 + V2o

= — 4.22

2 ) ( )

A — w7 (4.23)
Q = w-— ko (4.24)
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With the above definitions and some algebra, Equation 4.21 reduces to a quadratic

equation with respect to Q2
O — 20° (W) + KPA%) + KA = 2K AWl = 0, (4.25)

which has the following roots

2k2A2w2 — KAAY
02 = (W+EA)L1— |1 . 4.2
P L ){ \" T @ A } 420
2k2A%202 — KAAY
2 2 | 1272
Q; = (w, +k°A%) {1 + .1+ = +pk:2A2)2 } (4.27)
Letting © = kA /w, and dividing Equations 4.26 and 4.27 through by w,
02 222 — 14
L = (1+2){1— |1+ 4.28
g = +x>{ +(1+x2)2}, (1.25)
02 ) 222 — 2
— = (1 1 1+ —= 7. 4.29
%2) ( +$){ + +(1+$2)2} ( )

Equations 4.28 and 4.29 are plotted in Figure 4.1. Q%/wf, and Q%/wz in Figure 4.1
are shown by the red and green curves. Equations 4.28 and 4.29 are solutions for
an absolute instability (temporal growth): & is assumed to be fixed and real as we
solve for an imaginary part of w. In the present analysis, however, we are interested
in a convective instability (spatial growth), which means that w will be assumed to

be fixed and real as we solve for an imaginary part of k [26].

In order to have a growing instability (exponentially growing solution), the wave
number, k£, in Equation 4.24 must have an imaginary part. Since w and v in Equa-
tion 4.24 are assumed to be real quantities, k£ will be a complex number provided
either €2, or ()5 is imaginary. §2; and €2y will become complex if the right-hand sides

of Equations 4.28 and 4.29 are negative for some values of x = kA /w,. According to
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Figure 4.1: Roots of Equation 4.25 as a function of z = kA Jw,. Q%/wﬁ is represented
by the red curve, while Q3 /w? is given by the green curve.

Figure 4.1, Q3 is positive for all values of x. By contrast, as can be shown, Q2 can be
negative when 0 < x < V2. Hence, this condition on z determines whether or not
there will be growing waves. Within the range 0 < = < /2, O Jw, becomes purely

imaginary and reads

Im(Ql> = + (1+x2){ 4 o 1}. (4.30)

(T+222F

The plot of the absolute value of Im(€; /w,) as a function of = kA /w, is shown
in Figure 4.2. The dashed vertical line represents the value of x that maximizes
Im(€y/w,). In Figure 4.2, growing solutions can only be obtained for values of x
lying within the endpoints of the curve. Outside the range shown in Figure 4.2, the

only possible solutions are ordinary traveling waves that lead to zero growth.
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Figure 4.2: The variation of |[Im(£ /w,)| with z = kA /w, over the range 0 < z < 1.4.
According to Figure 4.2, growing solutions with the largest gain will be obtained
when Im(€ /w,) is equal to 0.5. Differentiating Equation 4.30 with respect to = and

setting it equal to zero, we can determine the value of + = kA/w, that maximizes

Im(€/w,) and, therefore, yields the largest growth

d Q
— (Im1> = 0=

Wp

Tmax = (l{:A) = @ (4.31)

From the foregoing discussion, within the range 0 < < v/2 and with Im(Q; /w,) =

0.5, the wave number, k, from Equation 4.24 can be expressed as follows

ko= S xjip 4.32
= FJ (4.32)
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Earlier we assumed that all ac quantities vary with distance as e 7**. Hence, it is
straightforward to show that the negative and positive imaginary parts in Equa-

tion 4.32 lead to decaying and growing waves, respectively.

4.3 Gain for two electron beams of finite cross sec-

tion

In this section, our goal is to derive a theoretical formula for the gain of two co-
propagating and interacting electron beams of radius of r,. To do that, we will
first use Equation 4.31 to determine a velocity separation, Amax, corresponding to

maximum growth (gain).

In Chapters 6 and 7, we will be looking at the interaction of two electron beams
at frequencies ranging from 30 GHz to 1 THz. It can be shown that w is over
an order of magnitude or more greater than w, for typical beam parameters used
in this dissertation (Section 3.2). Hence, we can assume that the imaginary part
of k in Equation 4.32 is much smaller than the real part. With this assumption,
Equation 4.31 may be rewritten to give

Amax _ V3Fw, _ V3F [ea

= = 4.33
v 2w 2 w\ me’ (4.33)

where F' is the plasma reduction factor given in Equation 3.58 and plotted in Fig-
ure 3.3. Equation 4.31 was derived for electron beams with infinite cross section.
Therefore, the inclusion of F' in Equation 4.33 is necessary to account for the fact
that the beams under consideration are no longer infinitely wide. Figure 3.3, the
plot of F, displayed in Section 3.2 will be used extensively in Chapters 6 and 7 to
compare the theoretical gain derived in this section with that from simulations for

different ratios of beam pipe radius, r,, to beam radius, ry.
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The dc charge density, gy, in Equation 4.33 may be expressed in terms of the total
beam current, I (the sum of the currents of two interacting beams), beam radius, ry,

and average velocity of two beams, ¥ = fc, as

I
- _ 4.34
o 2mrEBe’ ( )

where a factor of two in the denominator is introduced because of our assumption
that wi, = wyp = w,. Putting Equation 4.34 into Equation 4.33 and performing some

algebraic manipulations, the expression for Apax takes the form

A haz 31 ¢
= [ —— 4.35
v 26[.4 wrb’ ( )

where [, = 4megmc? /e = 17 kA is the Alfvén current. Solving Equation 4.31 for w,

and substituting Equation 4.35, we get

W [ I 2
> _ p— 4.36
U 2631/1 T ( )

With w, /v given by Equation 4.36, the wave number, &, from Equation 4.32 becomes

w I 1
E = S P — . 4.
o T\ e, (4.37)

Taking the imaginary part of k from Equation 4.37, the gain, G, over a distance L

may be written as follows

- L | I
G = 20logel™F — QOFT—b 2BTIAloge. (4.38)

Equation 4.38 represents the theoretical gain of an exponentially growing mode re-
sulting from the interaction of two electron beams of radius r;, average velocity Ac,

and total beam current I. According to Equation 4.38, the larger the beam current
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and smaller the radius and average velocity, the higher the gain. To check the validity
of Equation 4.38, in Chapters 5, 6, and 7 the theoretical gain will be compared with
that obtained from simulations involving the interaction of monoenergetic electron

beams of radius 7.

If we consider the interaction of two 0.7-mm and 0.5-A beams with energies
20 keV and 16.95 keV (typical in this dissertation), it can be shown that G is given
by 0.35 dB/mm. This value is over 10 times greater than that (0.03 dB/mm) reported
by Chen et al. for a proposed two-stream relativistic klystron amplifier involving 1.0-
and 5.0-kA annular relativistic electron beams [23]. Hence, the proposed source,
shown in Figure 1.1, can indeed be a compact and inexpensive source of sub-mm

and mm radiation.

In Chapters 6 and 7, we will be studying and analyzing two electron beams
of radius 7, and energies F; and E, (velocities £ ¢ and 5 ¢) co-propagating and
interacting inside a beam pipe of radius r,. The interaction frequency of the beams,
their bunching frequency, is a crucial parameter along with the gain and may be

derived from Equations 4.35 and 4.36 to yield

1/2
\/§F{o,5e[ } <51+52>. (4.39)

fbunching = An meo T} Be By — Bo

Hence, fbunching depends on the total beam current, beam energies and their radii,
and the plasma frequency reduction factor. Figure 4.3 shows fbunching as a function
of Ey (energy of the second beam) for four different total beam currents, namely,
0.6 A (black curve), 1.0 A (blue curve), 1.5 A (red curve), and 2.0 A (green curve).
The values of Ey, r,, /1 and [y used to plot Figure 4.3 were 20 kV, 0.7 mm, 0.27,
and 0.265, respectively.

According to Figure 4.3, the larger the beam current and more energetic the

beams are, the higher the interaction frequency. In addition, fbunching increases
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Chapter 4. A small-signal derivation of the two-stream instability
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Figure 4.3: Bunching frequency as a function of FE, (energy of the second beam).
The total beam current, 7, is 0.6 A (black curve), 1.0 A (blue curve), 1.5 A (red
curve), and 2.0 A (green curve). Also, £y = 20 keV, r, = 0.7 mm, §; = 0.27, and
B2 = 0.265.

with decreasing beam radius (more space charge). For all currents in Figure 4.3,
the separation between the beam energies is largest at low interaction frequencies.
Moreover, the higher the current, the larger AF is, where AE = E; - E5. Note that
when the beam energies are equal, the denominator in Equation 4.39 is zero and the

interaction frequency becomes undefined, but G tends to zero.

Equations 4.38 and 4.39 are the key analytic formulas in this dissertation. Even
though Equation 4.38 does not contain frequency as a variable, GG is an implicit func-
tion of frequency via the plasma frequency reduction factor. Throughout Chapters 6
and 7, the theoretical gain will be compared with numerical gain from simulations at
different interaction frequencies to validate the 1-D theory presented in this chapter.

The calculation of numerical gain is discussed in the next chapter.

Equation 4.39 will also be used extensively in Chapters 6 and 7 to predict the
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Chapter 4. A small-signal derivation of the two-stream instability
bunching frequency at which two electron beams of given energies, currents, and radii

will interact. Theoretical predictions will be compared with those from simulations

to again check the validity of the small-signal theory in this chapter.
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Chapter 5

Simulation setup

The focus of this dissertation is 2-D particle-in-cell (PIC) simulations of the inter-
action region of the potential two-beam source depicted in Figure 1.1. Section 5.1
discusses the simulation geometry in detail. In Section 5.2, we look at the propaga-
tion and interaction of two electron beams in the simulation structure and discuss
some limitations imposed by the PIC code MAGIC. In addition, we present a brief
quantitative treatment of various stability and accuracy criteria, such as the Courant
stability, particle dynamics, spatial resolution, and aspect ratio requirements. Fi-

nally, Section 5.3 discusses the calculation of numerical gain.

5.1 Simulation geometry

The simulation setup, which was mentioned in Section 1.3, is shown in Figure 5.1.
This particular setup is used for the majority of simulations involving the interaction
of two electron beams. The geometry is described in terms of a cylindrical coordinate
system. Since all simulations presented in this dissertation are in two dimensions,

only the axial, z, and radial, r, coordinates are used. The 200-mm-long and 2.0-mm-
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Figure 5.1: Side view of the simulation geometry.

radius structure is a circular beam pipe (perfect conductor) whose thickness is equal
to dr, a cell size in the radial direction. Electron beams produced by the emitter travel
downstream, from left to right. According to Appendix A, convergence with regard
to dr requires that the number of emission cells be greater than or equal to four.
Hence, the emitter always consists of four emission cells or more. The right end of
the simulation geometry, labeled “end of simulation box”, provides an outlet through
which outgoing waves and particles exit the simulation box. To prevent space-charge
spreading of emitted electron beams, the structure is surrounded by a solenoid (not
shown). The magnetic field profile, plotted in Figure 5.2, is mathematically given by

B, = By {72T sin {ramp (Z)] }2 : (5.1)

20

where ramp (z/z9) = Max[0,Min(1, z/2y)|, 2o is the ramp length, and By is the
magnitude of the desired magnetic field given by Equation 3.77. Also, the function
Max [0, Min(1, z/zp)] is the largest value of 0 or Min(1, z/zy), where Min(1, z/z) is
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the smallest value of 1 or z/zy. In addition to B,, the radial component of the mag-

008 -
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Figure 5.2: B, component of the applied dc magnetic field, given by Equation 5.1,
for zg = 0.7 mm.

netic field, B,, is defined to satisfy V-B=0. The shape of the applied dc magnetic
field in Figure 5.2 is identical to that for Brillouin flow focusing (Section 3.3): the
emitter is shielded from the external field and electrons are born in a field-free region.
The ramp length, zy, in Equation 5.1 is set to 0.7 mm to minimize beam divergence

before the electrons start to cross the magnetic flux lines.

Figure 5.3 displays a snapshot of two 0.7-mm and 0.3-A beams (the total beam
current is 0.6 A) with energies 20 keV and 17.6 keV co-propagating and interacting
in the simulation structure in Figure 5.1. The 20-keV beam is represented by the

blue dots, while the 17.6 keV is shown by the red dots.

The length of the beams in Figure 5.3 is about half the size of the simulation
geometry in Figure 5.1. This is due to a limitation of the present version of MAGIC

used in this dissertation and will be explained in the next section. Also analyzed
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Figure 5.3: Radial distance, r, versus longitudinal distance, z, for two 0.7-mm and
0.3-A beams with energies 20 keV (blue dots) and 17.6 keV (red dots) propagating
and interacting in the simulation structure in Figure 5.1.

in the next section will be the three distinct portions labeled “tail,” “bulk,” and
“head.” Namely, it will be shown that of the three portions only the one labeled
“bulk” is used throughout the dissertation to study the interaction of two electron

streams.

Note the variation of the beam envelope for the “bulk” portion in Figure 5.3.
The magnetic field profile used to focus the beams in Figure 5.3 had the same shape
as that in Figure 5.2 (Brillouin flow focusing) and the magnitude was 0.0747 T
(Equation 3.77). As was discussed in Section 3.3, a Brillouin beam will maintain a
constant radius as it propagates. In contrast to this, as we can see in Figure 5.3,
both beams exhibit scalloping, the periodic variation of the beam envelope. It should
be said that scalloping was present in every single simulation in this dissertation.

Although we were unable to eliminate it, the scalloping amplitude never exceeded

63



Chapter 5. Simulation setup

6% of the beam radius. As a consequence, according to Appendix C, the gain of

exponentially growing modes was virtually unaffected.

5.2 Propagation and interaction of two beams in

simulation geometry

For both beams shown in Figure 5.3, the beam emission duration, tepission, 1S the
same and is less than half the simulation runtime, tyyn, the typical values of which
range from 2.4 ns to 2.8 ns in the dissertation. The reason we chose tqpission 1€ss
than half ¢yn will be clarified shortly and is particularly relevant to high-frequency
simulations (f > 400 GHz). The present version of MAGIC (version 2008.0818.1808)
used in this dissertation can support up to 5 x 10° particles (approximately 5 x 10!
electrons). On the other hand, according to Appendix A, convergence with respect
to PPC (particles emitted per cell/per time step) requires that there be 1200 par-
ticles/bunch. Let us thus estimate the total number of particles, corresponding to

1200 particles/bunch, for two modulated beams interacting at 30 GHz and 400 GHz.

According to Equation 4.39, two 0.7-mm and 0.3-A beams will interact at 30 GHz
when E; = 20 keV and FEy = 17.6 keV. Using dz = 0.17 mm and dr = 0.1 mm (from
actual simulations at 30 GHz), the electromagnetic time step, dt, from Equation F.15

18

X dzxdr

0t =5 ——————
c\/dz? + dr?

~ 2.30 x 10" sec, (5.2)

where x = 0.8 is the Courant ratio (discussed at the end of the section) and c is the

speed of light. Substituting 6t from Equation 5.2 into Equation A.2, we can estimate
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PPC that will produce 1200 particles/bunch

2.30 x 10713

The total number of particles, NV, can be estimated by

" femission 9, ppc (5.4)

N = b
dr ot

where 1}, is the beam radius. Substituting Equations 5.2 and 5.3 into Equation 5.4

and using tepission = 1.1 ns (the value used in simulations at 30 GHz), N becomes

0.7 1.1x10°°
N=-1 .

01 X 23 % 10-1 X 2 x 9 & 603, 000 particles, (5.5)

which is well below 5 x 10° particles. Hence, the imposed particle limit will not be
exceeded for the unstable interaction at 30 GHz. In addition, this will hold true even

if temission 1S @s big as tyun (2.4 - 2.8 ns).

The situation is markedly different for the interaction at 400 GHz. If we perform
calculations similar to those at 30 GHz above, it can be shown that the total number
of particles required exceeds 10 million, which is greater than the maximum number
of particles allowed (5x10%). Hence, to stop the simulation at 400 GHz from aborting,
we must make ¢,y ission Saller. It is straightforward to show that reducing ¢ ission
from 1.1 ns to 0.51 ns (the value used in simulations at 400 GHz) will bring the total

number of particles just under 5 x 10°.

The foregoing quantitative analysis illustrates why the beams displayed in Fig-
ure 5.3 have tqission 1€ss than half as big as tyyn. This restriction is imposed by the
present version of MAGIC (version 2008.0818.1808), which is capable of producing
merely five million particles. Hence, from now on, when we speak of simulations

involving cold (monoenergetic) and warm (nonzero energy spread) beams, it will be
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implied that the beam emission duration, topission, 15 always less than the corre-
sponding simulation runtime, tyyn. Although the above limitation does not apply to
interactions at 30 GHz, g ission 1S still chosen to be less than tyun, namely, 1.1 ns,

to make the simulations run twice as fast.

Having discussed the length of the beams in Figure 5.3, we will now talk about the
three portions labeled “tail,” “bulk,” and “head.” The emphasis in this dissertation
is placed on calculating gain, which will be discussed in the next section at length. To
calculate gain, as will be seen, we need to record the magnitude of the ac component
of axial electric field as two beams, like those displayed in Figure 5.3, co-propagate
and interact in the simulation structure in Figure 5.1. What we want to determine
here is whether all three portions, namely, “tail,” “bulk,” and “head,” should be

used to analyze and record the magnitude of the ac component of axial electric field.

Plotted in Figure 5.4 is the variation of kinetic energy with longitudinal distance,

26
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25 F— 17.6-keV beam
24 |
23
= 2zt ,
g |
= 21} :
= i &N bulk
o 2o Al
b I X
@ 19 .
e - ]
kT 12 F '
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15
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Figure 5.4: Kinetic energy as a function of longitudinal distance, z, for the beams
shown in Figure 5.3.
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z, for the beams in Figure 5.3. The correspondence between the “tail,” “bulk,” and
“head” portions in Figure 5.4 and those in Figure 5.3 is one-to-one. Based on the

curves in Figure 5.4, we can make the following observations:

1. The energies of blue and red electrons in the ‘bulk” region are approximately
19.8 keV and 17.4 keV and thus less than the original energies of 20 keV
and 17.6 keV. This is normal and is due to space-charge depression, which is

discussed in Section 3.1.

2. Electrons in the “tail” portion decelerate due to repulsion by their counterparts
in the “bulk” portion of the beams. As a result, the energies of some of the

electrons in the former are as many as 3 keV less than those in the latter.

3. As opposed to the “tail” portion, electrons in the “head” of the beam accelerate
away from the rest of the beam owing to repulsion by the “bulk” slice and due
to proximity of the right wall of the simulation structure. Hence, the energies
of some of the electrons are as many as 5 keV more than those in the “bulk”

portion of the beams.

As the beams continue to travel downstream, the difference in kinetic energy between
the particles in the “tail” /“head” portions and those in the “bulk” becomes even
more pronounced. Therefore, of the three regions identified in Figures 5.3 and 5.4,
the “bulk” portion is the only one truly representing the original 20-keV and 17.6-keV
beams, the energies of which, owing to potential depression, reduce to 19.8 keV and
17.4 keV inside the beam pipe. The preceding discussion leads us to conclude that
the analysis of ac electric field (calculation of gain) must be restricted to the “bulk”
portion. As a consequence, the “tail” and “head” portions shown in Figure 5.3 are

excluded from all analyses in this dissertation.

Before concluding this section, we will present a simple quantitative discussion

of stability and accuracy requirements [13] necessary for the PIC simulations in this
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dissertation. Consider 20- and 19-keV electron beams (0.7-mm and 0.3-A each)
propagating and interacting in the simulation box in Figure 5.1. According to Equa-
tion 4.39, the beams will bunch at 70.1 GHz. Using the average beam velocity, v =
0.8 x 10® m/s, the wavelength corresponding to this interaction is

A=- ~1.13mm. (5.6)

~| <

According to Appendix A, convergence with regard to dz (cell size in axial direction)
is achieved (put differently, the spatial resolution requirement is met) if A > 6 x dz.
Using the value of A\ from Equation 5.6, we see that dz must not exceed 1.13/6 ~
0.18 mm. To determine dr (cell size in radial direction), we need to take into account
the aspect ratio requirement, which states that the ratio of dz to dr (or vice versa)
must not exceed 5, and convergence with regard to dr (Appendix A), which requires
the number of emission cells be at least four. Since the emitter radius is 0.7 mm,
the largest value of dr that will satisfy both requirements is 0.7/4 = 0.175 mm.
Substituting y = 0.8 (the value used in this dissertation), dz = 0.18 mm, and dr =

0.175 mm into Equation F.15 and solving it for the time step, we have

6t ~ 3.35 x 107 sec. (5.7)

The Courant ratio, x, which must be less than one, has a default value of 0.8 in
MAGIC to satisfy the Courant stability requirement (Appendix F). Using Equa-
tion 5.7 and ¥ = 0.8 x 10® m/s, in a single time step every particle will travel a

distance equal to

d =0t x v~ 0.027 mm, (5.8)

which is less than both dz and dr and, therefore, does not violate the particle dy-

namics requirement (Appendix F). The foregoing simple calculations will not be
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repeated elsewhere as the requirements mentioned are automatically met for every

single simulation considered in this dissertation.

5.3 Calculation of numerical gain

Over the next two chapters, we will be comparing theoretical gain (Equation 4.38)
with that obtained from simulations (numerical gain). Hence, the calculation of
numerical gain is central to this dissertation and it is our intention here to illustrate
how this important quantity is determined. Figure 5.5 shows the setup in Figure 5.1

with parallel line segments placed throughout the beam pipe. The line segments
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Figure 5.5: The simulation geometry from Figure 5.1 shown with FFT probes.

represent probes for recording the magnitude of the ac component of axial electric
field, |E,(z,t)|, as two electron beams interact and propagate in the structure. There
are 19 probes in total. The horizontal spacing is uniform and equal to 9.5 mm, the

first and last probes being located at z = 2.5 mm and z = 173.5 mm, respectively.
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Note that the smallest beam radius considered in this dissertation equals 0.7 mm.
Hence, the probes extend from 0.3 to 0.6 mm in the radial direction. |E,(z,t)| is
recorded by performing a fast Fourier transform (FFT) on it at every single probe.
The FFT depends on a time window for the Fourier integration and a frequency
window for the frequency boundaries. The former is chosen such that the width of
the window is at least 10 times the period at the anticipated interaction frequency of
the beams. In addition, as explained in Section 5.2, the time window must be short
enough to exclude the “head” and “tail” sections from the FFT analysis. |F,(z,t)]
data thus recorded can be retrieved and plotted versus either frequency at a given
axial position or as a function of longitudinal distance, z. To calculate gain, we need

to do the latter and the plot of |E,(z,t)| versus z is shown in Figure 5.6.

1000 F
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Figure 5.6: The variation of |E,(z,t)| with z for the interaction of two 0.7-mm and
0.5-A modulated (black curve) and unmodulated (green curve) electron beams. The
solid red and blue curves are given by Equations B.19 and B.22. The dashed red and
blue curves are given by Equation 5.9.
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The green curve in Figure 5.6 was generated from a simulation involving the
interaction of two 0.7-mm and 0.5-A unmodulated (with no initial energy modu-
lation) beams with energies 20 keV and 16.95 keV. The black curve was obtained
from a simulation involving the interaction of two modulated (energy-modulated at a
given frequency) beams with exactly the same beam parameters as the unmodulated
beams. The modulation amplitude (Appendix D) was 1% at 30 GHz. The solid red
and blue curves are curve fits given by Equations B.19 and B.22 (Appendix B). The
dashed red and blue curves represent curve fits to the linear regions of the two data

sets and are given by the following function
y = Al 4 ), (5.9)

where A and R are fitting parameters. The form of Equation 5.9 is dictated by
Equation 4.32, the complex conjugate roots of the dispersion relation for two electron
beams (Equation 4.25). As was discussed in Chapter 4, the complex conjugate roots
yield exponentially growing and decaying solutions. Since the data in Figure 5.6 are

plotted on a log-linear scale, the linear regions correspond to exponential growth.

According to Appendix B, |E,(z,t)| is a function of the modulation amplitude.
As a result, the initial slope for the black curve is positive and large. By contrast,
the initial slope for the green curve is approximately zero. The initial slope of the
solid red curve (Equation B.19) is equal to 706403.3 4 637444.9 V/m? and is within
5% of that for the black curve in Figure 5.6. However, note that the error is as large
as 90%. Both the black and solid red curves exhibit an oscillatory behavior and the
oscillation amplitude of the latter is much more pronounced than that of the former.
Consequently, as can be seen in Figure 5.6, the agreement between the black and

solid red curves is poor for values of z less than or equal to 60 mm.

The solid blue curve (Equation B.22) was obtained from Equation B.19 by setting

the modulation amplitude and initial slope of |E,(z,t)| equal to zero. Nevertheless,
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as we can see in Figure 5.6, the solid blue curve has a slope that is comparable to that
of the solid red curve and is much larger than that of the green curve. Similar to the
modulated case, both the green and solid blue curves oscillate. Although the solid
blue curve models the shape of the data (green curve) fairly well within the range
0 < z < 69 mm, the discrepancy between the former and the latter is significant for

values of 2z less than 97.5 mm.

Our task in this section is to determine the gain of exponentially growing modes
from simulations. To calculate numerical gain (as opposed to the theoretical gain in
Equation 4.38), we determine the slopes of the linear regions in Figure 5.6 and the

values thus calculated are substituted into the following expression
G = 20log{e™*} = 20RLloge, (5.10)

where (G, the power gain, has units of decibels, R has units of inverse length, and
L has units of length. According to Figure 5.6, the solid red and black curves agree
poorly within the range 0 < z < 60 mm. In addition, the agreement between the
solid blue and green curves is poor over the range 0 < z < 97.5 mm. However,
as can be seen in Figure 5.6, the solid red, black, and dashed red curves converge
in the linear portion of the data. Likewise, the solid blue, green, and dashes blue
curves converge in the linear region, which corresponds to exponential growth. The
values of GG, over a length of one millimeter, obtained from the solid and dashed red
curves are given by 0.349 £ 0.018 dB/mm and 0.353 + 0.016 dB/mm, while those
extracted from the solid and dashed blue curves equal 0.359 £ 0.013 dB/mm and
0.358 + 0.012 dB/mm. Hence, the largest percent difference (ignoring error bars)

between the values of G is 2.6% and the agreement is very good.

On the basis of the foregoing discussion, Equation 5.9 will be used in place of
Equations B.19 and B.22 (theoretical curve-fit formulas from Appendix B) through-

out the rest of the dissertation to curve fit |E,(z,t)|-versus-z data obtained from
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simulations involving the interaction of both unmodulated and modulated beams.
Also, the values of R determined from Equation 5.9 will be used in Equation 5.10
to calculate numerical gain. Moreover, Equation 5.10 will be compared with Equa-
tion 4.38 (theoretical gain formula) in Chapters 6 and 7 in order to validate the

small-signal analysis presented in Chapter 4.
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Interaction of unmodulated

electron beams

In this chapter, we present simulation results for the interaction of unmodulated
electron beams at low-to-medium frequencies (less than 400 GHz). In this disserta-
tion, unmodulated beams refer to unseeded beams or beams with no initial energy
modulation. Modulated beams refer to beams seeded (energy-modulated) at a given
frequency. Results for simulations involving the interaction of modulated beams are
deferred to the next chapter. The primary emphasis in Chapters 6 and 7 is on the
variation of the gain of exponentially growing modes with total beam current, beam
radius, and percent energy spread. In addition, we look at the saturation length of a
growing mode as a function of total beam current. Both cold (monoenergetic) beams
and warm (Gaussian) beams are treated. Sections 6.1 through 6.2 are devoted to

cold beams, while Section 6.3 discusses the interaction of warm beams.
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6.1 Studies at low interaction frequency

In this dissertation, we treat both cold and warm beams. Hence, we open this
section by briefly introducing the interaction of cold beams, which are the subject of

Sections 6.1 through 6.2. Warm (Gaussian) beams will be discussed in Section 6.3.

Figure 6.1 depicts energy profiles from a simulation involving the interaction
of two 0.7-mm and 0.3-A cold electron beams with energies 20 keV and 17.6 keV.
The profiles in Figure 6.1 were recorded immediately after the emitter shown in

Figure 5.5. According to Figure 6.1, the profiles are sharply defined and each has a
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Figure 6.1: Kinetic energy distribution for the interaction of two cold beams with
energies 20 keV and 17.6 keV.

width of approximately 100 eV. As the cold beams travel downstream and interact,
the profile width increases. Nevertheless, the energy spread remains much less than
the beam energy difference and the beams can be considered to be monoenergetic.

Note that the beams may no longer be monoenergetic during the latter stages of their
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interaction due to nonlinear effects. However, since we are interested in the linear
region of the instability growth, cold beams in this dissertation will be referred to as

beams with 0% energy spread.

In Figure 6.1, the initial energies of the two beams are centered at 19.868 keV
and 17.465 keV. Section 3.1 predicts that due to space-charge depression 20 keV and
17.6 keV will shift to 19.909 keV and 17.503 keV. Hence, the values from theory
are approximately 0.2% less than those from simulations. However, if we take into
account the finite profile width in Figure 6.1, the discrepancy between theory and

simulations is negligible.

Equation 4.39 predicts that the cold beams in Figure 6.1 will interact at 30 GHz.
Even though space-charge depression causes the beam energies to shift, it can be
shown (Equation 4.39) that the change in bunching frequency (30 GHz) is negligi-
ble (=~ 0.1%). As will be seen later, the largest frequency component does occur
at 30 GHz for the interaction of both unmodulated and modulated cold beams in
Figure 6.1. Despite the fact that space-charge depression was present in every single
simulation in this dissertation, the influence on the interaction frequency (given by
Equation 4.39) of two co-propagating cold beams was found to be negligible for all
interaction frequencies considered (30 GHz to 1 THz). Specifically, it was determined

that the variation of interaction frequency approximately equals 0.1%.

According to Equation 4.38, space-charge depression will affect the theoretical
gain, henceforth denoted by Gy, of an exponentially growing mode. Considering
the interaction of two 0.3-A electron beams at 30 GHz, it can be shown that the
value of Gy, (if space-charge depression is included) varies by around 0.3%. The
variation in Gy, increases to about 1.2% for the interaction of two 1.1-A beams at
30 GHz. At higher interaction frequencies, according to Equation 4.39, the energies
of two interacting beams are much closer. As a result, e.g., at 1 THz, the variation

in Gyj, decreases to about 0.2% and 1.1% for the interaction of two 0.3-A and 1.1-A
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electron beams, respectively. It should be noted that the variation of Gy, due to
space-charge depression does not alter the results presented markedly and, thus, is

not discussed in this dissertation.

Figure 6.2 shows the interaction of two 1.0-mm and 0.5-A cold beams with ener-

gies 20 keV and 18 keV. The 20- and 18-keV beams in Figure 6.2 are shown by the
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Figure 6.2: Radial distance versus longitudinal distance for the interaction of 1.0-mm
and 0.5-A cold beams with energies 20 keV and 18 keV.

red and blue dots, respectively. The inset shows an enlarged portion of the 20-keV

beam towards the end of the simulation.

In Figure 6.2, the beam emission duration, femissions for each beam was 2 ns,
while the simulation runtime, tyypn, equaled 2.8 ns. Also, the grid sizes in longitudinal
and radial directions were 0.17 mm and 0.1 mm. Moreover, the electromagnetic
time step, 0, was as small as 1.93 x 107 sec. With 1200 particles/bunch (as
explained in Appendix A), the total number of particles (Equation 5.4) used in the

simulation was approximately 1.4 million (half as many per beam). It should be
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noted that the particles shown in Figure 6.2 represent macro particles, each of which
on average contains 10° electrons. Hence, 1.4 million macro particles correspond to

about 1.4 x 10! electrons.

According to Figure 6.2, the two beams are uniform up to about z = 100 mm.
For greater values of z we start to observe variations in density, commonly known
as bunching [16]. As a result, over the range 100 < =z < 150 mm, the elec-
trons are no longer uniformly distributed and they are arranged in bunches. This is
shown in the inset, which represents a portion of the 20-keV beam within the range
135 < 2z < 145 mm. In the inset, we can see several bunches that overlap and
are not clearly defined. This is a characteristic feature of all particle plots involving
unmodulated beams in this dissertation. By contrast, as will be seen in the next
chapter, bunches formed by modulated beams are sharply defined, evenly spaced,

and possess a comb-like structure.

As can be seen in Figure 6.2, both beams exhibit scalloping (Chapter 3), the
periodic variation of beam radius, 7,. Scalloping was present in all simulations in
this dissertation. Even though we were unable to eliminate it, its amplitude was
kept to about 6% of r;,. According to Appendix C, gain obtained from simulations is
virtually unaffected as long as the scalloping amplitude is less than 13% of r;,. Hence,
as far as this dissertation is concerned, the effect of scalloping on numerical gain is

negligible at best and this topic will not be discussed further in Chapters 6 and 7.

6.1.1 Axial electric field analysis

Our primary goal in this dissertation is to compare numerical gain, henceforth de-
noted by Ggjyy, obtained from simulations with that, Gy, given by the 1-D theory
(Equation 4.38). To calculate numerical gain, according to Chapter 5, we need

to extract and analyze the magnitude of the ac component of axial electric field,
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|E.(z,t)]. Hence, Subsection 6.1.1 studies |F.(z,t)| in detail at a low interaction
frequency, specifically, 30 GHz. The analysis of |F.(z,t)| at higher frequencies is

presented in Section 6.2.

Figure 6.3 shows an FFT of the magnitude of axial ac electric field, |E,|, for the
interaction of two 0.7-mm cold electron beams. For the red curve, the beam currents
were 0.5 A. For the blue curve, the beams were 0.3 A each. In both cases, the energy
of one of the beams was 20 keV. The energies of the other two beams were determined
from Equation 4.39 with fbunching = 30 GHz. Note that the legend in Figure 6.3
(or any other plot in this dissertation) gives the total current, I, of two interacting

beams.
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Figure 6.3: FFT of |E,| for the interaction of two 0.7-mm cold beams at 30 GHz.
The blue and red curves correspond to I = 0.6 A and I = 1.0 A.

No saturation was observed for the interaction of 0.3-A beams. As a result,
the blue curve was recorded at z = 173.5 mm, the location of the last FFT probe.

|E.| did reach saturation for the 0.5-A beams. Hence, the red curve was recorded
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at z = 145 mm, right before the onset of nonlinearities. To resolve |E,| properly
(Section 5.3), the FFT curves were recorded using a 0.4-ns time window, which
equaled 12 periods at 30 GHz, the frequency component of interest. The frequency
window selected ranged from 2 GHz to 150 GHz, while the frequency resolution,

corresponding to the 0.4-ns time window, was 2.5 GHz.

As predicted by Equation 4.39, for both 0.6 A and 1.0 A the largest frequency
component occurs at 30 GHz, which at first sight appears to be dominant. However,
note that the curves have a finite full width at half maximum (FWHM). For the
red curve, the FWHM frequency approximately equals 8.8 GHz and is slightly larger
than that for the blue curve (=~ 7.3 GHz). Recalling that the frequency resolution is
equal to 2.5 GHz, it can be shown that the magnitude of a frequency component at
32.5 GHz is comparable to that of the 30-GHz mode. To quantify, the ratio of |E,|
for 30 GHz to that for 32.5 GHz is approximately 1.16 and 2.18 for 1.0 A and 0.6 A,

respectively. Hence, the larger the total beam current, the smaller the ratio.

As we can see in Figure 6.3, the larger the total beam current, the more competing
modes there are (2.5 < f < 25 GHz and f > 37.5 GHz). In addition, the
larger the total beam current, the larger their magnitudes are relative to |E,| of the
30-GHz mode. Note that with the exception of the fundamental mode, all modes
(including harmonics) in this dissertation are referred to as competing modes. By
dividing |E,| at 30-GHz by the average value of |E,| for the rest of the frequencies
shown in Figure 6.3, the average signal-to-noise ratios for 0.6 A and 1.0 A yield
13.8 and 9.5, respectively. As will be seen in Section 6.2, the number of competing
modes increases for higher interaction frequencies. By contrast, modulated beams,
discussed in Chapter 7, can interact at a single frequency given a sufficiently high

modulation amplitude.

The blue curve in Figure 6.3 shows a snapshot of a 30-GHz mode. In Figure 6.4,

we can see how the 30-GHz mode (black curve) varies with longitudinal distance.
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Figure 6.4: |E,| versus z for the interaction of two 0.7-mm and 0.3-A cold electron
beams at 30 GHz. The solid black, red, and green circles represent 30-, 60-, and 90-
GHz modes. The open red and green circles are TMgy; and TMg, waveguide modes.

According to Figure 6.4, the fundamental mode (30 GHz) starts out as the small-
est of all modes and its magnitude is a factor of 10 less than that of the 2nd and
3rd harmonics. As we can see in Figure 6.4, it is only around z = 100 mm that the
30-GHz mode becomes the largest mode. For values of z greater than 100 mm, the
30-GHz mode continues to grow exponentially all the way to z = 173.5 mm without
saturating over the length of the beam pipe. Note that at z = 173.5 mm the mag-
nitude of the fundamental is at least an order of magnitude greater than that of the
rest of the modes in Figure 6.4. Hence, the gain of the 30-GHz mode, which is equal
to 0.29 dB/mm (this will be shown later in the section), is much greater than that

of the two harmonics and TMg; and TMg, waveguide modes depicted in Figure 6.4.

The open red and green circles in Figure 6.4 represent TMy; and TMgy, waveguide

modes at 57.5 GHz and 132 GHz for a 2.0-mm circular waveguide (recall that the
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simulation structure in Figure 5.5 has an inner radius of 2 mm). Although the TMg;
and TMy, waveguide modes have the largest initial magnitudes, |E,| of the former
being a factor of two greater than that of the latter, they exhibit no growth over the
range of z values shown. As we can see in Figure 6.4, the 2nd and 3rd harmonics
(solid red and green circles) increase towards the end of the simulation. However,
their magnitudes are over a factor of 10 less than that of the fundamental mode.
The foregoing discussion leads us to conclude that the 30-GHz mode is clearly the

most dominant mode in Figure 6.4.

Figure 6.5 is similar to Figure 6.4, except that it shows the variation of |E,| with

longitudinal distance, z, for the 1.0-A case in Figure 6.3. As in Figure 6.4, the solid
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Figure 6.5: |E.| versus z for the interaction of two 0.7-mm and 0.5-A electron beams.
The solid black, red, and green circles represent 30-, 60-, and 90-GHz modes. The
open red and green circles are TMy; and TMg, waveguide modes.

black, red, and green circles represent 30-, 60-, and 90-GHz modes. The open red

and green circles display the variation of TMy; and TMg, waveguide modes.
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As we can see in Figure 6.5, for a total beam current of 1.0 A the 30-GHz mode
starts to grow exponentially a bit sooner and saturates. Its gain (discussed later in
this section) is 0.358 dB/mm. As was the case for the interaction of 0.3-A beams
in Figure 6.4, the 30-GHz mode has the smallest magnitude at z = 2.5 mm, where
its |E,| is over an order of magnitude less than that of the 60- and 90-GHz modes
and over two orders of magnitude less than that of the TMy; waveguide mode. Even
though the 30-GHz mode in Figure 6.5 starts to grow earlier, it overtakes the rest
of the modes at about z = 100 mm, which is the same longitudinal location as that
for the 30-GHz mode in Figure 6.4. Comparing the fundamental mode in Figure 6.5
with that in Figure 6.4, we see that the former saturates at z = 164 mm, while the
latter fails to do so over the same range of z values shown. According to Figure 6.5,
the gain of the 30-GHz mode is much greater than that of the rest of the modes in

the linear region, which extends to approximately z = 145 mm.

The variation of the TMy; and TMy, waveguide modes in Figure 6.5 is very
similar to that in Figure 6.4 up to about z = 125 mm, where the waveguide modes
in Figure 6.5 start to grow. The same is true of the 2nd and 3rd harmonics, which
begin to grow and saturate at about the same location as the fundamental mode.
The growth of the 60- and 90-GHz modes is clearly indicative of the onset of a
nonlinear regime when |E,| becomes rich in harmonics. At the point of saturation,
the magnitude of the 30-GHz mode is approximately a factor of 3.5 and 6.7 greater
than that of the 2nd and 3rd harmonics. For the interaction of two 0.7-mm and 0.5-
A modulated beams, as it will be shown in Chapter 7, the 60- and 90-GHz modes
become comparable in magnitude to the 30-GHz mode. Note that nonlinear effects
are outside the scope of this dissertation. Hence, we can conclude, as we did for
Figure 6.4, that the 30-GHz mode is again the most dominant mode in the linear

regime.

Figure 6.5 showed the variation of |E,| for 5 different modes. Figure 6.6 dis-
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plays the evolution of |FE,| for all possible modes, within a frequency range of
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Figure 6.6: Contour plot of |E.| for two 0.7-mm and 0.5-A electron beams interacting
at 30 GHz.

2 < f < 150 GHz, for the interaction of two 0.7-mm and 0.5-A electron beams
discussed in Figures 6.3 and 6.5. In Figure 6.6 and other contour plots in this chap-
ter, the left-hand vertical axis is frequency in units of GHz. The horizontal axis is
longitudinal distance, z, in units of mm. A color scale legend next to the right-hand

vertical axis gives numerical values of |E,| in units of (kV/m)/GHz.

In Figure 6.6, only two modes stand out at the start of the interaction, namely,
those at 57.5 GHz and 132 GHz. These are the same TMgy; and TMy, waveguide
modes as in Figure 6.5 (open red and green circles). As we can see in Figure 6.5,
the TMg, mode maintains approximately the same magnitude throughout most of

the interaction and starts to grow well into the nonlinear region. By contrast, the
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TMy; waveguide mode first decreases and then begins to grow shortly before the
fundamental mode reaches saturation. At about the same longitudinal distance
we can also observe the 60- and 90-GHz modes appearing, the former being more
pronounced than the latter. According to Figure 6.6, 5 modes shown in Figure 6.5
appear to be the most important modes for the interaction of two 0.7-mm and 0.5-A

electron beams at 30-GHz, the 30-GHz mode being the most dominant.

From Equation 4.39 (theory), two 0.7-mm and 0.5-A electron beams with energies
20 keV and 16.95 keV (Figure 6.5 and the red curve in Figure 6.3) will interact at
30 GHz. Note that the largest mode in Figure 6.6 has a finite FWHM frequency,
which is about 8.8 GHz (also shown in Figure 6.3). However, both theory and
simulations agree in that the peak frequency clearly occurs at 30 GHz. The same
holds true for the case of two 0.7-mm and 0.3-A electron beams interacting at 30 GHz

(Figure 6.4 and the blue curve in Figure 6.3).

6.1.2 Gain and space-charge effects

Having analyzed |E.| for the interaction of two electron beams at 30 GHz, we will

now examine the gain of a 30-GHz mode for different beam currents and beam radii.

Shown in Figure 6.7 is |E,| as a function of longitudinal distance, z, from 9
different simulations involving the interaction of two 0.7-mm electron beams. In
all simulations, the energy of the faster beam was fixed at 20 keV. The energies
of slower beams were determined from Equation 4.39, where fbunching = 30 GHz,
F = 0.8 (average value), and § = 0.26 (average value). Note that the values of
current displayed in Figure 6.7 represent the total current of two interacting beams.
For instance, the green curve (0.8 A) was generated by the interaction of two 0.4-A

beams.

The curves in Figure 6.7 are plotted on a log-linear scale so we can focus on
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Figure 6.7: The variation of |F,| of a 30-GHz mode for 9 different values of the total
beam current. Solid gray lines are curve fits given by Equation 5.9.

the linear portions of the data. As was explained in Chapter 5, the linear regions
correspond to exponential growth and they are used to determine numerical gain,
Ggim- The solid gray lines on top of the data sets represent curve fits given by

Equation 5.9,
y = A(eRz +€—Rz)’

where z is longitudinal distance and R is proportional to Gy, via Equation 5.10.

Figure 6.7 does not show any data points past saturation to exclude nonlinear
regions from the analysis. Since the modes corresponding to large currents in Fig-
ure 6.7 saturate faster, they are plotted with fewer data points. The variation of the

saturation length for the modes in Figure 6.7 is explored at the end of this section.

According to Figure 6.7, the initial value of |E,| increases with increasing total

beam current, I. Also, its initial angle is positive for the values of I less than or
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equal to 1.4 A and negative for larger values. We will see in the next chapter that
the initial angle of |E,| for modulated beams is always positive. Note in Figure 6.7
that two pronounced dips in |E,| move towards lower values of z with increasing
total beam current. All curves in Figure 6.7 exhibit strong exponential growth. In
addition, as I ranges from 0.6 A to 2.2 A, the slope of the linear region increases and
will yield larger Ggi,,. Extracting the values of R from Figure 6.7 and substituting
them into Equation 5.10, we will now compare Gy, and Gy}, (Equation 4.38).

Figure 6.8 displays Ggiyy, (red curve) determined from Figure 6.7 as a function of

total beam current, /. Also Plotted in Figure 6.8 is Gy, (red curve). The red curve
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Figure 6.8: The variation of gain of a 30-GHz mode with total beam current. The
blue curve represents G, and the red curve is theoretical gain.

was generated by substituting r, = 0.7 mm, 3 = 0.26, and F = 0.712 (the plasma

frequency reduction factor from Figure 3.3) into Equation 4.38.

Over most of the range shown in Figure 6.8, simulations and theory agree in that

larger interaction current results in higher gain. The only exception is the data point
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for 2.2 A. Note that for the values of I greater than or equal to 1.2 A, the error bars
in Figure 6.8 are markedly larger. This is due to the curves (for I > 1.2 A ) in

Figure 6.7 having fewer data points.

The average deviation (excluding error bars) between Gy, and Gy, in Figure 6.7
is approximately equal to 2.9%. If we take the error bars into account and consider
the fact that we are comparing one-dimensional theory and two-dimensional simu-
lations, then the agreement between Ggjy, and Gy, is very good. Hence, based on
Figure 6.8, we may conclude that for the interaction of 0.7-mm beams at 30 GHz
Ggim Vvaries in accordance with the 1-D theory. Namely, Gg;,, varies as the square

root of total beam current, V1.

Our next task is to examine the variation of the gain of a 30-GHz mode with beam
radius, 7,. We will do this by looking at three simulations involving the interaction
of 0.5-A beams with three different beam radii, specifically, 0.7 mm, 1.0 mm, and

1.4 mm.

Figure 6.9 is similar to Figure 6.7 and displays |E,| as a function of longitudinal
distance, z, from three different simulations. For each of the simulations, the total
beam current, I, was kept at 1.0 A, while the beam radii were 0.7 mm (blue curve),
1.0 mm (green curve), and 1.4 mm (burgundy curve). As in Figure 6.7, the energy
of the faster beam in each case was fixed at 20 keV. The energies of slower beams
were determined from Equation 4.39, where fbunching = 30 GHz. The solid gray
lines shown in Figure 6.9 are given by Equation 5.9 and represent curve fits to the

linear portions of the data.

What we first notice in Figure 6.9 is that the initial slope of |FE,| is nearly zero
for the 0.7-mm and 1.4-mm cases. However, the initial slope is negative and large
for the 1.0-mm case. When examining Figure 6.7, we identified two pronounced

dips in the data for every single current. Although the same holds true for the blue
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Figure 6.9: The variation of |E,| of a 30-GHz mode for three different beam radii.
Total Beam current is 1.0 A. Solid gray curves are curve fits from Equation 5.9.

and burgundy curves in Figure 6.9, the green curve clearly shows three dips and
is markedly different from the other two cases for values of z less than or equal to
40 mm. Note that the initial value of |E,| in Figure 6.7 increases with increasing

space charge. By contrast, the initial values of |E,| in Figure 6.9 are in random

order.

According to Figure 6.9, the smaller the beams radius (more space charge), the
larger the slope of the linear portion is and, thus, the higher the gain. This is
consistent with the 1-D theory discussed in Chapter 4. Determining the values of R
from the curve fits and substituting them into Equation 5.10, we will again make a

comparison between simulations and theory, Gy, and Gyy,.

In Figure 6.10, Ggy, (blue curve) of the three 30-GHz modes in Figure 6.9 is
plotted as a function of beam radius, r,. To generate Gy, (red curve), B was set

equal to 0.26 and the plasma frequency reduction factors used were 0.712, 0.80, and
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Figure 6.10: The variation of gain of a 30-GHz mode with beam radius. The blue
and red curves represent simulations and theory.

0.86, respectively.

According to Figure 6.10, as the beam radius varies from 1.4 mm to 0.7 mm,
both Gg;ip, and Gy, increase by approximately 40%. This means that, in comparison
with 1.0- and 1.4-mm beams, the interaction of two 0.7-mm beams provides a larger
amplification over the same interaction distance. Hence, the proposed radiation
source (Figure 1.1) based on the interaction of two 0.7-mm beams would be superior

to that involving the interaction of either two 1.0- or 1.4-mm electron beams.

A significantly larger error bar for r, = 0.7 mm in Figure 6.10 is due to the fact
that the blue curve in Figure 6.9 has fewer data points. As we can see in Figure 6.10,
the agreement between Ggjp, and Gy, is very good even if the error bars are ignored
(the average deviation between the two is less than 4%). This enables us to conclude

that, for the interaction of 0.5-A beams at 30 GHz, G, and Gy, vary in the same
fashion, namely, they vary as \/I/r?.
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Figures 6.8 and 6.10 explore the variation of the gain of a 30-GHz mode with
total beam current, 7/, and beam radius, 7, separately. Figure 6.11 combines the two
plots and displays the gain of a 30-GHz mode as a function of space charge density

in units of A/mm?.
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Figure 6.11: The variation of gain of a 30-GHz mode with space charge density. The
blue curve corresponds to simulations. The red and magenta curves represent theory.

The magenta curve in Figure 6.11 is G, and was generated by setting the plasma
frequency reduction factor, F', equal to unity in Equation 4.38. Recall from Chapter 3
that F' = 1 always holds for infinitely large r, and r,. The reason the magenta curve is
plotted in Figure 6.11 is to stress the importance of estimating the value F' correctly
(Figure 3.3). As we can see in Figure 6.11, the values of Gy, from the magenta and

red curves differ by as much as 29%.

When exploring Figures 6.8 and 6.10, we pointed out how good the agreement was
between simulations and theory. The shape of the blue and red curves in Figure 6.11

reinforces our previous observation. Hence, for the interaction of two electron beams
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at 30 GHz, we can state that the variation of both G, and Gy, with total beam
current, I/, and beam radius, 73, has a functional dependence given by /I /rZ.

When discussing the proposed source of mm and sub-mm wave radiation in Chap-
ter 1, one of the important features we stressed was its compactness. This disserta-
tion is concerned with simulating the proposed source, namely, its interaction region,
which certainly affects the overall size of the device. Hence, it would be interesting
to determine whether or not the length of the interaction region can vary with total
beam current. To that end, we will present a brief quantitative discussion of the
saturation length of a growing 30-GHz mode for several values of the total beam

current, I.

Shown in Figure 6.12 is | E,| of a 30-GHz mode for 9 different total beam currents.

The curves displayed are exactly the same as those in Figure 6.7. Note, however,
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Figure 6.12: The variation of |E,| of a 30-GHz mode for I ranging from 0.6 A to
22 A
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that Figure 6.12 depicts the curves both before and after saturation (for currents >

1 A).

Over the range of z values shown in Figure 6.12, no saturation is observed for
I less than or equal to 0.8 A. The 30-GHz mode begins to saturate for values of
I greater than or equal to 1.0 A. According to Figure 6.12, the larger the total
beam current, the faster the corresponding mode grows. In addition, the larger the
total beam current, the shorter the longitudinal distance required for the 30-GHz
mode to reach saturation. Hence, the interaction region and, thus, the proposed
radiation source can indeed be made more compact by increasing the currents of two

interacting electron beams.

The effect of the total beam current on the saturation length of the 30-GHz

mode shown in Figure 6.12 is explored in Figure 6.13. The green curve depicted in
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Figure 6.13: The variation of the saturation length of the 30-GHz mode from Fig-
ure 6.12 with beam current (green curve). The solid red curve is given by y = Bz™.
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Figure 6.13 is an estimate. For example, the value of the saturation length for 1.2 A
was generated by averaging z = 135.5 mm and z = 145 mm for the red curve in
Figure 6.12. Likewise, the saturation length for 2.2 A (cyan curve) was obtained by

calculating the average of z = 97.5 mm and z = 107 mm in Figure 6.12.

To quantify the variation of the saturation length with total beam current, the

green curve in Figure 6.12 is fitted with a power function given by

y = Ba". (6.1)

The fitting parameters, B and n, determined from Figure 6.12 equal 155.14+1.78 and
—0.51£0.025. Hence, as the beam current varies from 1.0 A to 2.2 A, the saturation
length decreases from 155 mm to 103 mm. Therefore, the advantage of using two
1.1-A beams over, say, two 0.5-A beams is clear: not only does it reduce the length
of the interaction region by 33%, but we also get a larger amplification (higher gain).
The disadvantage of using high-current electron beams for amplification is that they
require larger magnetic fields to counteract space-charge expansion. For instance,
to focus 0.6-A and 0.7-mm beams, we would need a magnetic field of the order of
0.075 T. By contrast, 1.1-A and 0.7-mm beams would require 0.14 T, which is a

fairly large value for a compact radiation source.

6.2 Studies of frequency dependence

In the previous section, we studied the interaction of two electron beams at 30 GHz.
We start Section 6.2 by analyzing the magnitude of ac axial electric field at medium
interaction frequencies, specifically, 110 GHz and 210 GHz. The second part of Sec-

tion 6.2 is devoted to space-charge effects at low and medium interaction frequencies.
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6.2.1 Axial electric field analysis

Figure 6.14 shows an FFT of | E.| for two 0.7-mm cold beams interacting at 110 GHz.

For the red curve, the beam currents were 0.5 A and their energies 20 keV and
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Figure 6.14: FFT of |E,| for the interaction of two 0.7-mm cold beams at 110 GHz.
The blue and red curves correspond to I = 0.6 A and I = 1.0 A.

19.165 keV. For the blue curve, the beam currents were 0.3 A each and the corre-
sponding energies equaled 20 keV and 19.350 keV. Both curves in Figure 6.14 were
recorded at z = 164 mm, before the onset of nonlinearities. To resolve |E,| well
(as explained in Section 5.3), the curves were obtained using a 0.3-ns time window,
which was equivalent to 33 periods at 110 GHz. The FFT frequency window ranged
from 10 GHz to 200 GHz, while the frequency resolution, corresponding to the 0.3-ns

time window, was equal to 3.3 GHz.

As predicted by Equation 4.39, for both currents in Figure 6.14 the largest fre-

quency component occurs at 110 GHz. As opposed to theory, however, the simulation
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results exhibit a clear multi-mode behavior and the curves look much worse than for
the interaction at 30 GHz in Figure 6.3. In Figure 6.14, a rough estimate of the
FWHM frequency gives 80 GHz for I = 1.0 A and 50-60 GHz for I = 0.6 A. These
values are about a factor of 10 greater than those in Figure 6.3. Hence, the number
of competing modes in Figure 6.14 is significantly greater than for the interaction at

30 GHz (Figure 6.3).

As in Figure 6.3, the higher the total beam current in Figure 6.14, the larger the
magnitude of competing modes in relation to |E,| of the 110 GHz mode. Indeed, a
rough estimate of the average signal-to-noise ratio in Figure 6.14 yields 3.9 and 3.0
for I = 0.6 A and I = 1.0 A, respectively. Note that these values are about a factor
three less than those for the interaction at 30 GHz in Figure 6.3. As will be shown in
the next chapter, driven or modulated beams can be made to exhibit a single-mode

behavior even at frequencies as high as 1 THz.

Our next task is to study the evolution of |E,| with longitudinal distance so
we can eventually compare G, and Gy, for interactions at medium frequencies.
Figure 6.15 displays the variation of |E,| with longitudinal distance, z, for the inter-

actions discussed in Figure 6.14.

For I = 0.6 A in Figure 6.15, the 110-GHz mode is initially smaller than both
TMy; and TMgy, waveguide modes. However, at about the same location as the 30-
GHz mode in Figure 6.4, the 110-GHz mode overtakes the waveguide modes and
grows without saturating. It will be shown later that its gain equals 0.289 dB/mm,
which is within 0.4% (excluding error bars) of that of the 30-GHz mode in Figure 6.4.
Although the TMy; waveguide mode (open squares) is the largest mode at the start
of the simulation, it does not grow over the range of z values shown. By contrast,
the TMgy mode (open circles) starts to grow around z = 100 mm at about the same
rate as the 110-GHz mode. As a result, at the end of the simulation, the magnitude

of the 110-GHz mode is merely a factor of 1.7 greater than that of the TMgy, mode.
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Figure 6.15: |E.| versus z for the interaction of two 0.7-mm cold beams at 110 GHz
for I = 0.6 A and I = 1.0 A. The solid and open triangles represent a 110-GHz mode.
The solid and open squares represent a TMy; waveguide mode, while the solid and
open circles correspond to a TMg, waveguide mode.

Hence, the 110-GHz mode is not the most dominant mode, which is in contrast to

what we observed for the interaction at 30 GHz in Figure 6.4.

For I = 1.0 A in Figure 6.15, the 110-GHz mode is again the smallest mode at the
beginning of the simulation and overtakes the waveguide mode at about z = 80 mm.
Note that the 110-GHz mode saturates at the same longitudinal location as the 30-
GHz mode in Figure 6.5. In addition, the gain of the former equals 0.35 dB/mm
and differs from that of the latter by 2.2% (excluding error bars). According to Fig-
ure 6.15, the TMy; waveguide mode (solid squares) first decreases and then increases
towards the end of the simulation. Still, its magnitude there is less than at the start
of the simulation. As opposed to the TMgy; waveguide mode, the TMy, waveguide
mode (solid circles) starts to grow at about z = 90 mm and follows the shape of

the 110-GHz mode very closely (note the dip in both modes before saturation). At
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the point of saturation, the magnitude of the 110-GHz mode is only twice as large
as that of the TMy, waveguide mode. Hence, the 110-GHz mode is far from being
dominant. This contradicts what we observed in Figure 6.5 for the interaction of
0.5-A beams at 30 GHz. It should be noted that no harmonics, if any, are shown in
Figure 6.15 because of the frequency window used (10 GHz to 200 GHz) to record
the data.

For I = 1.0 A in Figure 6.15, we studied the variation of |E,| for only three
modes. Figure 6.16 depicts the evolution of |E,| for of all modes, within the range
10 < f < 200 GHz, for the interaction of two 0.7-mm and 0.5-A cold beams

with the same energies as the red curve in Figure 6.14. The left-hand vertical axis in
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Figure 6.16: Contour plot of |E,| for the interaction of two 0.7-mm and 0.5-A cold
beams at 110 GHz.

Figure 6.16 is frequency in units of GHz, the horizontal axis is longitudinal distance,
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z, in units of mm. A color scale legend next to the right-hand vertical axis gives

numerical values of |E,| in units of (kV/m)/GHz.

Equation 4.39 predicts that the interaction frequency of two 0.7-mm and 0.5-A
beams with energies 20 keV and 19.165 keV will be 110 GHz. According to Fig-
ure 6.16, the 110-GHz mode does become the largest frequency component. How-
ever, note that the interaction at 110 GHz is markedly different from the interaction
at 30 GHz depicted in Figure 6.6. Specifically, the interaction at 110 GHz exhibits a
significantly stronger multi-mode behavior. As we saw in Figure 6.14, the FWHM fre-
quency for the interaction in Figure 6.16 is about an order of magnitude greater than
that in Figure 6.3. Despite a marked difference between the interactions at 30 GHz
and 110 GHz, it will be shown that the gain of the 110-GHz mode (0.35 dB/mm) is
within 2.2% (excluding error bars) of that of the 30-GHz mode (0.358 dB/mm) from
Figure 6.6.

Comparing Figures 6.6 and 6.16, TMy; and TMgy, waveguide modes at 57.5 GHz
and 132 GHz can again be picked out initially, the TMy; mode being the more
prominent of the two in both cases. The TMy; mode in Figure 6.16 varies in a
similar fashion to that in Figure 6.6. The difference between the two is that in
Figure 6.16 the magnitude of the TMy; at the end of the simulation is still less than
at the start. As we can see in Figure 6.16, the TM, waveguide mode grows markedly
and its magnitude becomes half as large as that of the 110-GHz mode at about z =
164 mm. This means that the 110-GHz mode is not dominant, which is in contrast
to what we found for the interaction at 30 GHz in Figure 6.6. Last but not least,
note that no harmonics are shown in Figure 6.16 owing to the frequency window

used (10 GHz to 200 GHz) to record the data.

Having discussed the interaction of two electron beams at 30 GHz and 110 GHz,
we will now look at the interaction of two electron beams at 210 GHz. An FFT plot

shown in Figure 6.17 is similar to those in Figures 6.3 and 6.14 with the exception
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that Figure 6.17 displays |E,| as a function of frequency for the interaction of two

0.7-mm cold beams at 210 GHz. As in Figures 6.3 and 6.14, the red and blue curves
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Figure 6.17: FFT of |E,| for the interaction of two 0.7-mm cold beams at 210 GHz.
The blue and red curves correspond to I = 0.6 A and I = 1.0 A.

correspond to I = 1.0 A and I = 0.6 A, respectively. For I = 1.0 A, the beam
energies were 20 keV and 19.549 keV. For I = 0.6 A, the beam energies used were
20 keV and 19.609 keV. The curves in Figure 6.17 were recorded at a longitudinal
position of 164 mm. The FFT frequency window ranged from 80 GHz to 300 GHz.
To resolve |E,| well (as explained in Section 5.3) over the frequency window used,
the FFT curves were obtained using a 0.2-ns time window, which was equivalent to
42 periods at 210 GHz. The frequency resolution, corresponding to the 0.2-ns time

window, was equal to 5 GHz.

When we explored the interactions at 30 GHz and 110 GHz in Figures 6.3
and 6.14, the 30- and 110-GHz modes were the largest frequency components for
both 0.6 A and 1.0 A. Likewise, in Figure 6.17, the largest frequency component
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for 1.0 A occurs at 210 GHz. However, as can be seen in Figure 6.17, the 210-GHz
mode is no longer the largest component for 0.6 A, its magnitude being less than or
comparable to that of the neighboring modes. This is most likely due to a combina-
tion of numerical noise and small AE (beam energy difference), which shrinks with
increasing interaction frequency and decreasing beam current (Equation 4.39). For
instance, AFE for two 0.7-mm and 0.3-A beams interacting at 30 GHz is 2.4 keV and,
thus, over a factor of 6 greater than that (391 eV) for the interaction of two 0.7-mm

and 0.3-A beams at 210 GHz.

The interaction at 110 GHz in Figure 6.14 exhibited clear multi-mode behavior.
As can be seen in Figure 6.17, the multi-mode behavior is even more pronounced for
the interaction at 210 GHz. Considering the FFT curve for I = 1.0 A in Figure 6.17,
a rough estimate of its FWHM frequency yields 125 GHz. This value is over a factor
of 10 and 1.5 greater than that in Figures 6.3 and 6.14, respectively. The same holds
true for I = 0.6 A. Hence, we are led to conclude that the FWHM frequency is affected
by a given interaction frequency. Namely, the larger the interaction frequency is, the

wider (worse) the FWHM frequency becomes.

As we did for 30 GHz and 110 GHz, we will next examine how |E.| varies with
longitudinal distance, z, for the interaction at 210 GHz. In Figure 6.18, the variation
of |E,| is displayed for the interaction of two 0.7-mm beams with the same energies
as in Figure 6.17. The red and blue curves correspond to I = 1.0 A and I = 0.6 A,

respectively.

For 0.6 A in Figure 6.18, the 210-GHz mode starts out as the smaller of the two
modes and overtakes the TMy, waveguide mode around z = 60 mm. Like the 30- and
110-GHz modes in Figures 6.4 and 6.15, the 210-GHz mode does not reach saturation
within the range 2.5 < z < 173.5 mm. It will be shown later that the gain of the
210-GHz mode is 0.298 dB/mm and is within 3% (excluding error bars) of that of
the 30- and 110-GHz modes. This suggests that Gy, is independent of interaction
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Figure 6.18: |E.| versus z for the interaction of two 0.7-mm cold beams at 210 GHz
for I = 0.6 A and I = 1.0 A. The solid and open triangles represent a 210-GHz mode.
The solid and open circles represent a TMg, waveguide mode.

frequency. According to Figure 6.18, the TMy, waveguide mode (open circles) grows
towards the end of the simulation. However, its |E,| at the end of the simulation is
merely a factor 1.4 greater than at the start. Hence, Gg;p, of the 210-GHz mode is
much greater than that of the TMy, waveguide mode. Nevertheless, as we saw in
Figure 6.17, the 210-GHz mode is far from being the most dominant mode. Note that
Figure 6.18 shows neither harmonics nor the TMy; waveguide mode at 57.5 GHz.

This was due to the frequency window (80 GHz to 300 GHz), which was dictated by
the PIC code used (Section 5.2).

For 1.0 A in Figure 6.18, the 210-GHz mode overtakes the TMg, waveguide mode
at about the same location as for 0.6 A. Even though the TMy; mode grows during

the latter part of the simulation, it is clear from Figure 6.18 that Gy, of the 210-
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GHz mode is much greater than that of the TMy, waveguide mode. Despite this,
as can be seen in Figure 6.17, by no means is the 210-GHz mode most dominant.
Comparing 30-, 110-, and 210-GHz modes in Figures 6.5, 6.15, and 6.18 for 1.0 A,
we see that they saturate at the same longitudinal position of z = 164 mm. It will
be shown later that Gg;y, of the 210-GHz mode equals 0.345 dB/mm and is within
3.5% of that of the 30-GHz mode and within 1.2% of that of the 110-GHz mode
(excluding error bars in both cases). This again suggests that Gg;p, is independent

of interaction frequency.

In Figure 6.18, we explored the variation of |E,| for two modes. Figure 6.19
depicts the evolution of |E,| for all modes, from 80 GHz to and including 300 GHz,
for the interaction of two 0.7-mm and 0.5-A cold beams with the same energies as
the red curve in Figure 6.17. Similar to Figures 6.6 and 6.16, the left-hand vertical
axis in Figure 6.19 is frequency in units of GHz. The horizontal axis is longitudinal
distance, z, in units of mm. Also, a color scale legend next to the right-hand vertical

axis gives numerical values of |E,| in units of (kV/m)/GHz.

Over the range 150 < z < 165 mm, according to Figure 6.19, the 210-GHz mode
becomes the largest component. This is in agreement with Equation 4.39. However,
the 210-GHz mode is by no means dominant and the interaction exhibits clear multi-
mode behavior. In fact, comparing Figures 6.6, 6.16, and 6.19, the interaction at
210 GHz produces the largest number of competing modes. As we estimated in
Figure 6.17, the average FWHM frequency is an order of magnitude greater than
that for the interaction at 30 GHz and a factor of 1.5 greater than that for the
interaction at 110 GHz. In spite of this marked difference between the interactions
at 30 GHz, 110 GHz, and 210 GHz, it will be shown in the next subsection that
the gain of the 210-GHz mode is within 3.5% of that of the 30-GHz and 110-GHz
modes (error bars excluded). Also, note that the 30-, 110-, and 210-GHz modes

shown in Figures 6.5, 6.15, and 6.18 reach saturation at a longitudinal position of z
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Figure 6.19: Contour plot of |E,| for the interaction of two 0.7-mm and 0.5-A cold
beams at 210 GHz.

= 164 mm. This suggests that the saturation length for two 0.7-mm and 0.5-A cold
beams interacting at 30 GHz, 110 GHz, and 210 GHz is independent of interaction

frequency.

As we have already stated, the TMy; waveguide mode at 57.5 GHz and harmonics,
if any, are absent in Figure 6.19 due to the frequency window used (80 GHz to
300 GHz). In Figure 6.19, at the start of the simulation, we can again identify
the TMyy waveguide mode at 132 GHz. An unusual width of the TMg, waveguide
mode can be attributed to a coarse resolution for the FFT analysis (Af = 5 GHz).
According to Figure 6.19, the TMy, waveguide mode grows towards the end of the
interaction and at z = 164 mm its magnitude is about a factor of 7 less than that of

the 210-GHz mode. As it will be shown in Chapter 7, waveguide modes are always
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negligible in comparison with driven modes (modes at modulating frequencies) in

the case of modulated beams.

6.2.2 Relationship between gain and space charge

The emphasis in this dissertation is on the gain of exponentially growing modes and
our next task is to take a closer look at the 30-, 110-, and 210-GHz modes from
Figures 6.4, 6.5, 6.15, and 6.18 so we can compare gain from simulations with that

given by Equation 4.38.

Plotted in Figure 6.20 is the variation of |E,| with longitudinal distance, z, for
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Figure 6.20: |E,| versus z for the interaction of two 0.7-mm cold beams for I =
0.6 A (solid symbols) and I = 1.0 A (open symbols). The green, red, and blue
curves correspond to 30-, 110-, and 210-GHz modes.

the interaction of two 0.7-mm cold beams at 30 GHz (green curves), 110 GHz (red

curves), and 210 GHz (blue curves). The solid and open symbols correspond to I =
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0.6 A and I = 1.0 A, respectively.

As can be seen in Figure 6.20, the growth rate of 30-, 110-, and 210-GHz modes
increases with increasing beam current. This is consistent with Equation 4.38, the
theoretical gain formula. Note that |E,| of the 210-GHz mode is smaller than that of
30- and 110-GHz modes for both currents, which can be attributed to the fact that
AF for the interaction at 210 GHz is less than that for the interaction at 30 GHz and
110 GHz. For I = 1.0 A in Figure 6.20, AFE for the interaction at 210 GHz equals
451 eV and is approximately a factor of 1.8 and 6.7 less than that for the interaction
at 110 GHz and 30 GHz, respectively. Hence, the beams interacting at 30 GHz
and 110 GHz exchange energy and bunch more efficiently than those interacting at

210 GHz.

According to Figure 6.20, no mode saturation is observed for I = 0.6 A over
the range of z values shown. For I = 1.0 A, however, all three modes, namely,
the 30 GHz (open circles), 110 GHz (open triangles), and 210 GHz (open squares),
reach saturation at the same longitudinal location of z = 164 mm. This leads us to
conclude that the saturation length is independent of interaction frequency for two
0.7-mm cold beams interacting at 30 GHz, 110 GHz, and 210 GHz for I = 0.6 A and
I =10A.

If we plot the modes in Figure 6.20 on a log-linear scale (discarding the nonlinear
portions), fit them with Equation 5.9 and substitute the values of R into Equa-
tion 5.10, then we can compare Ggjpy, of the 30-, 110-, and 210-GHz modes with Gy,
given by Equation 4.38.

Figure 6.21 shows gain as a function of total beam current, I, for the interaction
of two 0.7-mm cold beams at 30 GHz (circles), 110 GHz (triangles), and 210 GHz

(squares). The solid green, red, and blue curves represent Gy, for the three modes.

Comparing Gy, and Gy, at 30 GHz, the former and the latter are within 6.2%
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Figure 6.21: The variation of gain with total beam current for three modes: 30-GHz
(circles), 110-GHz (triangles), and 210-GHz (squares). The solid green, red, and blue
curves correspond to theory given by Equation 4.38.

and 2% of each other (excluding error bars) for 0.6 A and 1.0 A. At 110 GHz, the
percent difference between Gy, and Gy, increases from 4% to 9.9% (ignoring error
bars) as the total beam current varies from 0.6 A to 1.0 A. Finally, at 210 GHz,
Gyim differs from Gy, by 9.7% for 0.6 A and by as much as 17.7% for 1.0 A, error
bars being excluded. Hence, the discrepancy between Gy, and Gyy, increases with
increasing interaction frequency. We will see this trend continue in the next chapter,

which treats interaction frequencies from 30 GHz up to and including 1 THz.

The marked discrepancy between Gy, and Gyy,, especially for high frequencies,
can be blamed in part on F (Figure 3.3), the plasma frequency reduction factor
in Equation 4.38 for Gy;,. Figure 3.3 was plotted assuming a confined beam (zero
scalloping, no variation of the beam envelope). However, as can be seen in Figure 6.2,

scalloping was present in every simulation considered in this dissertation. In the
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case of unfocused beams (nonzero scalloping), both |E,| and space charge are less in
comparison with their counterparts for confined beams [12, 15]. As a consequence,
F for unfocused beams is less than that for focused beams by 10-20% depending on
the interaction frequency and the ratio of r, to r,, where r, is the beam pipe radius.
It is reasonable to assume that F' in Figure 3.3 is overestimated and yields values of
Gy, that are larger than they should be. Hence, the large difference between Gy,
and Gy, seen in Figure 6.21.

Although the agreement between Ggj,, and Gy, becomes poor as we increase the
interaction frequency from 30 GHz to 210 GHz, the circles, triangles, and squares
in Figure 6.21 appear to be on top of one another for both currents. According to
Figure 6.21, the percent variation of Gy, is less than 3% and within 4% for 0.6 A and
1.0 A (ignoring error bars). Hence, Gg;y, for the interaction at 30 GHz agrees very
well with that for the interaction at 110 GHz and also with that for the interaction
at 210 GHz. Therefore, we can conclude that Gy, is independent of interaction
frequency for two 0.7-mm cold beams interacting at 30 GHz, 110 GHz, and 210 GHz
for both I = 0.6 A and I = 1.0 A.

Figure 6.22 combines the data in Figure 6.21 with some of the data in Figure 6.11
and displays the gain of 30-, 110-, and 210-GHz modes as a function of space charge
density in units of A/mm?. The green, red, and blue symbols in Figure 6.22 corre-

spond to 30-, 110-, and 210-GHz modes.

For 30 GHz in Figure 6.22, the average deviation between Ggi,, and Gy, is
approximately 3.5% (ignoring error bars). For 110 GHz and 210 GHz, the average
deviation increases to 9.2% and 13.2% (excluding error bars), respectively. Hence,
the higher the interaction frequency, the larger the discrepancy between simulations
and theory. As we argued earlier, this is partially due to the plasma frequency
reduction factor (Figure 3.3) being overestimated in Equation 4.38. We will continue

to see this trend in Chapter 7 for modulated beams.
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Figure 6.22: The variation of gain of 30-, 110-, and 210-GHz modes with space charge
density. The solid and open symbols represent simulations and theory.

When studying the interaction at 30 GHz (Figure 6.11), we concluded that both
Ggm and Gy, vary as \/I/r?. As can be seen in Figure 6.22, the same does not
hold true for the interaction at 110 GHz and 210 GHz. Note that for the interaction
of 1.0-mm beams at 30 GHz and 110 GHz (where space charge is unity), Gy, for
30 GHz differs from that for 110 GHz by as much as 12.8% (excluding error bars).
However, for the interaction of 0.7-mm beams at 30 GHz, 110 GHz, and 210 GHz,
the data points from simulations are on top of one another (including error bars).
Hence, based on the limited amount of data at our disposal, we can state that Ggj,
is not dependent on interaction frequency for the interaction of 0.7-mm cold beams
at 30 GHz, 110 GHz, and 210 GHz. It will be shown in Chapter 7 that the foregoing

conclusion also applies to the interaction of 0.7-mm cold and modulated beams at
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frequencies up to and including 1 THz.

6.3 Energy-spread effects

The small-signal theory presented in Chapter 4 is not applicable to beams with a
nonzero energy spread. Since beams in the laboratory are never monoenergetic, in
this section we examine the impact of nonzero energy spread on the gain of growing
modes for the interaction of warm beams at low and medium frequencies. The

interaction of warm beams at higher frequencies will be treated in the next chapter.

According to Appendix D, warm beams (with average energies F; and Es) con-
sidered in this dissertation have Gaussian (bell-shaped) energy profiles and a FWHM
energy for each is defined as a percentage of the average energy, Fayg, of two beams.
When discussing warm beams in this dissertation, we will refer to them as having a
certain amount of percent spread or percent energy spread, the former and the latter

being used interchangeably throughout.

Figure 6.23 shows energy profiles for two 0.7-mm and 0.5-A beams with energies
20 keV and 16.95 keV. The three curves correspond to 1%, 3%, and 5% spread,
which, in the case of 20 keV and 16.95 keV, is equivalent to 184.75 eV, 554.25 eV,
and 923.75 eV. The corresponding FWHM energy from Equation D.4 is 369.5 eV,
1108.5 eV, and 1847.5 eV, respectively.

According to Figure 6.23, for 1% spread the beam energies are well-defined and
we can expect the interaction to be as strong as that for cold beams (this will be
shown later). Despite a certain amount of overlap for 3% spread, the beams can still
be viewed as two separate beams. However, for percent energy spread as large as
5%, as can be seen in Figure 6.23, the two beams start to merge into a single beam.

Hence, it is reasonable to expect the resulting interaction to be much weaker than
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Figure 6.23: Gaussian energy profiles for warm 20- and 16.95-keV beams.

than that for 1% and 3% energy spread.

Equation 4.39 predicts that two 0.7-mm and 0.5-A cold beams with energies
20 keV and 16.95 keV will interact at 30 GHz and we saw in Figure 6.3 that the
largest frequency component did occur at 30 GHz. In the case of two warm beams
with the same parameters, the 30-GHz mode still grows exponentially. However, an
FFT plot of |E,| shows that the peak frequency shifts from 30 GHz to 35 GHz and
then to 22.5 GHz for beams with 3% and 5% energy spread, respectively. In addition,
at the same longitudinal location of 145 mm as in Figure 6.3, the magnitude of the
30-GHz mode decreases by approximately 92% as energy spread increases from 0%

to 5%, which is consistent with the energy profiles shown in Figure 6.23.

Figure 6.24 is similar to Figure 6.23 and depicts energy profiles for 0.5-A and
1.0-mm beams with energies 20 and 17.95 keV (solid curves) and 0.5-A and 1.4-mm
beams with energies 20 and 18.5 keV (dashed curves). The red curves in Figure 6.24
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Figure 6.24: Gaussian energy profiles for warm beams with energies 20 keV and
17.95 keV (solid curves) and 20 keV and 18.5 keV (dashed curves).

correspond to 3% energy spread, while blue ones to 5% energy spread.

For the 1.0-mm beams, 3% energy spread is equivalent to 569.25 eV, while 5% en-
ergy spread equals 948.75 eV. The corresponding FWHM energy from Equation D.4
is 1138.5 eV and 1897.5 eV for 3% and 5% energy spread, respectively. For the 1.4-
mm beams, due to a larger beam energy difference, 3% and 5% spread correspond

to the FWHM energy of 1155 eV and 1925 eV, respectively.

According to Figure 6.24, the larger the beam radius and the warmer the beams
are, the faster the beam energies overlap. For 5% energy spread, the beam energies
for r, = 1.0 mm are considerably overlapped but we are still able to identify two
peaks belonging to the original energies. By contrast, as can be seen in Figure 6.24

for 5% energy spread, the beam energies corresponding to r, = 1.4 mm merge to
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yield a single beam and, thus, are indistinguishable. Hence, comparing Figures 6.23
and 6.24 for 5% energy spread, we can anticipate some interaction and nonzero gain
for r, = 0.7 mm and, possibly, 7, = 1.0 mm. However, we can be certain that no
interaction and zero gain will result for the 1.4-mm warm beams with 5% energy

spread.

We will next examine the variation of the magnitude of ac electric field, |E,|, with
longitudinal distance, z, for the interaction of 0.7-, 1.0-, and 1.4-mm warm beams at
30 GHz. This will be used later to study the effect of energy spread on numerical

gain.

Figure 6.25 displays the variation of |E.| of a 30-GHz mode with z for the in-
teraction of two 0.7-mm and 0.5-A beams with the same energies as in Figure 6.23.
The four data sets correspond to 0% (magenta curve), 1% (blue curve), 3% (green
curve), and 5% (burgundy curve) energy spread. The gray curves were obtained

from Equation 5.9 and represent curve fits to the linear regions of the data.

In Figure 6.25, the warmer the beams are, the larger the initial value of | F, | is. As
for the initial angles of |E,|, they are positive for the magenta, green, and burgundy
curves and negative for the blue curve. Note that the initial dip in | F,| shifts to lower
values of z with increasing energy spread. According to Figure 6.25, the burgundy
curve, corresponding to 5% spread, has the most number of dips. Moreover, it is the

least linear among the curves shown.

According to Figure 6.25, the slope of the 30-GHz mode is unaffected provided
percent energy spread is less than or equal to 1%. For percent spread greater than
1%, the slope of the 30-GHz mode, in relation to its value for cold beams, is reduced
by approximately 19% and by as much as 66% for 3% and 5% spread, respectively.
This is consistent with the energy profiles in Figure 6.23.

Figure 6.26 is similar to Figure 6.25 and again shows | F,| of a 30-GHz mode from
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Figure 6.25: |E.| of a 30-GHz mode versus longitudinal distance, z, for 20- and 16.95-
keV beams. The four curves correspond to 0% (magenta), 1% (blue), 3% (green),
and 5% (burgundy) energy spread. Gray curves are curve fits given by Equation 5.9.

simulations involving 0.5-A beams with beam radii equal to 1.0 mm (top plot) and
1.4 mm (bottom plot). The beam energies used to generate the curves were 20 keV
and 17.95 keV for two 1-mm beams and 20 keV and 18.5 keV for two 1.4-mm beams.
The magenta, green, and burgundy curves in both plots correspond to 0%, 3%, and
5% spread, respectively. The gray curves (Equation 5.9) represent curve fits to the

linear regions of the data.

For the 1-mm beams (top plot) in Figure 6.26, the initial value of |E,| appears
to vary randomly. The initial angle of |E,| is positive for 3% and 5% spread, but
negative for 0% spread. As in Figure 6.25, the burgundy curve (5% spread) is the
least linear of the three data sets shown. In Figure 6.26, the slope of the 30-GHz
mode is reduced by approximately 42% as percent energy spread ranges from 0% to

3%. In addition, as indicated by a horizontal gray curve in Figure 6.26, no growth
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Figure 6.26: |E.| of a 30-GHz mode versus axial distance, z, for 20- and 17.95-keV
(top plot) and 20- and 18.5-keV (bottom plot) beams. The three curves correspond
to 0% (magenta), 3% (green), and 5% (burgundy) spread. Gray curves are curve fits
given by Equation 5.9.

is observed for percent spread as large as 5%.

For the 1.4-mm beams (bottom plot) in Figure 6.26, the initial value of | E,| varies
as randomly as it does for 7, = 1.0 mm. Note that the magenta curve (0% spread) in
the bottom plot is markedly different from its counterpart in the top plot for values
of z less than or equal to 40 mm. Also, the green curve (3% spread) is fairly linear in
the top plot for values of z greater than or equal to 50 mm. By contrast, the green
curve in the bottom plot oscillates over the same range. Due to a smaller energy
difference for the 1.4-mm beams (Figure 6.24), the slope of the 30-GHz mode at 3%
spread is as much as 72% less than that at 0% spread. Moreover, as is the case for the

1-mm beams, no growth results from the interaction of two 1.4-mm beams with 5%
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spread, which is to be expected given the shape of the energy profile in Figure 6.24.

Having analyzed |E.| of a 30-GHz mode for warm beams with three different
beam radii, we will now look at the variation of Ggj,, with energy spread. Figure 6.27

displays gain as a function of percent energy spread for the interactions considered
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Figure 6.27: Gain of a 30-GHz mode versus percent energy spread for two 0.5-A
beams with 7, = 0.7 mm (black curve), r, = 1.0 mm (blue curve), and r, = 1.4 mm
(red curve). The dashed, dotted, and solid lines represent theoretical values for 0%
spread (Equation 4.38).

in Figures 6.25 and 6.26. The solid, dashed, and dotted lines correspond to Gy,
(Equation 4.38) and are valid for cold beams.

For the blue curve in Figure 6.27, Gy}, is within 5.9% of Ggjy, for cold beams
(ignoring error bars). Although Equation 4.38 is invalid for warm beams, the agree-
ment between Gy, and Ggiyy, for beams with 1% spread is excellent, the two differing
by as little as 1.5% (excluding error bars). However, already at 2% energy spread,

as we can see in Figure 6.27, Gy, is 13% less than Gyj,. Also, in agreement with
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Figure 6.26, no interaction is observed for beams with 5% spread due to the beam

energies being markedly overlapped (Figure 6.24).

Examining the red curve in Figure 6.27, Gy, is within 4.3% and 3.3% (ignoring
error bars) of Gg;y, for 0% and 1% energy spread, respectively. Hence, the agreement
is very good. However, the percent difference between Gy, and Ggjyy, increases from
38% to as much as 71% for beams with 2% and 3% energy spread. Moreover,
comparing the energy profiles for 1.0- and 1.4-mm beams in Figure 6.24, we can
predict no interaction and zero gain for the 1.4-mm beams with percent energy

spread greater than 3% and less then 4%.

According to Figure 6.27, for percent energy spread greater than 1%, the percent
difference between Gy}, and Ggj, grows with increasing beam radius. Again, this
is due to AFE decreasing from 3.05 keV (r, = 0.7 mm) to 2.05 keV and 1.5 keV for
r, = 1.0 mm and r, = 1.4 mm, respectively. As a result, for the same amount of
percent spread, the beam energies for r, = 1.4 mm and r, = 1.0 mm overlap and

merge quicker than those for r, = 0.7 mm.

Our analysis of the interaction of warm beams thus far has been at 30 GHz.
Before closing this section, we will also look at the interaction of 0.5-A beams at a
medium frequency, specifically, 110 GHz. According to Equation 4.39, the higher
the interaction frequency, the smaller AE (beam energy difference) is. Hence, for
the same amount of energy spread, it is reasonable to expect that beams interacting

at 110 GHz will overlap/merge faster than those interacting at 30 GHz.

Figure 6.28 shows energy profiles for 0.5-A and 0.7-mm warm beams with energies
20 keV and 19.165 keV. The red, blue, and black curves correspond to 0.4%, 1%,
and 2% energy spread, where, as was discussed earlier, energy refers to the average
energy of two beams. Hence, 0.4%, 1%, and 2% energy spread are equivalent to

78.33 eV, 195.82 eV, and 391.65 eV. The corresponding values of FWHM energy
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Figure 6.28: Gaussian energy profiles for warm 20- and 19.165-keV beams.

(Equation D.4) are 156.66 eV, 391.64 eV, and 783.3 eV, respectively.

For 0.4% energy spread in Figure 6.28, the energy profile has a well-defined
FWHM energy and it is reasonable to expect that the interaction will be as effi-
cient as that for cold beams. However, due to a smaller AFE (835 eV as compared
with 3.05 keV for beams in Figure 6.23), we should expect a weak interaction for 2%

spread as 20- and 19.165-keV beams virtually merge to form a single beam.

Although the interaction of 0.5-A and 0.7-mm cold beams, with the same ener-
gies as those in Figure 6.28, gives rise to multiple modes (Figure 6.14), the largest
frequency component, as predicted by Equation 4.39, occurs at 110 GHz. For the
warm beams in Figure 6.28, an FFT of |E,| shows the peak frequency shifting from
110 GHz to 103.3 GHz and subsequently to 76.6 GHz for 0.4% and 1% energy spread,
respectively. Moreover, as percent energy spread varies from 0% to 1%, the mag-
nitude of the 110-GHz component shown in Figure 6.14 is reduced by more than
a factor of 10. As we pointed out above, AFE in Figure 6.28 is about a factor of
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3.6 smaller than that in Figure 6.23. As a result, as can be seen in Figure 6.28,
the interaction of 0.5-A and 0.7-mm warm beams at 110 GHz will most likely yield

negligible gain for energy spread as small as 2%.

Figure 6.29 depicts the variation of |E,| of a 110-GHz mode with longitudinal
distance, z, for the interaction of 0.7-mm and 0.5-A beams with the same energies as

in Figure 6.28. The three data sets correspond to 0% (red curve), 0.4% (blue curve),

[ —®— 0% spread
| —%*— 0.4% spread
—k— 1% spread

100 E

IE, | [kVim]

0.1 1 1 1 1 1 1 1
0 25 50 75 100 125 150 175

Longitudinal distance, z [mm]

Figure 6.29: |E,| of a 110-GHz mode versus longitudinal distance, z, for two 0.7-mm
and 0.5-A beams with energies 20 keV and 19.165 keV. The red, blue, and black

curves correspond to 0%, 0.4%, and 1% spread. Gray curves are curve fits given by
Equation 5.9.

and 1% spread (black curve). The gray curves are again given by Equation 5.9 and

represent curve fits to the linear regions of the data in Figure 6.29.

The initial value of |F.| in Figure 6.29 increases with percent energy spread,
which is what we also observed for interactions at 30 GHz in Figure 6.25. While

the initial angle of |F,| is positive for 0% and 1.0% spread, it is negative for 0.4%.
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The dips in the black curve appear to be more pronounced than those in the red
and blue curves. In addition, the black curve is the least linear of the three curves
shown. Note in Figure 6.29 that the slope for cold beams is approximately 7.2%

more (ignoring error bars) than that for warm beams with 0.4% spread.

Comparing Figures 6.25 and 6.29, the slope of the 30-GHz mode is unchanged as
long as energy spread is within 1%. By contrast, the slope of the 110-GHz mode for
1% spread is already less than half as big as that for cold beams. As stated above,
this is due to AE for the interaction of 0.5-A and 0.7-mm beams (with energies
20 keV and 19.165 keV) at 110 GHz being over three times smaller than that for
the interaction of 0.5-A and 0.7-mm beams (with energies 20 keV and 16.95 keV)
at 30 GHz. Even though Figure 6.29 displays no data for beams with 2% spread,
Figures 6.23 and 6.28 lead us to conclude that the interaction and growth will be

negligible in this case.

Figure 6.30 compares the gain of 30-GHz and 110-GHz modes as a function
of percent energy spread. In Figure 6.30, the solid black curve is from a simula-
tion involving the interaction of 0.7-mm and 0.3-A beams with energies 20 keV and
17.6 keV, while the solid red curve is from Figure 6.27. The solid squares are from
simulations with 0.7-mm and 0.5-A beams with the same energies as in Figures 6.28

and 6.29. The theoretical curves were generated using Equation 4.38.

Examining the dashed and solid red curves, Gy, agrees well with Gg;,, for cold
beams, the two being within 2.2% (ignoring error bars) of one another. Even though
Equation 4.38 (theoretical gain) is invalid for warm beams, Gy, is in excellent agree-
ment with Gy, for warm beams with 1% spread, the latter being within 1% (exclud-
ing error bars) of the former. As percent spread increases and warm beams become
less and less distinguishable, G;j,, for cold beams is reduced by 17% and as much as
66% for beams with 3% and 5% spread, respectively. Moreover, we can anticipate

negligible interaction for beams with percent spread in excess of 5% (Figure 6.23),
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Figure 6.30: The variation of gain of a 30-GHz (solid red and black curves) and 110-
GHz (solid blue curve with squares) modes with percent energy spread. The dotted
(theory 30 GHz, 0.6 A), dashed (theory 30 GHz, 1.0 A), and solid blue (theory
110 GHz, 1.0 A) lines are given by Equation 4.38.

the beam energies (20 keV and 16.95 keV) virtually merging into a single beam.

According to Figure 6.30, Gy, for cold beams at 110 GHz is within 2.3% (without
error bars) of that for cold beams at 30 GHz (solid circles). Thus, the agreement is
very good. Due to a smaller energy difference, Gg;;,, at 110 GHz decreases by as much
as 53% as energy spread varies from 0% to 1%. By contrast, Gy, for cold beams
at 30 GHz is approximately the same as that for beams with 1% spread, the former
and the latter being within 2.2% of one another (ignoring error bars). Moreover,
Ggim at 110 GHz drops off rather quickly, approaching zero somewhere between 1%
and 2% spread (Figure 6.28). Gy, at 30 GHz, however, is nonzero even for percent
spread as large as 5%. Last but not least, the agreement between Gy}, and Ggjyy, for
cold beams at 110 GHz is not good, namely, 9.9%, as compared to 2.2% at 30 GHz

(excluding error bars).
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Finally, for the black curve (30 GHz, 0.6 A) in Figure 6.30, Gy, is within 7%
(ignoring error bars) of Gy, for percent energy spread less than or equal to 3%.
Hence, the agreement is fairly good. For percent energy spread exceeding 3%, how-
ever, Gy starts to decrease quickly, being approximately 37% and 65% less than
Gy, for 4% and 5% spread, respectively. Moreover, for percent energy spread over 5%
(energy measured at FWHM is greater than 1880 eV), 20- and 17.6-keV beams begin
to merge to form a single beam and, thus, we should expect negligible interaction

and growth.

6.4 Chapter summary

Chapter 6 presents simulation results for the interaction of two unmodulated (with-
out initial energy modulation) cold (monoenergetic) and warm (Gaussian) electron
beams at low (30 GHz) and medium (110 GHz and 210 GHz) frequencies. The pri-
mary emphasis is on exploring exponentially growing modes and comparing their
gain from simulations, Gg;y,, with that from theory, Gy}, in order to validate the

1-D theory discussed in Chapter 4.

For the interaction of cold beams at a low interaction frequency it is found that
Ggim agrees well with Gy}, and both vary as m, where I and 7, are the total
beam current and beam radius, respectively. The agreement between Gy, and Gy,
worsens for medium interaction frequencies. Namely, it is found that the higher the
interaction frequency, the larger the discrepancy. This is partially attributed to F,

the plasma frequency reduction factor, being overestimated for Gy}, (Equation 4.38).

Although Gg;p, and Gy, disagree at higher frequencies, for the interaction of two
0.7-mm cold beams at 30 GHz, 110 GHz, and 210 GHz it is determined that Gg;,, is
independent of interaction frequency for I = 0.6 A and I = 1.0 A. In addition, it is
found that the saturation length for 30-, 110-, and 210-GHz modes is also independent
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of interaction frequency. The variation of the saturation length of a 30-GHz mode
with total beam current reveals that the saturation length can be reduced by as much
as 33% by varying I from 1.0 A to 2.2 A. This finding is useful in that it enables us
to make the potential source of mm and sub-mm wave radiation (Chapter 1) even

more compact.

The 1-D theory discussed in Chapter 4 is not applicable to warm beams. However,
since electron beams in the laboratory are not monoenergetic, Chapter 6 also explores
the variation of Gg;y, for the interaction of Gaussian beams at 30 GHz and 110 GHz.
It is found that reducing the space charge (decreasing I or increasing r,) leads to lower
values of Ggjp, regardless of interaction frequency. According to Equation 4.39, the
energy difference of two interacting electron beams shrinks with increasing interaction
frequency. Hence, it is found that Gy, drops off faster for 110 GHz than it does for
30 GHz. Specifically, for the interaction of two 0.7-mm and 0.5-A electron beams,
Ggim at 30 GHz is still found to be nonzero for energy spread as large as 5%. By
contrast, Gy, at 110 GHz is already zero (negligible at best) for energy spread equal
to 2%.

The next chapter will present simulation results for the interaction of modulated
(with initial energy modulation at a given frequency) cold and warm electron beams

at frequencies ranging from 30 GHz up to and including 1 THz.
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Interaction of modulated electron

beams

In Chapter 6, we presented simulation results for the interaction of unmodulated
electron beams. Chapter 7 discusses simulation results for the interaction of modu-
lated electron beams. As in Chapter 6, the primary emphasis is on the variation of
the gain of exponentially growing modes as a function of total beam current, beam
radius, and percent energy spread. Section 7.1 analyzes the magnitude of axial elec-
tric field at low, medium, and high interaction frequencies. In Section 7.2, we discuss
the variation of gain with space charge and frequency. Section 7.3 explores gain
bandwidth for the interaction of cold beams. In Section 7.4, we analyze the effect
of nonzero energy spread on gain and gain bandwidth. Finally, a summary of the

chapter is presented in Section 7.5.
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7.1 Frequency-dependent analysis

According to Equation D.2; modulated (seeded) electron beams in this dissertation

are generated by modifying their dc energies, E; and Fs, as
E172(t) = ELQ +0FE x sin(27rft), (71)

where f is the modulation frequency and JF is the modulation amplitude. 0F is

always given as some percentage of the beam energy difference, AE = E; - E».

7.1.1 Axial electric field at low frequency

As it was done in Chapter 6, we start this section by looking at the magnitude of the
ac component of axial electric field, |E,(z,¢)|. This will enable us to analyze Gy,

and to compare it with Gjy,, the theoretical gain from Equation 4.38.

Figure 7.1 shows an FFT of |E,| for the interaction of two 0.7-mm cold and
modulated beams for I = 0.6 A (blue curve) and I = 1.0 A (red curve). The
modulation amplitude, 6 E, was 1% at 30 GHz. The red and blue curves in Figure 7.1
were recorded at z = 116.5 mm and z = 145 mm to exclude nonlinear regions. Also,
the beam energies and FFT parameters used were exactly the same as those in

Figure 6.3.

According to Figure 7.1, a frequency component at 30 GHz is clearly dominant
for both I = 0.6 A and I = 1.0 A. This is in agreement with Equation 4.39, which
predicts that two beams with the same parameters as those in Figure 7.1 will interact
at 30 GHz. The curves in Figure 7.1 were recorded with a frequency resolution of
2.5 GHz. Hence, the FWHM frequency for both curves is at most 2.5 GHz. By
contrast, the FWHM frequency for unmodulated beams in Figure 6.3 is about 8 GHz.
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Figure 7.1: FFT of |E,| for the interaction of two 0.7-mm cold and modulated beams
at 30 GHz. The blue and red curves correspond to I = 0.6 A and I = 1.0 A.

The average signal-to-noise ratio in Figure 7.1 can be estimated by dividing | E, |
at 30-GHz by the average value of |E,| for the remaining frequencies shown. The
average signal-to-noise ratio for I = 0.6 A yields 76.1. For I = 1.0 A the average
signal-to-noise ratio approximately equals 33.5. These values are a factor 5.5 and 3.5
greater than those in Figure 6.3 for unmodulated beams. Therefore, it is clear that

the interaction of modulated beams produces a superior signal-to-noise ratio.

Figure 7.2 displays the variation of | E,| with longitudinal distance, z, for the 0.6-A
case (blue curve) in Figure 7.1. Note that in Figure 7.2 |E.| is given in units of kV /m,
while in Figure 7.1 |E,| has units of (kV/m)/GHz. The solid circles in Figure 7.2
show a 30-GHz mode and its two harmonics, while the open circles represent TMg;

and TMg, waveguide modes.

Comparing the 30-GHz mode in Figure 7.2 with that in Figure 6.4, they both

have the smallest magnitude at the start of the interaction. However, the 30-GHz
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Figure 7.2: |E,| versus z for the interaction of two 0.7-mm cold and modulated
electron beams at 30 GHz for I = 0.6 A. The solid black, red, and green circles
represent 30-, 60-, and 90-GHz modes. The open red and green circles are TMy; and
TMye waveguide modes.

mode in Figure 7.2 overtakes the other modes shown faster and saturates sooner.
Still, the gain of the 30-GHz mode for modulated beams equals 0.289 dB/mm and
is within 0.1% (excluding error bars) of the 30-GHz mode for unmodulated beams.
Note that the gain of the fundamental mode in Figure 7.2 is much greater than that

of the rest of the modes in the linear region, which is what we observed in Figure 6.4.

Of the 5 modes shown in Figure 7.2, the TMy; and TMg; waveguide modes have
the largest initial magnitudes. However, the waveguide modes exhibit negligible
growth over the rest of the interaction region and the gain of each is much smaller

than that of the fundamental mode.

Past the saturation point, as can be seen in Figure 7.2, the magnitude of the 30-

GHz mode becomes comparable to that of the 60-GHz and 90-GHz modes. This is in
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contrast to what we observed for the interaction of umodulated beams in Figure 6.4.
Hence, according to Figure 7.2, in the linear region the interaction predominantly
occurs at 30 GHz. However, past the saturation point electromagnetic radiation
can also be generated at two and three times the fundamental frequency via some

frequency selection mechanism.

Figure 7.3 is similar to Figure 7.2 and displays the variation of |F,| with longitu-

dinal distance for the 1.0-A case (red curve) in Figure 7.1. The solid circles show a
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Figure 7.3: |E.| versus z for the interaction of two 0.7-mm cold and modulated
electron beams at 30 GHz for I = 1.0 A. The solid black, red, green, and blue circles
represent 30-, 60-, 90-, and 120-GHz modes. The open red and green circles are
TMy; and TMy, waveguide modes.

30-GHz mode and its three harmonics. The open circles represent TMg; and TMgs

waveguide modes.

128



Chapter 7. Interaction of modulated electron beams

As for I = 0.6 A in Figure 7.2, the 30-GHz mode in Figure 7.3 starts to grow
sooner and saturates faster than the 30-GHz mode for unmodulated beams (Fig-
ure 6.5). Nevertheless, the gain of the 30-GHz mode for modulated beams equals
0.351 dB/mm and is within 1.9% (ignoring error bars) of that of the 30-GHz mode
for unmodulated beams. Note that the gain of the fundamental mode in Figure 7.3
is much greater than that of the rest of the modes in the linear region, which extends

to about z = 116 mm.

In Figure 7.3, the TMy; and TMy, waveguide modes again possess the largest
magnitudes at the beginning of the interaction. Although they grow for large values
of z, the gain of both waveguide modes is much smaller than that of the 30-GHz

mode in the linear region.

The variation of |E,| for the 30-GHz mode in Figure 7.3 is markedly different
from that in Figure 6.5. Namely, |F,| has two saturation points with comparable
magnitudes. As can be seen in Figure 7.3, the second and third harmonics become
comparable to that of the fundamental mode between the first saturation point
and local minimum of the 30-GHz mode. By contrast, the fourth harmonic peaks
about halfway between the two saturation points of the fundamental mode. Note
that the second and third harmonics reach a local minimum at about the same
longitudinal position as the second saturation point of the 30-GHz mode. From the
foregoing discussion we can conclude that the signal at 30 GHz can be extracted
before and after the first saturation point. In addition, beyond the first maximum of

the fundamental mode, electromagnetic radiation can also be generated at 60 GHz,

90 GHz, and even 120 GHz.

The red curve in Figure 7.1 is a snapshot of |E,| at z = 116.5 mm and Figure 7.3
shows |E,| for only 5 modes. Figure 7.4 depicts all modes within a frequency window
from 2 GHz to 150 GHz for the interaction of two 0.7-mm cold and modulated beams
at 30 GHz for I = 1.0 A. As in Figure 6.6, the left-hand vertical axis in Figure 7.4 is
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Figure 7.4: Contour plot of |E,| for the interaction of two 0.7-mm cold and modulated
beams at 30 GHz for I = 1.0 A. The modulation amplitude is 1% at 30 GHz.

frequency in units of GHz and the numerical values of |E,| in units of (kV/m)/GHz

are given by a color scale legend located next to the right-hand axis.

According to Figure 7.4, a frequency component at 30 GHz dominates over most
of the interaction region. This is in agreement with Equation 4.39 from the 1-D
theory. Beyond the first peak of the 30-GHz mode, in the highly nonlinear region,
we can see the second (60 GHz), third (90 GHz), and fourth (120 GHz) harmonics
growing in magnitude. As we saw in Figure 7.3, the magnitudes of the second and
third harmonics become comparable to that of the 30-GHz mode for large values of
z. Note that in the linear region, which is important to us in this dissertation, the

beams interact at a single frequency of 30 GHz.
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As in Figure 6.6, we can observe TMg; and TMg; waveguide modes at 57.5 GHz
and 132 GHz at the start of the interaction. Note that the 30-GHz mode in Figure 7.4
overtakes the waveguide modes considerably faster. Comparing the dominant peak
in Figure 6.6 with that in Figure 7.4, the former has a FWHM frequency of about
8.8 GHz. The FWHM frequency of at most 2.5 GHz for the latter is due solely to
the frequency resolution used, which was 2.5 GHz. Hence, the modulated beams
can interact at a single frequency given a sufficiently high modulation amplitude.
Another advantage of the modulated beams in Figure 7.4 is that their interaction
yields a better signal-to-noise ratio. Moreover, as we saw in Figure 7.3, the interaction
of modulated beams at 30 GHz can be used to generate electromagnetic radiation at

60 GHz, 90 GHz, and 120 GHz.

Figure 7.5 displays beam current (left-hand vertical axis) and radial distance
(right-hand vertical axis), r, versus longitudinal distance, z, for the simulation dis-
cussed in Figure 7.2. Note that for the sake of clarity, Figure 7.5 shows the beam

current and radial distance for the 20-keV beam only.

The simulation used approximately 1.22 x 10® particles (610,000 particles or about
6.1 x 10'° electrons for each beam) and every single particle was used for post-
processing and analysis. However, to make the data file small and manageable (less
than 500 MB) for plotting purposes, only 5% of the particles (30,500 particles) were
used for the 20-keV beam to generate Figure 7.5. Hence we obtain the nonuniform

distribution of particles within the range 50 < 2z < 112.5 mm.

For I = 0.6 A and r, = 0.7 mm, Equation 4.39 predicts that two beams with
energies 20 keV and 17.6 keV will interact at 30 GHz regardless of the modulation
amplitude. As we saw in Figure 7.2, a frequency component at 30 GHz is the largest
mode in the linear region. In Figure 7.5, at the saturation point of the 30-GHz mode,
the current amplitude is approximately 20% more than the dec value of 0.3 A. Note

that the beam expands markedly for large values of z, its radius at z = 154.5 mm

131



Chapter 7. Interaction of modulated electron beams

0.0 2.0

Beam current [A]

Radial distance, r [mm]

Longitudinal distance, z [mm]

Figure 7.5: Beam current (blue curve) and radial distance, r, (red dots) as a function
of longitudinal distance, z, for a 20-keV beam. Data taken from the interaction of
two 0.7-mm cold and modulated beams at 30 GHz for I = 0.6 A.

increasing by about 15% from 0.7 mm to 0.82 mm.

The inset in Figure 7.5 shows a portion of the beam from 150 mm to 175 mm. As
can be seen in the enlarged region of the beam, the bunches are sharply defined and
evenly spaced. This is in contrast to what we observed in Figure 6.2 for unmodulated
beams. Owing to the shape of the bunches, we can expect the current (or |E,|) to
be rich in harmonics. As we can see in Figure 7.2, the magnitudes of the second
and third harmonics become comparable to that of the fundamental mode past the
saturation point. Hence, by modulating two cold beams at 30 GHz for I = 0.6 A
and r, = 0.7 mm, not only can we extract radiation at 30 GHz, but also at two and

three times the fundamental frequency.
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7.1.2 Axial electric field at medium frequencies

The previous subsection analyzed |E,| for the interaction of modulated beams at
30 GHz. In this subsection, we continue to study |F.| at medium interaction fre-

quencies, specifically, 110 GHz and 210 GHz.

Figure 7.6 displays an FFT of |E,| for two 0.7-mm cold and modulated beams
interacting at 110 GHz for I = 0.6 A (blue curve) and I = 1.0 A (red curve). The
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Figure 7.6: FFT of |E,| for the interaction of two 0.7-mm cold and modulated beams
at 110 GHz. The blue and red curves correspond to I = 0.6 A and I = 1.0 A.

modulation amplitude was 1% at 110 GHz. The blue and red curves were recorded
at z = 154.5 mm and at z = 116.5 mm, respectively. The beam energies and FF'T

parameters used were exactly the same as those in Figure 6.14.

Due to the FFT frequency resolution used, which was 3.3 GHz, the curves in
Figure 7.6 have a FWHM frequency of about 3.3 GHz or less. A frequency component

at 110 GHz is clearly dominant over the range shown. Hence, the interaction for both
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currents occurs at a single frequency and this is in agreement with Equation 4.39.
When we looked at the FFT plots in Figure 7.1 (for the interaction of modulated
beams at 30 GHz), we noted that there were several harmonics present. It is very
likely that the same holds true for the interaction of modulated beams at 110 GHz.
However, due to the frequency window used (10 < f < 200 GHz), those harmonics,

if any, were not recorded.

Figure 7.6 is noticeably different from Figure 6.14, which depicts FF'T plots for
the interaction of unmodulated beams at 110 GHz. Although the 110-GHz mode
in Figure 6.14 is the largest frequency component for both currents, the FWHM
frequency is much greater than in Figure 7.6 for both I = 0.6 A and I = 1.0 A.
As a result, the interaction of unmodulated beams produces a significant number
of competing modes. In addition, the number of modes increases with total beam
current. By contrast, as can be seen in Figure 7.6, the interaction of modulated
beams occurs at a single frequency (at least in the linear regime). Moreover, the

signal-to-noise ratio in Figure 7.6 is markedly superior to that in Figure 6.14.

Figure 7.7 displays the variation of |E,| with longitudinal distance, z, for the
interactions discussed in Figure 7.6. The open and solid symbols correspond to I =
0.6 A and I = 1.0 A, respectively. The blue and green curves show TMg; and TMgs

waveguide modes.

For a total beam current of 0.6 A in Figure 7.7, the 110-GHz mode overtakes
the waveguide modes faster than its counterpart (unmodulated case) in Figure 6.15.
In addition, the 110-GHz mode for modulated beams saturates, while the 110-GHz
mode in Figure 6.15 fails to reach saturation over the length of the beam pipe. Still,
the gain of the 110-GHz mode in Figure 7.7 equals 0.29 dB/mm and is within 0.3%
(ignoring error bars) of that of the 110-GHz mode for unmodulated beams. As can
be seen in Figure 7.7, the gain of the fundamental mode is much greater than that

of the waveguide modes.
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Figure 7.7: |E,| versus z for the interaction of two 0.7-mm cold and modulated beams
at 110 GHz for I = 0.6 A and I = 1.0 A. The solid and open triangles represent
a 110-GHz mode. The solid and open squares represent a TMy; waveguide mode,
while the solid and open circles correspond to a TMg, waveguide mode.

Comparing the 110-GHz modes for modulated and unmodulated beams for [
= 1.0 A, the former overtakes the waveguide modes markedly faster and reaches
saturation sooner than the latter. Note that the shape of the 110-GHz mode in
Figure 7.7 is different from that in Figure 6.15. Specifically, the 110-GHz mode in
Figure 7.7 has a second maximum beyond the saturation point, where its |E,| is a
factor of 1.8 less than at the location of the first peak. The gain of the 110-GHz
mode in Figure 7.7 equals 0.363 dB/mm and differs from that of the 110-GHz mode
in Figure 6.15 by about 3.6% (excluding error bars). Last but not least, that gain of
the 110-GHz mode in Figure 7.7 is again much greater than that of the TMy; and

TMye waveguide modes.

Figure 7.8 shows the evolution of |E,| for all modes from 10 GHz to 200 GHz
for the interaction discussed in Figure 7.6 (red curve). In Figure 7.8, the right-hand
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Figure 7.8: Contour plot of |E, | for the interaction of two 0.7-mm cold and modulated
beams at 110 GHz for I = 1.0 A.

vertical axis is frequency in units of GHz and the magnitude of |E,| is given by the

color scale legend in units of (kV/m)/GHz.

As we can see in Figure 7.8, the 110-GHz mode is dominant over most of the
interaction region. This is consistent with Equation 4.39, which predicts that two 0.7-
mm and 0.5-A beams with energies 20 keV and 19.165 keV will interact at 110 GHz
regardless of the modulation amplitude. The interaction in Figure 7.8 is markedly
different from the interaction of unmodulated beams shown in Figure 6.16. The
FWHM frequency for the latter is over an order of magnitude greater and exhibits
strong multi-mode behavior. By contrast, as can be seen in Figure 7.8, modulated
beams interact at a single frequency. In addition, the interaction of modulated beams

yields a significantly better signal-to-noise ratio. According to Figure 7.8, the gain
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of the 110-GHz mode is much greater than that of the rest of the modes shown.

Similar to Figure 6.16, TMy; and TMgy, waveguide modes at 57.5 GHz and
132 GHz can be seen in Figure 7.8. It is clear in Figure 7.8 that the magnitude (also
gain) of the waveguide modes is negligible in comparison with that of the 110-GHz
mode. This contradicts our observations for the interaction of unmodulated beams.
As we saw in Figure 6.16, the TMy, waveguide mode grows substantially and its
magnitude is a factor two less than that of the 110-GHz mode towards the end of the
interaction. Note that due to the frequency window used (10 < f < 200 GHz),

no harmonics, if any, can be observed in Figure 7.8.

Figure 7.9 looks identical to Figure 7.5; however it was generated from a simula-

0.0 20

Beam current [A]

Radial distance, r [mm]

Longitudinal distance, z [mm]

Figure 7.9: Beam current (blue curve) and radial distance, r, (red dots) as a function
of longitudinal distance, z, for a 20-keV beam. Data taken from the interaction of
two 0.7-mm cold and modulated beams at 110 GHz for I = 1.0 A.
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tion involving the interaction of two 0.7-mm cold and modulated beams at 110 GHz
discussed in Figure 7.6 (red curve). As in Figure 7.5, Figure 7.9 only shows the
20-keV data to keep the graph from becoming crowded.

For the simulation, the beam emission duration, ¢.iss, Was 0.9 ns (Section 5.2).
At 1200 particles per bunch (Appendix A), this was equivalent to a total of 1.7x10°
particles (about 1.7x 10! electrons). Hence, each beam consisted of 850,000 particles.
Even though all particles were used to analyze the data, only 5% of 850,000 particles
(42,500) were used for the 20-keV beam to generate Figure 7.9. This was done to
limit the particle data file size to 500 MB or less and to keep the analysis software
(Origin by OriginLab, Inc.) from crashing.

According to Figures 7.6 and 7.7, the interaction shown in Figure 7.9 occurs
at a single frequency of 110 GHz, at least in the linear region. Due to a higher
interaction frequency, the bunches in Figure 7.9 are closer than those in Figure 7.5.
In addition, owing to a larger current, the 110-GHz mode (shown in Figure 7.7)
starts to grow earlier and saturates faster than the 30-GHz mode in Figure 7.2. The
inset in Figure 7.9 displays a portion of the beam indicated by the oval. We can see
that the bunches are sharply defined and evenly spaced, which is not the case for the
interaction of unmodulated beams in Figure 6.2. As can be seen in Figure 7.9, the

current has a significant ac component at and past the saturation point.

Note that both beams in Figures 7.5 and 7.9 exhibit a certain amount of scal-
loping (sinusoidal variation of the beam envelope), which we also pointed out when
describing Figure 6.2. As was discussed at the beginning of Chapter 6, scalloping
was present in every simulation considered in this dissertation and could not be elim-
inated. However, the scalloping amplitude was kept within 6% of the beam radius,
ry, and, according to Appendix C, the impact of scalloping on numerical gain is

negligible.
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The last part of this subsection is devoted to the analysis of | E, | for the interaction
of modulated beams at 210 GHz. Figure 7.10 looks similar to Figures 7.1 and 7.6 and
depicts an FFT of |E,| for the interaction of two 0.7-mm cold and modulated beams

at 210 GHz for I = 0.6 A (blue curve) and I = 1.0 A (red curve). The modulation
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Figure 7.10: FFT of |E.| for the interaction of two 0.7-mm cold and modulated
beams at 210 GHz. The blue and red curves correspond to I = 0.6 A and I = 1.0 A.

amplitude was 1% at 210 GHz. The blue and red curves in Figure 7.10 were recorded
at z = 164 mm and z = 116.5 mm, respectively. Also, the FFT parameters and beam

energies used were the same as those in Figure 6.17.

According to Figure 6.17, the interaction of unmodulated beams at 210 GHz ex-
hibits a pronounced multi-mode behavior. By contrast, as we can see in Figure 7.10,
the multi-mode behavior in Figure 6.17 gives way to a clear single-mode behavior for
both 0.6 A and 1.0 A. Note that the curves in Figure 7.10 have a FWHM frequency
of 5.0 GHz or less, which is due to the frequency resolution used (5 GHz) to record

the curves. In any case, the FWHM frequency for unmodulated beams is well over an
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order of magnitude greater than that for modulated beams in Figure 7.10. In addi-
tion, the interaction of modulated beams offers a significantly better signal-to-noise

ratio.

It is very likely that the interaction of modulated beams in Figure 7.10 becomes
nonlinear at some point and harmonics should be present (we observed this for the
interaction at 30 GHz in Figures 7.2 and 7.3). However, owing to the frequency
window used to record the FFT curves (80 GHz to 300 GHz), these harmonics, if

any, are absent in Figure 7.10.

The variation of the 210-GHz mode with longitudinal distance is explored in more
detail in Figure 7.11, which shows |E,| of the 210-GHz mode for the interactions
discussed in Figure 7.10. The solid and open triangles correspond to a 210-GHz
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Figure 7.11: |E,| versus z for the interaction of two 0.7-mm cold and modulated
beams at 210 GHz for I = 0.6 A and I = 1.0 A. The solid and open triangles
represent a 210-GHz mode. The solid and open circles represent a TMg, waveguide
mode.
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mode, while the solid and open circles are TMg, waveguide modes.

For I = 0.6 A in Figure 7.11, the 210-GHz mode saturates at about the same
longitudinal position as the 30- and 110-GHz modes in Figures 7.2 and 7.7. Compar-
ing the 210-GHz mode in Figure 7.11 with that in Figure 6.18 (unmodulated case),
the former starts to grow earlier and saturates sooner. This is consistent with what
we have seen so far for the interaction at 30 GHz and 110 GHz. The gain of the
210-GHz mode in Figure 7.11 is within 10% (excluding error bars) of that of the
210-GHz mode for unmodulated beams. Note that no TMy; waveguide mode and
harmonics, if any, are shown due to the frequency window used (80 GHz to 300 GHz)
to record the data. As can be seen in Figure 7.7, the gain of the 210-GHz mode is
much greater than that of the TMg, waveguide mode for I = 0.6 A.

For I = 1.0 A in Figure 7.11, the 210-GHz mode has a shape very similar to that
of the 30- and 110-GHz modes in Figures 7.3 and 7.7. The gain of the 210-GHz is
within 1% of that of the 30-GHz mode and within 4% of that of the 110-GHz mode,
which suggests that numerical gain, Gy, is independent of interaction frequency
and modulation amplitude. Comparing the 210-GHz mode for unmodulated beams
in Figure 6.18 with that in Figure 7.11, the latter begins to grow earlier and saturates
faster than the former. Nevertheless, the gain of the 210-GHz mode for modulated
beams differs from that of the 210-GHz mode for unmodulated beams by approxi-
mately 1% (ignoring error bars). Note again that the gain of the 210-GHz mode in
Figure 7.11 is much greater than that of the TMg, waveguide mode for I = 1.0 A.

Figure 7.12 is identical to Figures 7.4 and 7.8, except that it shows the variation
of |E,| for all modes (from 80 GHz to 300 GHz) for the interaction of two 0.7-mm
cold and modulated beams at 210 GHz (the red curve in Figure 7.10). As in the
previous contour plots, the right-hand vertical axis is frequency in units of GHz and

the magnitude of |E,| is given by the color scale legend in units of (kV/m)/GHz.
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Figure 7.12: Contour plot of |E,| for the interaction of two 0.7-mm cold and modu-
lated beams at 210 GHz for I = 1.0 A.

Equation 4.39 predicts that two 0.7-mm and 0.5-A beam with energies 20 keV and
19.549 keV will interact at 210 GHz regardless of their modulation amplitude. As
we can see in Figure 7.12, a frequency component at 210 GHz is clearly the largest
mode observed. A fairly large FWHM frequency of 5 GHz or less in Figure 7.12
is due to the coarse FFT resolution used (5 GHz). According to Figure 6.19, the
interaction of unmodulated beams at 210 GHz gives rise to a significant number
of competing modes. This is in contrast with the interaction of modulated beams
depicted in Figure 7.12. Note that the interaction of modulated beams at 210 GHz
produces a markedly better signal-to-noise ratio, which is what we also observed for

the interaction of modulated beams at 30 GHz and 110 GHz.

As was the case in Figures 7.4 and 7.8, we can identify a TMg, waveguide mode
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(132 GHz) at the beginning of Figure 7.12. No TMy; at 57.5 GHz can be seen due to
the frequency window used (from 80 GHz to 300 GHz). Also, no harmonics, if any,
are observed for the same reason. |E,| of the 210-GHz mode is greater than that of
the TMy, for all values z with the exception of z = 2.5 mm, where the magnitude of

the latter is over 70% greater than that of the former.

7.1.3 Axial electric field at high frequencies

Subsections 7.1.1 and 7.1.2 examined the magnitude of the ac component of axial
electric field at low and medium interaction frequencies. In this subsection, we

examine |E,| at high interaction frequencies, namely, 400 GHz, 800 GHz, and 1 THz.

Figure 7.13 shows the variation of |E,| with longitudinal distance and frequency
for two 0.7-mm and 0.5-A cold and modulated beams with energies 20 keV and
19.767 keV. The modulation amplitude was 1% at 400 GHz. The numerical values
of |E,| are given by the vertical axis in units of (V/m)/GHz.

The contour plot in Figure 7.13 was recorded using a frequency resolution of
10 GHz in order to keep the total number of particles under 5 million (Chapter 5).
Therefore, the growing mode shown has a FWHM frequency of 10 GHz or less.
No waveguide modes (for instance, TMy, at 281.5 GHz or TMg; at 356.4 GHz)
can be seen in Figure 7.13 over the frequency range plotted. Still, as we observed
in Figures 7.4 and 7.8, it is highly likely that TMy; and TMg, at 57.5 GHz and
132 GHz are present, the former being more prominent than the latter. Note also
that harmonics, if any, are absent because of the frequency window chosen (250 GHz

to 500 GHz).

According to Equation 4.39, two 0.7-mm and 0.5-A beams with the same energies
as in Figure 7.13 will interact at 400 GHz regardless of the modulation amplitude.
As we can see in Figure 7.13, the interaction of modulated beams (JE = 2.33 eV)
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Figure 7.13: Three-dimensional contour plot of |E,| for the interaction of two 0.7-mm
cold and modulated beams at 400 GHz for I = 1.0 A.

resulted in the exponential growth of a 400-GHz mode, which is clearly dominant
over most of the interaction region. The 400-GHz mode has a two-peak structure
similar to that of the 30-, 110-, and 210-GHz modes for I = 1 A. Note that the
saturation length of the 400-GHz mode is the same as that for the interaction of two
0.7-mm and 0.5-A cold and modulated beams at 30 GHz, 110 GHz, and 210 GHz
displayed in Figures 7.3, 7.7, and 7.11. This suggests that the saturation length of

all fundamental modes considered so far is independent of interaction frequency and
modulation amplitude.

Figure 7.14 is similar to Figure 7.13 and shows |E,| for the interaction of 0.7-mm

and 0.5-A cold and modulated beams at 800 GHz. The beam energies were 20 keV
and 19.884 keV. The modulation amplitude was 1.5% at 800 GHz. As in Figure 7.13,
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Figure 7.14: Three-dimensional contour plot of |E,| for the interaction of two 0.7-mm
cold and modulated beams at 800 GHz for I = 1.0 A.

the vertical axis of Figure 7.15 is the magnitude of |E,| in units of (V/m)/GHz.

According to Figure 7.14, a frequency component at 800 GHz grows and saturates
at the same longitudinal position as the 400-GHz mode in Figure 7.13. In addition,
the location of the second peak in Figure 7.14 coincides with that in Figure 7.13.
Note that the gain of the 800-GHz mode is within 3% (excluding error bars) of that
of the 30-, 110-, 210-, and 400-GHz modes shown in Figures 7.3, 7.7, 7.11, and 7.13.

Hence, we can argue that the gain is not a function of interaction frequency and
modulation amplitude.

As we can see in Figure 7.14, the 800 GHz mode is dominant over the length of

the interaction region. This is in agreement with Equation 4.39, which predicts that
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the interaction frequency of two 0.7-mm and 0.5-A beams with energies 20 keV and
19.884 keV will be 800 GHz. Note that due to the frequency window used (500 GHz
to 900 GHz) to generate the contour plot, harmonics, if any, are absent in Figure 7.14.

In addition, no TMy;, TMyo, and higher waveguide modes can be observed for the
same reason as above.

The next three-dimensional contour plot shown in Figure 7.15 depicts |E,| for
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Figure 7.15: Three-dimensional contour plot of |E,| for the interaction of two 0.7-mm
cold and modulated beams at 1 THz for / = 1.0 A.

two 0.7-mm and 0.5-A cold and modulated beams interacting at 1 THz. The beam
energies used were 20 keV and 19.907 keV, while the modulation amplitude was 1.5%

at 1 THz. The vertical axis of Figure 7.15 represents the magnitude of |F,| in units
of (kV/m)/THz.
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Figure 7.15 was obtained using a 0.05-ns time window, which equaled 50 peri-
ods at 1 THz and, thus, was more than adequate to resolve |E,| within the range
0.5 < f < 4 THz The frequency resolution, corresponding to the 0.05-ns time

window, was 20 GHz.

According to Equation 4.39, two 0.7-mm and 0.5-A beams with energies 20 keV
and 19.907 keV will interact at 1 THz. As can be seen in Figure 7.15, a frequency
component at 1 THz is dominant in the linear region, which extends to about z =
98 mm. Besides the 1-THz mode, harmonics at 2 THz and 3 THz can clearly be
seen in Figure 7.15. Even though the second harmonic is negligible in the linear
region, its magnitude becomes comparable (within 6%) to that of the fundamental
mode where the 1-THz mode saturates. A frequency component at 3 THz peaks
slightly before the saturation point, where its magnitude is less than half that of the
1-THz mode. Note that the saturation length of the 1-THz mode is the same as that
for the interaction of two 0.7-mm and 0.5-A cold and modulated beams at 30 GHz,
110 GHz, 210 GHz, 400 GHz, and 800 GHz in Figures 7.3, 7.7, 7.11, 7.13, and 7.14,
respectively. This again suggests that the saturation length of all fundamental modes

considered so far is independent of interaction frequency and modulation amplitude.

7.2 Space-charge effects and the relationship be-

tween gain and interaction frequency

In this section, we turn our attention to the variation of Ggj, with total beam
current and interaction frequency. As in Chapter 6, Gy, will be compared with

Gy, to validate the 1-D theory presented in Chapter 4.

Plotted in Figure 7.16 is the variation of | E,| of a 30-GHz mode with longitudinal

distance, z, for different beam currents and beam radii. The top plot in Figure 7.16
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Figure 7.16: |E.| of a 30-GHz mode versus z for r, = 0.7 mm (top plot), r, = 1.0 mm
(bottom plot, red curves), and r, = 1.4 mm (bottom plot, blue curves). Total beam
current varies from I = 0.6 A to I = 2.2 A. Solid gray lines are curve fits given by
Equation 5.9.

was generated from 9 simulations involving the interaction of two 0.7-mm cold and
modulated beams. The red curves in the bottom plot were obtained by simulating the
interaction of two 1.0-mm cold and modulated beams. Finally, the blue curves in the
bottom plot were generated from 4 simulations involving the interaction of two 1.4-
mm cold and modulated beams. For every single simulation listed, the energy of the
faster beam was fixed at 20 keV. The energies of slower beams were determined from
Equation 4.39, where fbunching = 30 GHz. In addition, the modulation amplitude
was 1% at 30 GHz.

As in Figure 6.7 for unmodulated beams, the datasets in Figure 7.16 are shown
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up to and including the linear region. Hence, the curves corresponding to larger
currents have fewer data points. The variation of the saturation length of the 30-
GHz mode with total beam current is examined at the end of the section for different
beam radii. Also, the saturation length for r, = 0.7 mm in Figure 7.16 (top lot) is

compared with that for unmodulated beams shown in Figure 6.13.

Due to a better signal-to-noise ratio, the curves in Figure 7.16 are markedly less
noisy than those in Figure 6.7. As can be seen in Figure 7.16, the curves oscillate
regardless of the values of I and r,. In addition, the oscillation amplitude is pro-
nounced for low values of z and decreases noticeably in the linear region. The initial
values of |E,| increase with space charge, which is what we observed for unmodulated
beams in Figure 6.7. Note that the initial angle, which is a function of modulation
amplitude, is always positive for the interaction of modulated beams in Figure 7.16.
By contrast, the initial angle of |E,| in Figure 6.7 is both positive and negative.
According to Figure 7.16, the larger the space charge is, the more acute the slope of

the linear region becomes and, therefore, the higher Gg;, is.

Figure 7.17 displays the variation of Ggjyy, (open symbols) from Figure 7.16 with
total beam current. The solid, dashed, and dotted red curves represent Gy}, (Equa-
tion 4.38) for r, = 0.7 mm, 7, = 1.0 mm, and 7, = 1.4 mm, respectively. The solid

symbols correspond to unmodulated beams and are from Figures 6.8 and 6.10.

As can be seen in Figure 7.17, Ggj;y, for modulated beams is always less than Gy,
for r, = 1.0 mm. However, the same does not hold true for either r, = 1.4 mm or
ry = 0.7-mm. For r, = 0.7-mm, the average deviation between Gy} and Ggjyy, for
modulated beams is about 4.4% (excluding error bars). In the case of modulated
1.0- and 1.4-mm beams, the average deviation (excluding error bars) between Gy,
and Ggjpy, reduces to 4% and 2.4%, respectively. Considering the fact that Gy
was obtained from 2-D simulations and Gy}, was derived using the 1-D theory, the

agreement between theory and simulations is very good. Hence, we can conclude
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Figure 7.17: Gain of a 30-GHz mode as a function of total beam current for three dif-
ferent beam radii. The open and solid symbols represent modulated and umodulated
cases, respectively. The three red curves corresponding to Gy, from Equation 4.38.

that Ggiy, for modulated beams varies as \/I/r2, which is what we found for the

interaction of unmodulated beams at 30 GHz.

For r, = 1.4 mm in Figure 7.17, Gy, for unmodulated beams differs from Gy,
for modulated beams by less than 3% (ignoring error bars). For r, = 1.0 mm,
however, the discrepancy is as large as 12.2% (excluding error bars). For r, = 0.7 mm
in Figure 7.17, which has more data points than the other two cases, the average
deviation between Gg;y, for unmodulated beams and Ggjy, for modulated beams is
less than 3% (excluding error bars). Therefore, not only does Gy, vary as m :

it also appears to be independent of modulation amplitude.

The 30-, 110-, and 210-GHz modes discussed in Figures 7.2, 7.3, 7.7, and 7.11 are
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combined and shown together in Figure 7.18. Note that the curves represented by
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Figure 7.18: |E,| versus z for the interaction of two 0.7-mm cold and modulated
beams for I = 0.6 A (solid symbols) and I = 1.0 A (open symbols). The green, red,
and blue curves correspond to 30-, 110-, and 210-GHz modes.

the open symbols were truncated (second peaks were omitted) for the sake of clarity.

Comparing Figure 7.18 to Figure 6.20, we see that the larger current results
in faster mode growth for all three modes regardless of the modulation level used.
In Figure 6.20, no mode saturation is observed for I = 0.6 A. By contrast, all
three modes in Figure 7.18 saturate at about the same longitudinal position, slightly
before the end of the simulation box. Therefore, to first order, we may conclude
that the saturation length is independent of interaction frequency and dependent on

modulation amplitude.

For I = 1.0 A, as we can see in Figures 6.20 and 7.18, the three modes for

modulated beams start to grow earlier and reach saturation faster than those for
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unmodulated beams. For I = 1.0 A in Figure 7.18, the modes again saturate at about
the same longitudinal position. Comparing the three modes in Figures 6.20 and 7.18
for I = 1.0 A, the larger the modulation amplitude, the shorter the saturation length
is. Hence, as in the case for I = 0.6 A, we are led to conclude that the saturation
length is a function modulation amplitude, 6 E. Moreover, the saturation length is

independent of interaction frequency.

In Figure 7.19, Gy, of the 30- (circles), 110- (triangles), and 210-GHz (squares)
modes from Figures 6.20 and 7.18 is plotted as a function of total beam current.

Note that the unmodulated and modulated cases are shown by the solid and open

99 Simulations, 30 GHz, 1% mod
20 Simulations, 110 GHz, 1% mod
o Simulations, 210 GHz, 1% mod
i Theory, 30 GHz
Theory, 110 GHz
Theory, 210 GHz
= 04
&
=,
£
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Figure 7.19: The variation of gain with total beam current for three modes: 30-GHz
(circles), 110-GHz (triangles), and 210-GHz (squares). The open and solid symbols
correspond to modulated and unmodulated cases. The solid green, red, and blue
curves represent Gy, given by Equation 4.38.
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symbols, respectively. The solid green, red, and blue curves are theoretical curves at

30 GHz, 110 GHz, and 210 GHz.

According to Figure 7.19, the discrepancy between Gy, and Gy, increases with
interaction frequency for both I = 0.6 A and I = 1.0 A. For I = 0.6 A, G, and
G4y, are within 6.1% and 18.8% (excluding error bars) at 30 GHz and 210 GHz,
respectively. For I = 1.0 A, Gy, and Gy, differ by 0.1% and 16.9% (ignoring error
bars) at 30 GHz and 210 GHz, respectively. This is similar to what we observed
when discussing the interaction of unmodulated beams in Figure 6.21. As we ar-
gued in Chapter 6, the discrepancy could be partially due to F' (Figure 3.3) being
overestimated in Equation 4.38 for Gyy,.

Comparing Gy, for modulated and unmodulated beams at I = 0.6 A (excluding
error bars), the two differ by 0.1%, 0.2%, and 10% at 30 GHz, 110 GHz, and 210 GHz,
respectively. For I = 1.0 A in Figure 7.19, Gy, for modulated and unmodulated
beams are within 1.8%, 3.7%, and 1% (excluding error bars) at 30 GHz, 110 GHz,
and 210 GHz, respectively. Note that if we do not ignore the error bars in Figure 7.19,
then the agreement between the data points is very good for both 0.6 A and 1.0 A.
Hence, for the interaction of two 0.7-mm cold beams at 30 GHz, 110 GHz, and
210 GHz, we may conclude that Gy, is independent of modulation frequency and

amplitude for both I = 0.6 A and I = 1.0 A.

Figure 7.20 shows the variation of |E.| with longitudinal distance, z, for the 30-,
110-, 210-, 400-, 800-, and 1-THz modes discussed in Figures 7.3, 7.7, 7.11, 7.13, 7.14,
and 7.15, respectively. Note that the modes displayed in Figure 7.20 were generated

from simulations involving two 0.7-mm cold and modulated beams for I = 1.0 A.

Examining Figure 7.20, we notice a large discrepancy in | E.| for the low /medium
and high interaction frequencies. For instance, the magnitude of the 30-GHz mode is

approximately a factor of 4.23 greater than that of the 1-THz mode at z = 116.5 mm.
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Figure 7.20: |E.| versus longitudinal distance, z, for 30- (green), 110- (red), 210-
(blue), 400- (magenta), 800- (black), and 1-THz (burgundy) modes. I = 1.0 A and
r, = 0.7 mm.

This difference in magnitudes can be partially explained by recalling that numerical
noise is inversely proportional to v/ N, where N is the total number of particles
used in a simulation. Hence, the more particles we have, the smaller the initial
and all subsequent values of |E,| will be. Since simulations at 30 GHz require fewer
particles than those at 1 THz (Appendix A), we should expect | E. | obtained from the
former to be larger than that obtained from the latter. The green curve (30 GHz) in
Figure 7.20 was generated using 718,200 particles, while the burgundy curve (1 THz)
was obtained with 5,000,000 particles. The ratio of these numbers approximately
equals 6.96, whose square root is about 2.64. If we were to multiply |E,| for the

1-THz mode by 2.64, this would push up the burgundy curve in Figure 7.20 towards
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the green curve and bring the two datasets to within a factor of 1.6 of one another.
Note that the foregoing argument fails to explain why |E,| of the 110-GHz mode (N
= 2,562,000) and 210-GHz mode (N = 3,210,480) is greater than that of the 30-GHz
mode (N = 718,200) in Figure 7.20.

In Figure 7.20, all modes saturate at about the same longitudinal position. Hence,
to first order, we can conclude that the saturation length in Figure 7.20 is not a func-
tion of interaction frequency. According to Appendix D, the smaller the interaction
frequency, the larger the modulation amplitude, 6 E. The modulation amplitude used
for the green curve (30 GHz) was 30.5 eV and, thus, over a factor of 6 greater than
that (4.51 eV) for the blue curve (210 GHz) and over a factor of 20 greater than
that (1.39 eV) for the burgundy curve (1 THz). In spite of this, to first order, the
modes shown in Figure 7.20 peak and saturate at the same longitudinal position.
This leads us to conclude that the saturation length is also independent of d E. Note
that for the interaction frequencies greater than or equal to 110 GHz, the second
peaks in Figure 7.20 occur at the same longitudinal position. The second peak for

the 30-GHz mode is shifted with respect to the others by a mere 9.5 mm.

If we fit the linear portions of the curves in Figure 7.20 with Equation 5.9 and
substitute the values of R obtained into Equation 5.10, we can plot Gy, as a func-
tion of interaction frequency. Gy, of the 6 modes in Figure 7.20 is displayed in
Figure 7.21. The solid symbols in Figure 7.21 correspond to theoretical values for I
= 1.0 A. Note that Gy}, has the same value for interactions at 400 GHz, 800 GHz,
and 1 THz (stars).

According to Figure 7.21, Gy}, increases with interaction frequency and saturates
at 400 GHz. At 30 GHz, 110 GHz, and 210 GHz, as can be shown, G, and Gy
differ by 0.1%, 6.5%, and 16.9%, respectively. For interaction frequencies greater than
or equal to 400 GHz, however, the former and the latter differ by as much as 26%.

This marked discrepancy between G, and Gy, especially for high frequencies, was
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Figure 7.21: The variation of gain with interaction frequency for two 0.7-mm cold and
modulated beams for 7 = 1.0 A. The solid symbols represent Gy}, (Equation 4.38).

partly explained earlier (Figure 7.19). It is interesting to note that Gy, at 30 GHz
(solid circle) is in good agreement with Ggjyy, over the entire frequency range shown

in Figure 7.21.

Examining the simulation data in Figure 7.21, the largest percent deviation in
numerical gain is 5.2% (disregarding error bars) and occurs between Gg;,, at 110 GHz
and that at 400 GHz. If the error bars are taken into account, however, we can
confidently say that the variation of Gy, is negligible. This leads us to conclude
that Ggjp, is independent of both interaction frequency and modulation amplitude
for the interaction of two 0.7-mm and 0.5-A cold and modulated beams at frequencies

ranging from 30 GHz up to and including 1 THz.

156



Chapter 7. Interaction of modulated electron beams

In Figure 7.22, we combine the data in Figures 6.22, 7.17, 7.19, and 7.21 to plot

2
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Figure 7.22: The variation of gain of 30-, 110-,210-, 400-, 800-, and 1-THz modes
with space charge density. The solid symbols correspond to 0% modulation. The
open symbols represent Gy}, from Equation 4.38.

in Figure 7.22 correspond to unmodulated beams, while the open symbols represent

theory. The rest of the data points represent modulated beams.

According to Figure 7.22, the smallest average deviation (less than 4%, excluding
error bars) between Ggjy, and Gy, occurs at 30 GHz over the entire range shown.
This applies to both unmodulated and modulated beams. Hence, we can conclude
that Gy, at 30 GHz varies as m , which is consistent with theory. As can be seen
in Figure 7.22, the agreement between simulations and theory deteriorates for higher

interaction frequencies. For instance, when the space charge density is approximately
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equal to 2 A/mm?, the deviation between G, and Gy, increases from 0.1% at
30 GHz to as much as 26% at 400 GHz and above. The reason accounting for part

of this discrepancy was discussed earlier.

Although Gy, and Gy, disagree at medium and high interaction frequencies,
the same is not true of Ggjy, for modulated and unmodulated cases. Namely, for
1.2 A/mm? and 2 A/mm?, the agreement between Gy;,, for modulated beams and
Ggim for unmodulated beams is very good (error bars included). Hence, Ggjyy, is
independent of interaction frequency and modulation amplitude. In addition, as can
be seen in Figure 7.22 for 2 A/mm?, G;,,, is independent of interaction frequency and

modulation amplitude over a wide frequency range, specifically, 0.3 < f < 1 THz.

Before closing this subsection, we will compare the saturation length of a 30-
GHz mode for the interaction of modulated and unmodulated beams. Our goal is to
determine whether or not the saturation length is affected by a nonzero modulation

amplitude.

Figure 7.23 is | E,| of a 30-GHz mode for the interaction of two 0.7-mm cold and
modulated beams. The curves depicted are exactly the same as those in the top plot
of Figure 7.16. As opposed to Figure 7.16, Figure 7.23 shows data points before and

after saturation.

As can be seen in Figure 7.23, the 30-GHz mode saturates for all currents shown.
By contrast, no saturation is observed in Figure 6.12 for values of I less than 1.0 A.
Comparing the 30-GHz mode for modulated beams in Figures 7.23 with that for
unmodulated beams in Figure 6.12, the former starts to grow earlier and saturates
faster. Based on the foregoing discussion, we can conclude that the greater the

modulation amplitude is, the shorter is the saturation length.

An estimate of the saturation length of the 30-GHz mode in Figure 7.23 is shown

by the blue curve in Figure 7.24. The green curve corresponds to unmodulated beams
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Figure 7.23: The variation of |E,| of a 30-GHz mode for I ranging from 0.6 A to
2.2 A.

and is the same curve as that in Figure 6.13.

To relate the saturation length and total beam current, the blue curve is fitted
with y = Ba" (Equation 6.1). The values of B and n extracted from the curve
fit are given by 118.2 + 0.92 and —0.58 4+ 0.016. Hence, on average, the saturation
length for the modulated case is about 26% less. Note that as I varies from 1.0 A to
2.2 A, the difference between the green and blue curves decreases from approximately
37 mm to 29 mm. Even though the interaction of modulated and unmodulated
beams at 30 GHz yields the same gain (within 3%), the use of modulated beams is

advantageous because it reduces the interaction length by about 26%.

If we analyze the curves in the bottom plot of Figure 7.16, it can be shown that
the 30-GHz mode saturates for values of I greater than or equal to 1.2 A when 7,

= 1 mm. For r, = 1.4 mm, the 30-GHz mode does not saturate for values of I less
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Figure 7.24: Saturation length of a 30-GHz mode as a function of total beam cur-
rent. The blue and green curves correspond to modulated and unmodulated cases,
respectively. The solid gray and red curves are given by y = Bz™.

than 2 A. In addition, the saturation length for r, = 1 mm is approximately 32%
more than that for r, = 0.7 mm. Moreover, the saturation length for r, = 1.4 mm
is over twice as long as that for r, = 0.7 mm. Hence, not only does the interaction
of two 0.7-mm and 0.5-A beams yield a higher gain, it makes the interaction region

shorter.

7.3 Frequency bandwidth for amplification

Depending on their energies, currents, and radii, two beams will interact at the
bunching frequency, fbunchingv predicted by Equation 4.39. To generate a gain

bandwidth plot, two electron beams with given energies, currents, and beam radii are
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made to interact while they are modulated at fbunching and neighboring frequencies
(both greater than and less than fbunching>' We continue to scan frequencies as long
as the resulting gain, G;yy,, is nonzero. The modulation frequencies, on either side of
fbunchinga at which Gy, becomes negligible mark the endpoints of the gain curve.
In this section, we explore gain bandwidth curves for the interaction of two cold

electron beams. The effect of nonzero energy spread on gain bandwidth is treated in

Subsection 7.4.2.

Figure 7.25 displays gain as a function of driving/modulation frequency for sim-
ulations involving the interaction of two 0.7-mm modulated beams at 30 GHz. For
the blue and red curves, beam energies and currents were the same as those in Fig-
ure 7.1. In the case of the burgundy curve, I = 1.5 A and beam energies were 20 keV

and 16.532 keV. The modulation amplitude was 1% and the modulation frequency
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Figure 7.25: Gain bandwidth for two 0.7-mm modulated beams interacting at
30 GHz. The blue, red, and burgundy curves correspond to I = 0.6 A, I = 1.0 A,
and I = 1.5 A, respectively. The open stars are Gg;y, for cold and unmodulated
beams.
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ranged from 2.5 GHz to 60 GHz, amounting to a total of 39 runs (13 per curve). The

open stars in Figure 7.25 represent G, for unmodulated beams at 30 GHz.

In Figure 7.25, the gain bandwidth measured at FWHM for I = 0.6 A, [ =
1.0 A, and I = 1.5 A is approximately 30 GHz (from 13 GHz to 43 GHz), 31 GHz
(12.8 GHz to 43.8 GHz), and 30.1 GHz (12.7 GHz to 42.8 GHz), respectively. To first
order, then, the FWHM bandwidth is the same for all three curves and equals the
central frequency, 30 GHz. In addition, the ratio of the endpoints at half maximum
is more than an octave. Moreover, as we can see in Figure 7.25, the ratio between
the endpoints of the curves is more than a decade. From the foregoing discussion it is
clear that the interaction of two 0.7-mm cold beams at 30 GHz possesses a significant

gain bandwidth.

As can be seen in Figure 7.25, all three curves are centered around 30 GHz, where
Ggim has a maximum. This is in agreement with Equation 4.39 from the 1-D theory.
In Figure 7.25, over the range 5 < f < 40 GHz, the average ratio of Gy, for I =
1.5 A to that for I = 1.0 A is about 1.2. Over the same range, the average ratio of
Ggiy for I = 1.0 A to that for I = 0.6 A approximately equals 1.33. The ratios of
Glim are within 3% of the corresponding ratios for G},. Hence, the agreement is very
good. However, the agreement deteriorates near the edges of the bandwidth curves,
which can be attributed to noisy data from simulations (not shown), as indicated by
large error bars in Figure 7.25. Note that for all three currents in Figure 7.25, G,
for modulated beams differs from that for unmodulated beams by 3% (ignoring error
bars). Therefore, Gy, is not a function of modulation amplitude for 1 = 0.6 A, I

= 1.0 A, and I = 1.5 A, respectively.

Figure 7.26 is similar to Figure 7.25 and depicts bandwidth curves for the interac-
tion of two 0.5-A modulated beams at 30 GHz. The red curve is the same as that in
Figure 7.25. For the blue and green curves the beam radii were 1.0 mm and 1.4 mm

and beam energies were the same as those in Figure 7.16. For each dataset shown the
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modulation amplitude and frequencies were the same as those in the previous plot.

As in Figure 7.25, the open stars in Figure 7.26 represent Gy, for unmodulated

l—#— Simulations, 1% mod, 0.7 mm Hr Simulations, 0% mod, 0.7 mm
_—-—Simulations, 1% mod, 1.0 mm v Simulations, 0% mod, 1.0 mm
Simulations, 1% mod, 1.4 mm Simulations, 0% mod, 1.4 mm
0.4 |-
¥
5 SN,
= &
= = -
—_ - ./' T ——
[
‘™ -— -\
¢t 02z e =
il
| I//!/- l\
f
71
i Bl N
0.0 l 1 1 1 1 1 1 1 1 1 1\J-
8] 5} 10 145 20 25 30 35 40 45 50 55 18]

Driving frequency [GHz]

Figure 7.26: Bandwidth curves for two 0.5-A modulated beams interacting at
30 GHz. The red, blue, and green curves correspond to 7, = 0.7 mm, 7, = 1.0 mm,
and 7, = 1.4 mm, respectively. The open stars are Gg;y, for cold and unmodulated
beams.

beams at 30 GHz.

According to Figure 7.26, Gy, peaks at 30 GHz, which is consistent with Equa-
tion 4.39. The gain bandwidth of the blue and green curves, estimated at FWHM
in Figure 7.26, yields 30.5 GHz and 32.1 GHz. To first order, the FWHM band-
width for r, = 1.4 mm and r, = 1.0 mm is approximately the same as that for
r, = 0.7 mm, which is equal to 31 GHz. Hence, as in Figure 7.25, the ratio of the
endpoints corresponding to 50% of Gy, is more than an octave. Also, the ratio be-
tween the endpoints of the blue and green curves is more than a decade. Comparing
Figures 7.26 and 7.25, we can conclude that the FWHM bandwidth is independent

of total beam current and beam radius (space charge) for the interaction of two cold
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electron beams at 30 GHz.

Examining the curves in Figure 7.26, the smaller the beam radius, the faster Gy,
becomes negligible for large modulation frequencies. Note that Gy, for modulated
beams is in good agreement with that for unmodulated beams for r, = 0.7 mm
and 7, = 1.4 mm. However, the former and the latter differ by as much as 11.5%
(ignoring error bars) for 1, = 1.0 mm. As r, ranges from 0.7 mm to 1.4 mm, Gy, at
30 GHz increases by as much as 38.5%. Although the red curve (1, = 0.7 mm) has
no advantage over the other two curves in terms of the bandwidth, the interaction
of two 0.7-mm beams yields a higher gain over the entire frequency range shown. In
addition, as was discussed earlier (Figure 7.24), the interaction of two 0.7-mm beams

enables us to makes the interaction region shorter.

Having explored bandwidth plots at 30 GHz, we will now examine gain bandwidth
at a medium interaction frequency. Figure 7.27 displays gain bandwidth curves for
the interaction of two 0.7-mm modulated beams at 110 GHz. For the blue and
red curves in Figure 7.27, the beam currents and energies were the same as those
in Figure 7.6. The modulation amplitude was 1% and the modulation frequency
ranged from 10 GHz to 170 GHz (15 frequencies in total, as indicated by the data
points). As in the previous two figures, the open stars in Figure 7.27 represent Ggjpy,

for unmodulated beams at 110 GHz.

According to Figure 7.27, for I = 0.6 A the FWHM bandwidth is about 128 GHz
(from 34.4 GHz to 162.4 GHz), while that for I = 1.0 A approximately equals
134 GHz (28.5 GHz to 162.5 GHz). The ratio of the endpoints corresponding to 50%
of Gy, is about 4.7 and 5.7 for the blue and red curves, respectively. These values
are a factor of 1.4 and 1.7 greater than those in Figure 7.25. This suggests that the
gain bandwidth increases with increasing interaction frequency. Note that the ratio
between the endpoints of the blue and red curves is more than a decade, which is

what we observed for the interaction at 30 GHz in Figure 7.25. The values of the
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Figure 7.27: Gain bandwidth for two 0.7-mm modulated beams interacting at
110 GHz. The blue and red curves correspond to I = 0.6 A and I = 1.0 A. The open
stars are Ggjp, for cold and unmodulated beams.

bandwidth given above are estimates and are within a factor of 1.05 of one another.
Hence, we can conclude that the interaction of two cold electron beams at 110 GHz
has an impressive gain bandwidth, which, to first order, is independent of total beam

current.

As can be seen in Figure 7.27, the largest gain occurs at 110 GHz. This agrees
with Equation 4.39, which predicts that two 0.7-mm beams, with the same beam
currents and energies as in Figure 7.27, will interact at 110 GHz. Over the range
20 < f < 160 GHz, the average ratio of Ggjy, for I = 1.0 A to that for I =
0.6 A is within 3% of the corresponding ratios for Gy,. The discrepancy between the

numerical and theoretical ratios becomes significant at the bandwidth curve edges,
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being as much as 22% and 46% at 10 GHz and 170 GHz, respectively. Note that
Ggip for modulated and unmodulated beams are in good agreement (including error

bars) for both currents. Hence, Gy, is independent of modulation amplitude.

Figure 7.28 combines bandwidth plots from Figures 7.25 and 7.27 with those for
the interaction of two 0.7-mm and 0.5-A modulated beams at 400 GHz (green curve)
and 800 GHz (burgundy curve). For the green and burgundy curves in Figure 7.28,
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Figure 7.28: Gain bandwidth for two 0.7-mm and 0.5-A modulated beams interacting
at 30 GHz, 110 GHz, 400 GHz, and 800 GHz.

the beam energies were the same as those in Figures 7.13 and 7.14. Also, for the
green curve the modulation amplitude was 1% and the modulation frequency ranged
from 40 GHz to 600 GHz. For the burgundy curve the modulation amplitude was
1.5% and the modulation frequency ranged from 200 GHz to 1 THz.
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According to Figure 7.28, the green curve peaks at 400 GHz, while the burgundy
curve has a maximum at 800 GHz. This agrees with Equation 4.39, which predicts
that the beams with the same currents and energies as those (green and burgundy
curves) in Figure 7.28 will interact at 400 GHz and 800 GHz, respectively. Note
that the agreement between the peak values of Gg;y, at 30 GHz, 110 GHz, 400 GHz,
and 800 GHz is very good (including error bars). Hence, as we saw earlier, Gy, is

independent of interaction frequency and modulation amplitude.

The gain bandwidth of the green curve estimated at FWHM approximately equals
378 GHz (163 GHz to 541 GHz). For the burgundy curve, if we use a rough estimate,
the FWHM bandwidth is approximately 780 GHz. Using these estimates, the ratio
between the endpoints corresponding to 50% of Ggjyy, is about 3.3 for both 400 GHz
and 800 GHz. This value is about the same as that for 30 GHz and a factor 1.7
smaller than that for 110 GHz. Hence, to first order, the gain bandwidth measured
at FWHM is independent of interaction frequency and modulation amplitude for the
interactions from 30 GHz to 800 GHz. According to Figure 7.28, a radiation source
based on the interaction of two 0.7-mm and 0.5-A modulated beams will have an
impressively wide gain bandwidth from the microwave to the far infrared region of
the spectrum. We should keep in mind, however, that the curves in Figure 7.28
correspond to cold beams. As will be shown in Section 7.4, for the interaction of

warm beams the actual gain obtained is lower than that in Figure 7.28.

7.4 Consequences of energy spread

All simulation results up to this point in this chapter have been for the interaction of
two cold electron beams. Section 7.4 explores the interaction of two warm beams. In

addition, we examine the effect of nonzero energy spread on gain and gain bandwidth.
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7.4.1 Degradation of gain

In this subsection, we will look at the interaction of two warm and modulated beams
at low (30 GHz), medium (110 GHz, 210 GHz), and high (400 GHz, 800 GHz)

interaction frequencies. We will also study the influence of nonzero energy spread on

Gsim~

7.4.1.1 Low interaction frequency

Figure 7.29 depicts the magnitude of the ac component of electric field, |E.|, as a
function of frequency for the interaction of two 0.7-mm and 0.5-A modulated beams
with three different values of percent energy spread, namely, 0% spread (red curve),

3% spread (burgundy curve), and 5% spread (green curve). The beam energies, mod-

25

0% spread
3% spread
5% spread

20

15

z

IE | [kV/m/GHz]

10

1Al AAAAA\A_ L R
G0 an

120
Frequency [GHz]

Figure 7.29: FFT of |E.| for the interaction of two 0.7-mm modulated beams at
30 GHz for I = 1.0 A. The red, burgundy, and green curves correspond to 0%, 3%,
and 5% energy spread.
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ulation frequency, and modulation amplitude were the same as those in Figure 7.1.
The curves in Figure 7.29 were recorded at a longitudinal position equal to z =

126 mm. Also, the FFT parameters used were the same as those in Figure 7.1.

According to Appendix D, 3% and 5% energy spread for 20- and 16.95-keV beams
is equivalent to 1108 eV and 1847 eV at FWHM. As can be seen in Figure 7.29, a
frequency component at 30 GHz is dominant for 0% and 3% energy spread. This
agrees with Equation 4.39, which states that two 0.7-mm and 0.5-A beams with
the same energies as those in Figure 7.29 will interact at 30 GHz regardless of the

modulation amplitude and the amount of energy spread.

For 5% energy spread in Figure 7.29, the interaction is very weak due to a sig-
nificant overlap of the beam energies (1847 eV at FWHM). It can be shown that
as percent energy spread ranges from 0% to 5%, the average signal-noise-ratio is
reduced by about a factor of 34. Even though the 30-GHz mode has the largest mag-
nitude for 3% spread, it is not the only mode present as we can see in Figure 7.29.
Three modes stand out, specifically, those at 22.5 GHz, 35 GHz, and 40 GHz. The
magnitude of the largest of the three, 35 GHz, is approximately a factor three less
than that of the 30-GHz mode. Note that the interaction for 0% energy spread is
already nonlinear at z = 126 mm, Figure 7.29 showing as many as three harmonics

at 60 GHz, 90 GHz, and 120 GHz, respectively.

Figure 7.30 shows |E,| of a 30-GHz mode for the interaction of two 0.7-mm and
0.5-A modulated beams with the same beam energies as in Figure 7.29. The datasets
in Figure 7.30 were obtained from 6 different simulations involving the beams with
0% (red), 1% (blue), 2% (black), 3% (burgundy), 4% (magenta), and 5% spread
(green). The gray curves in Figure 7.30 are given by Equation 5.9 and represent

curve fits to the linear regions of the data.

In Figure 7.30, the slope of the linear portion is unchanged for percent energy
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Figure 7.30: |E,| of a 30-GHz mode versus longitudinal distance, z, for two 0.7-mm
modulated beams interacting at 30 GHz for I = 1.0 A. The datasets correspond to 6
different values of percent energy spread. The solid gray curves are curve fits given
by Equation 5.9.

spread less than or equal to 1%. This agrees with what we observed for unmodulated
beams in Figure 6.25. For values of percent spread exceeding 1%, the slope starts
to decrease steadily, its magnitude for 3% and 5% spread being approximately 27%
and as much as 74% less than that for 0% spread. This is consistent with the energy

profiles shown in in Figure 6.23.

According to Figure 7.30, the initial value of | E,| increases with decreasing energy
spread. By contrast, as can be seen in Figure 6.25, the initial value of |E,| decreases
with decreasing energy spread. Also, the initial angle of |E,| for modulated beams
is always positive, which is not the case for unmodulated beams in Figure 6.25. In
Figure 7.30, the warmer the beams are, the noisier |E.| becomes. The green curve
(5% spread) has at least four pronounced dips and it is the least linear of those

displayed. Note that the initial dip in |F,| shifts from right to left with increasing
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energy spread, which is what we saw in Figure 6.25.

Figure 7.30 depicted the variation of |E,| for 0.7-mm beams. Figure 7.31 is

similar to the previous figure and shows the variation of |E,| of a 30-GHz mode for

—#— (0% spread, 1.0 mm

1% spread, 1.0 mm
—m— 2% spread, 1.0 mm
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Figure 7.31: |E.| of a 30-GHz mode versus axial distance, z, for 1, = 1.0 mm (solid
symbols) and r, = 1.4 mm (open symbols). The data are shown for four different

values of percent energy spread and I = 1.0 A. Gray curves represent curve fits given
by Equation 5.9.

the interaction of two 0.5-A modulated beams with r, = 1.0 mm (solid symbols)
and r, = 1.4 mm (open symbols). The beam energies, modulation frequency, and
modulation amplitude were the same as those in Figure 6.26. The red, green, black,
and blue curves correspond to 0%, 1%, 2%, and 3% energy spread for both sets
of data. Also, the gray curves (given by Equation 5.9) are curve fits to the linear

portions of the two sets of data.
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The slope of the linear portion in Figure 7.31 behaves the same way as in Fig-
ure 7.30. Namely, it decreases with increasing percent energy spread. However, due
to a larger AFE and a smaller FWHM energy, the slope for r, = 0.7 mm in Fig-
ure 7.30 decreases by approximately 27% as percent energy spread varies from 0%
to 3%. By contrast, as can be seen in Figure 7.31, the slopes for r, = 1.0 mm and
r, = 1.4 mm decrease by approximately 38% and by as much as 98% over the same

range of percent energy spread.

In Figure 7.31, the larger the beams radius (less space charge), the smaller the
initial value of |E,|. For 0.7-mm beams in Figure 7.30, the initial value of |E,|
increases with decreasing energy spread. As we can see in Figure 7.31, the same
does not hold true for either dataset. For r, = 1.0 mm, the red curve (0% spread)
has the largest initial magnitude. However, the green, black, and blue curves have
identical initial values. Likewise, for r, = 1.4 mm, the initial values of |E,| are on
top one another for 1%, 2%, and 3% spread. However, as opposed to r, = 1.0 mm,
the red curve (0% spread) for 7, = 1.4 mm has the lowest initial magnitude. It is
interesting to note in Figure 7.31 that |E,| for 7, = 1.4 mm is markedly less linear

than for r, = 1.0 mm.

Figure 7.32 displays the gain of a 30-GHz mode as a function of percent energy
spread. The solid symbols in Figure 7.32 correspond to Gg;,, for modulated beams
and were obtained by substituting the values of R from Figures 7.30 and 7.31 into
Equation 5.10. The open symbols represent Ggjy, for unmodulated beams. In the top
plot, Gy, curves for unmodulated beams were taken from Figure 6.30. In the bottom
plot, Gy, curves for unmodulated beams are the same as those in Figure 6.27. The

dashed red and blue lines represent Gy}, from Equation 4.38.

For I = 0.6 A in the top plot of Figure 7.32, Gy, for modulated and unmodulated
beams is unchanged for percent energy spread less than or equal to 1%, the former

and the latter being within 5% and 6.2% of Gy, (ignoring error bars). As percent
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Figure 7.32: Gain of a 30-GHz mode as a function of percent energy spread. In the
top plot, all data are for r, = 0.7 mm. In the bottom pot, red curves correspond to
7, = 1.0 mm and blue curves are for r, = 1.4 mm. The dashed red and blue lines
represent theoretical gain. The solid and open symbols show Gy, for modulated
and unmodulated cases.

spread increases from 1% to 4%, both decrease by as much as 67% as compared to
their values for 0% spread. The average deviation between the former and the latter
is within 4% (error bars excluded) and we can conclude that Gg;y, is independent of

modulation amplitude for I = 0.6 A and r, = 0.7 mm.

For I = 1.0 A in the top plot of Figure 7.32, Gy, for modulated and unmodulated
beams are in good agreement (within 2%) for 0% and 1% energy spread. Also,
they agree very well with Gy, for energy spread less than or equal to 1%, Ggiyy, for
modulated beams being within 0.8% of Gy}, and Ggjyy, for unmodulated beams being

witin 2% of Gy, (error bars excluded). As percent energy spread varies from 0% to
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5%, the overlap between 20- and 16.95-keV becomes significant. As a result, Gy
for modulated beams and that for unmodulated ones decrease by as much as 74%
and 66%, respectively. As can be seen in Figure 7.32, the average deviation between
the former and the latter is within 3% (ignoring error bars) for percent spread less
than or equal to 4%. However, the two differ by as much as 24% (excluding error
bars) when percent energy spread equals 5%. Still, we can again state that Gy, is

independent of modulation amplitude for / = 1.0 A and r, = 0.7 mm.

For 7, = 1.0 mm in Figure 7.32, the average difference between Gg;y,, for mod-
ulated and unmodulated beams is about 5% (ignoring error bars). In addition, the
former and the latter are within 1.5% and 5.9% (excluding error bars) of Gy, for
0% energy spread. Hence, the agreement with theory (Equation 4.38) is very good
and fairly good for modulated and unmodulated beams, respectively. As percent
energy spread increases from 0% to 3%, Ggjyy, for the modulated and unmodulated
cases decrease by approximately 40%. For r, = 1.4 mm in Figure 7.32, Gy, for
modulated and unmodulated beams are within 3.6% (ignoring error bars) with the
exception of 3% energy spread, where the two differ by as much as 96% (excluding
error bars). This is most likely due to a considerable amount of noise for the |E,|
data in Figure 7.31. According to Figure 7.32, Gy, for modulated and unmodu-
lated beams are within 4% (ignoring error bars) of Gy},. Hence, the agreement is
very good. Based on the foregoing discussion, if error bars are taken into account,
we can conclude Ggip, is independent of modulation amplitude for both r, = 1.0 mm

and 7, = 1.4 mm.

According to Figure 7.32, Gy, for 0% spread decreases with increasing beam
radius. This is consistent with Equation 4.38 (theoretical gain), which is inversely
proportional to r,. Moreover, even though Equation 4.38 is invalid for warm beams,
Ggip for 7, = 0.7 mm (red curve) is consistently larger than that for 7, = 1.0 mm

and r, = 1.4 mm over the entire range of percent energy spread in Figure 7.32.
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7.4.1.2 Medium interaction frequencies

Figure 7.33 shows an FFT of |E.| for the interaction of two 0.7-mm and 0.5-A beams
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Figure 7.33: FFT of |E,| for the interaction of two 0.7-mm modulated beams at
110 GHz for I = 1.0 A. The red, blue, and green curves correspond to 0%, 0.8%,
and 1.2% energy spread.

with three different values of percent energy spread, specifically, 0% (red curve), 0.8%
(blue curve), and 1.2% spread (green curve). The modulation amplitude, modulation
frequency, time window, and frequency window were the same as those in Figure 7.6.

Also, the curves were recorded at a longitudinal position equal to z = 116.5 mm.

For the beams used to generate Figure 7.33, 0.8% spread is equivalent to 156.66 eV
and 1.2% spread corresponds to 234.98 eV. According to Figure 7.33, a mode at
110 GHz is clearly dominant for 0% and 0.8% spread over the frequency range shown.
As we can see, the 110-GHz mode appears to be the largest frequency component
even for percent spread as big as 1.2%. However, the average signal-to-noise ratio is

reduced by about a factor of 5 as percent spread varies from 0% to 1.2%.
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Comparing the FFT curves in Figure 7.33 with those in Figure 7.29, we can see
that |E,| for the 30-GHz mode is reduced by approximately 61% as percent energy
spread increases from 0% to 3%. By contrast, |E,| of the 110-GHz mode for 1.2%
spread is already 92% less compared to its value for 0% energy spread. This is due
to AFE for interactions at 110 GHz being approximately a factor of 3.6 less than
that for beams interacting at 30 GHz. Note that no harmonics, if any, are shown in
Figure 7.33 because of the frequency window used (10 GHz to 200 GHz) to record
the FFT curves.

Figure 7.34 shows the variation of |E,| of a 110-GHz mode with longitudinal
distance, z, for the interaction of two 0.7-mm and 0.5-A modulated beams with
6 different values of percent energy spread, namely, 0% (red), 0.4% (burgundy),
0.8% (blue), 1% (black), 1.2% (green), and 1.5% spread (orange). The modulation
frequency and amplitude were the same as those in the previous figure. The gray
curves in Figure 7.34 are given by Equation 5.9 and represent curve fits to the linear

regions of the datasets.

According to Figure 7.34, the larger the percent spread, the smaller the slope of
the linear region. This is consistent with what we have observed so far for the inter-
action of warm beams regardless of their interaction frequency, radii, and modulation

level.

As we can see in Figure 7.34, the slope is already zero for 1.5% spread due to the
beam energies being significantly overlapped. By contrast, owing to a larger AF,
the slope in Figure 7.30 is nonzero even for percent energy spread as large as 5%.
Note that the distribution of the initial values of |E,| in Figure 7.34 is random, which
is different from that in Figure 7.30, where the initial values of |E,| increase with

decreasing energy spread.

Figure 7.35 shows |E,| of a 110-GHz mode as a function of longitudinal distance,
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Figure 7.34: |E,| of a 110-GHz mode versus longitudinal distance, z, for the inter-
action of two 0.7-mm modulated beams at 110 GHz for I = 1.0 A. The datasets
correspond to 6 different values of percent energy spread. The solid gray curves are
curve fits given by Equation 5.9.

z, for the interaction of two 1.0-mm and 0.5-A modulated beams with three different
values of percent energy spread, namely, 0% (red), 0.4% (burgundy), and 1% spread
(black). The modulation amplitude was 1% at 110 GHz. The beam energies used
were 20 keV and 19.413 keV. The gray curves in Figure 7.35 are given by Equation 5.9

and represent curve fits to the linear regions of the datasets.

In Figure 7.35, 0.4% and 1% percent energy spread correspond to 78.82 eV and
197.06 eV. The curves in Figure 7.35 exhibit an oscillatory behavior, which is most
prominent for the black curve (1.0% spread). Note that the initial value of |E,|
has the smallest magnitude for 0% spread. This is to contrast to what we saw in

Figure 7.31 for the interaction of 1.0-mm beams at 30 GHz.

Comparing Figures 7.35 and 7.34, the slope of the linear region decreases with
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Figure 7.35: |E.| of a 110-GHz mode versus axial distance, z, for the interaction
of two 1.0-mm modulated beams at 110 GHz for I = 1.0 A. The data are shown

for three different values of percent energy spread. Gray curves represent curve fits
given by Equation 5.9.

increasing energy spread for both 7, = 0.7 mm 7, = 1.0 mm. As percent energy spread
varies from 0% to 1%, the slope in Figure 7.35 is reduced by as much as 78%. In
contrast, owing to a larger AF, the slope in Figure 7.34 decreases by approximately

27%. Hence, Ggjpy, for 1, = 1.0 mm is less than that for r, = 0.7 mm, which agrees

with theory.

The next plot is that of the gain of a 110-GHz mode as a function of percent
energy spread in Figure 7.36. The solid symbols correspond to Gg;y,, for modulated
beams and were obtained by substituting the values of R from Figures 7.34 and 7.35
into Equation 5.10. The open symbols represent Gy, for unmodulated beams (Fig-

ure 6.30). Gy, from Equation 4.38 is shown by the dashed lines.

For I = 1.0 A in the top plot, Gy}, is within 6.5% and 3.7% (excluding error bars)
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Figure 7.36: Gain of a 110-GHz mode as a function of percent energy spread. In the
top and bottom plots, the data are for r, = 0.7 mm and r, = 1.0 mm, respectively.
The dashed lines represent theoretical gain. The solid and open symbols show Gy,
for modulated and unmodulated cases.

of Gy for unmodulated and modulated beams with 0% energy spread. As can be
seen in Figure 7.36, the agreement between theory and simulations is slightly better
for I = 0.6 A and Gy, is within 4% (excluding error bars) of Ggjy, for modulated
and unmodulated beams with 0% energy spread. As percent spread ranges from 0%
to 1.2%, Ggjy, for I = 1.0 A decreases by about 51%. By contrast, due to a smaller
AE, Ggy for I = 0.6 A is reduced by as much as 85%. For I = 1.0 A in the top
plot, the average deviation between Ggjp, for modulated and unmodulated beams
is approximately 10% (excluding error bars). However, with the error bars taken
into account, the two red curves are very close and we can conclude that Gg;y, is

independent of modulation amplitude for 7, = 0.7 mm and I = 1.0 A.
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For r, = 1.0 mm and 0% energy spread in the bottom plot, Gg;, for modulated
beams and Gy}, are within 1.5% (ignoring error bars) of one another. Hence, the
agreement is very good. Gy, for unmodulated and modulated beams are within
9.9%, the former differing from Gy, by approximately 11.3% (excluding error bars).
As percent spread varies from 0% to 1.0%, Ggjyy, for modulated beams decreases
by as much as 78%. In contrast, owing to a larger AE, Ggjy, of the 30-GHz mode
in Figure 7.32 remains unaffected for percent energy spread less than or equal to
1.0%. Note that Gy, for r, = 0.7 mm (red curve) is consistently larger than that
for 7, = 1.0 mm (burgundy curve) over the range of percent energy spread shown,

which agrees with theory.

Next, we examine the interaction of warm beams at 210 GHz. Figure 7.37 shows

an FFT of |E,| for the interaction of two 0.7-mm and 0.5-A modulated beams with 0%
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Figure 7.37: FFT of |E,| for the interaction of two 0.7-mm modulated beams at
210 GHz for I = 1.0 A. The red, green, and violet curves correspond to 0%, 0.4%,
and 0.8% energy spread.
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(red), 0.4% (green), and 0.8% (violet) energy spread. The beam energies, modulation
amplitude, modulation frequency, time window, and frequency window in all three
cases were the same as those in Figure 7.10. The curves were recorded at z =

116.5 mm.

In Figure 7.37, 0.4% energy spread is equivalent to 79.1 eV and 0.8% spread
corresponds to 158.2 eV. Hence, we can expect negligible interaction for beams with
0.8% energy spread. Equation 4.39 predicts the interaction frequency in Figure 7.37
to be 210 GHz. As we can see in Figure 7.37, not only is a frequency component at

210 GHz dominant for 0% spread, it is the largest mode even for 0.4% spread.

According to Figure 7.37, the magnitude of the 210-GHz mode for 0.8% spread
is negligible in comparison with that for 0% energy spread. By contrast, as can
be seen in Figure 7.33, |E,| of the 110-GHz mode for 0.8% energy spread is only
a factor 2.6 less than that for 0% spread. This is due to AFE for interactions at
210 GHz being approximately a factor of 1.8 smaller than that for beams interacting
at 110 GHz. As in Figure 7.29, it would be reasonable to assume that the interaction
depicted in Figure 7.37 becomes nonlinear at some point. However, since the curves
in Figure 7.37 were recorded over a frequency window ranging from 80 GHz to

300 GHz, harmonics, if any, were excluded from the data.

Figure 7.38 shows |E,| of a 210-GHz mode as a function of longitudinal distance,
z, for the interaction of two 0.7-mm and 0.5-A modulated beams with 5 different
values of percent energy spread, namely, 0% (red), 0.2% (blue), 0.4% (green), 0.6%
spread (black), and 0.8% spread (violet). The modulation frequency, modulation
amplitude, and beam energies were the same as in Figure 7.37. The gray curves in
Figure 7.38 are given by Equation 5.9 and represent curve fits to the linear regions

of the datasets.

According to Figure 7.38, the general shape of the curves is very similar to that
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Figure 7.38: |E,| of a 210-GHz mode for the interaction of two 0.7-mm modulated
beams at 210 GHz for I = 1.0 A. The red, blue, green, black, and violet curves
correspond to 0%, 0.2%, 0.4%, 0.6%, and 0.8% spread. The gray curves are curve
fits given by Equation 5.9.

in Figures 7.30 and 7.34. Note that the violet curve, which corresponds to the
largest energy spread, is the least linear of the curves shown. This was observed in
Figures 7.30 and 7.34 as well. In Figure 7.38, the initial values of |F,| increase with
increasing energy spread, which is in contrast to what we observed in Figure 7.30,

where the initial values of |E,| increase with decreasing energy spread.

As we can see in Figure 7.38, the warmer the beams are, the smaller the slope of
the linear region. Owing to a smaller AE, the slope of the 210-GHz mode is negligible
for 0.8% energy spread. In contrast, the slope of the 30-GHz mode in Figure 7.30
is the same as that for 0% spread. In addition, the slope of the 110-GHz mode in
Figure 7.34 is within 17% of that for 0% energy spread. Note that for 0% spread, the
slopes in Figures 7.30, 7.34, and 7.38 differ by less than 4% (excluding error bars).

This suggests that Ggi, is independent of interaction frequency and modulation
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amplitude for the interaction of two 0.7-mm and 0.5-A beams at 30 GHz, 110 GHz,
and 210 GHz.

Figure 7.39 displays the variation of the gain of a 210-GHz mode with percent

energy spread. The blue curve in Figure 7.39 was obtained by substituting the values
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Figure 7.39: Gain of a 210-GHz mode as a function of percent energy spread for
I = 0.6 A (magenta) and I = 1.0 A (blue). The solid and open symbols correspond
to modulated and unmodulated cases. The dashed lines represent theoretical gain.

of R from Figure 7.38 into Equation 5.10. The magenta curve was generated from
simulations involving the interaction of two 0.7-mm and 0.3-A modulated beams
with energies 20 keV and 19.609 keV. The open triangle and open square correspond
to unmodulated beams and are taken from Figure 7.19. Finally, the dashed blue and

magenta lines represent Gy, from Equation 4.38.

For I = 0.6 A and 0% spread in Figure 7.39, Gy}, is within 9.7% and 18.8% (ignor-
ing error bars) of Gy, for unmodulated and modulated beams, respectively. Ggjpy,

for modulated beams differs from that for unmodulated beams by approximately
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9.6% (excluding error bars). Thus, at first sight, the agreement is poor. However,
if we take into account large error bars for both sets of data, then the discrepancy
is negligible. As percent energy spread varies from 0% to 0.6%, Gg;y, for modulated
beams decreases by as much as 85%. Note that due to a larger AE, Gy (green
curve) in Figure 7.36 reduces by 85% for only 1.2% spread, which is twice as large
as that in Figure 7.39.

For I = 1.0 A and 0% spread in Figure 7.39, Gy, is within 17.7% and 16.9%
(ignoring error bars) of Gg;y, for unmodulated and modulated beams, respectively.
Hence, the agreement is again poor. However, G, for modulated beams differs
from that for unmodulated beams by approximately 1% (excluding error bars), and
the agreement is very good. As percent energy spread varies from 0% to 0.8%, Ggjm,
decreases by as much as 90%. Note that the values of Ggjyy, for I = 1.0 A are greater
than those for I = 0.6 A over the entire range of percent spread shown, which agrees

with theory.

7.4.1.3 High interaction frequencies

Figure 7.40 shows an FFT of |E,| for the interaction of two 0.7-mm and 0.5-A
modulated (red and blue curves) and unmodulated (green curve) beams at 400 GHz.
For the red and green curves, the beams were cold. For the blue curve, on the other
hand, the beams were warm with 0.2% energy spread. The modulation amplitude,
modulation frequency, and beam energies were the same as those in Figure 7.13.

Also, the FFT parameters were exactly the same as those used for Figure 7.13.

In Figure 7.40, a frequency component at 400 GHz for the green curve is negligible
and does not rise above the noise floor. We believe that this is most likely due to
a small AF (only 233 eV and over a factor of 10 less than that for interactions

at 30 GHz) and a poor signal-to-noise ratio associated with simulations involving
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Figure 7.40: FFT of |E.| for the interaction of two 0.7-mm beams at 400 GHz for
I = 1.0 A. The red and blue curves correspond to modulated beams. The green
curve represents 0% modulation.

unmodulated beams. By contrast, both the red and blue curves in Figure 7.40 show
a dominant mode at 400 GHz, which agrees with Equation 4.39. As percent spread
increases from 0% to 0.2%, | E.| of the 400-GHz mode is reduced by approximately a
factor of 1.9. Also, the magnitude of the 400-GHz mode for the green curve is merely
1% of that for the red curve in Figure 7.40.

A coarse resolution of the curves in Figure 7.40 can be blamed on the time
window used (0.1 ns), which was equivalent to a frequency resolution of 10 GHz.
This was necessary to keep the number of total particles in the simulation under
5,000,000 (Chapter 5). Note the red curve in Figure 7.40 is a slice of Figure 7.13 at
z = 116.5 mm. As we saw in Figure 7.13, the 400-GHz mode saturates and peaks
at this exact longitudinal position. Although no harmonics, if any, can be seen in

Figure 7.40 owing to the frequency window used, it is very likely that the interaction
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for modulated beams becomes nonlinear in the neighborhood of z = 116.5 mm.

Figure 7.41 is similar to Figure 7.40 and displays |E,| as a function of frequency
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Figure 7.41: FFT of |E,| for the interaction of two 0.7-mm modulated beams at
800 GHz for I = 1.0 A. The red, blue, cyan, and green curves correspond to 0%,
0.1%, 0.15%, and 0.2% energy spread, respectively.

for the interaction of two 0.7-mm and 0.5-A modulated beams with 0% (red), 0.1%
(blues), 0.15% (cyan), and 0.2% (green) energy spread. The beam energies, modu-
lation amplitude, and modulation frequency were the same as those in Figure 7.14.
Also, the frequency and time windows were identical to those in Figure 7.14. The

curves in Figure 7.41 were recorded at z = 116.5 mm

In Figure 7.41, 0.1%, 0.15%, and 0.2% energy spread correspond to 39.88 eV,
59.82 eV, and 79.76 eV at FWHM. Equation 4.39 predicts that two 0.7-mm and
0.5-A beams with energies 20 keV and 19.884 keV will interact at 800 GHz. As can
be seen in Figure 7.41, a frequency component at 800 GHz is dominant with the

exception of 0.2% spread. For 0.2% spread, the beam energies overlap significantly
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and negligible or no interaction is the result. Consequently, |E,| for 0% energy spread

is approximately two orders of magnitude greater than that for 0.2% energy spread.

As in Figure 7.40, a low frequency resolution (Af = 20 GHz) in Figure 7.41 can
be attributed to a short time window (0.05 ns), which was dictated by MAGIC due
to an upper limit on the total number of particles (Chapter 5). Note that the red
curve in Figure 7.41 represents a 2-D image of Figure 7.14 at z = 116.5 mm, where,
according to Figure 7.14, the 800-GHz mode has the largest amplitude. Owing to
the frequency window used (500 GHz to 900 GHz), no harmonics, if any, can be seen

in Figure 7.41. However, judging by Figure 7.15, the likelihood of the interaction at
800 GHz becoming nonlinear is quite high.

Figure 7.42 displays the variation of |F,| with longitudinal distance, z, for the
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Figure 7.42: |E,| versus z for the interaction of two 0.7-mm modulated beams at

400 GHz (green) and 800 GHz (burgundy) for I = 1.0 A. The gray curves are curve
fits given by Equation 5.9.

interactions discussed in Figures 7.40 (green curves) and 7.41 (burgundy curves).
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The gray curves, given by Equation 5.9, represent curve fits to the linear portions of

the datasets.

In Figure 7.42, all curves exhibit an oscillatory behavior, which becomes more
pronounced with increasing energy spread. The overall shape of |E.| in Figure 7.42
resembles that in Figures 7.30, 7.34, and 7.38 for the interaction at 30 GHz, 110 GHz,
and 210 GHz. Note that the effect of percent energy spread on the initial angle of
|E.| is negligible for both sets of curves in Figure 7.42. In addition, the initial values
of |E,| line up and appear to be independent of modulation amplitude. This is in

contrast to what we observed in Figures 7.30, 7.34, and 7.38.

According to Figure 7.42, the slope of the linear portion decreases with increasing
percent energy spread in both cases. This is consistent with what we have observed
so far for the interaction of warm beams at 30 GHz, 110 GHz, and 210 GHz. As
percent energy spread varies from 0% to 0.2% in Figure 7.42, the slope for 400 GHz
is reduced by approximately 14%. Owing to a smaller AE, the slope for 800 GHz
tends to zero as percent energy spread ranges from 0% to 0.2%. This is due to the
beam energies overlapping and forming a single beam. Note that for 0% spread the
slope at 400 GHz is within 3% (excluding error bars) of that at 800 GHz, which

means that Gg;p, is independent of modulation amplitude and interaction frequency.

Figure 7.43 displays gain as a function of percent energy spread for the interaction
of two 0.7-mm and 0.5-A modulated beams at 30 GHz (blue), 110 GHz (black),
210 GHz (magenta), 400 GHz (green), and 800 GHz (burgundy). The green and
burgundy curves were obtained by substituting the values of R from Figure 7.42 into
Equation 5.10. The blue, black, and magenta curves are from Figures 7.32, 7.36,
and 7.39. The dashed lines represent G}, from Equation 4.38.

According to Figure 7.43, the discrepancy between Gy, and Ggpy, for 0% spread
is as much as 26% (ignoring error bars) for both 400 GHz and 800 GHz. Thus,
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Figure 7.43: Gain as a function of percent spread for 5 modes from 30 GHz (blue)
to 800 GHz (burgundy). The dashed lines correspond to Gjy,.

the agreement is poor. Between 0% and 0.15% spread, Gg;p, for 800 GHz decreases
by 35.4% and tends to zero for 0.2% energy spread, which is what we observed
in Figure 7.42. Ggjy, for 400 GHz is reduced by approximately 14% as percent
energy spread increases from 0% to 0.2%. Even though there are only two data
points for 400 GHz in Figure 7.43, we should expect negligible growth and gain
for percent energy spread greater than or equal to 0.6%. Indeed, 0.6% spread is
equivalent to 238 eV at FWHM, which means that 20- and 19.767-keV beams become

indistinguishable.

In Figure 7.43, Ggjy, at 30 GHz is still nonzero for 5% spread (albeit about 74%
less than for 0% spread). By contrast, as can be seen in Figure 7.43, Gg;y, at 110 GHz
goes to zero between 1.5% and 2% spread, while Gg;,y, at 210 GHz tends to zero for
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percent spread less than 1%. Moreover, Gg;py, at 400 GHz is certainly zero for percent
energy spread greater than or equal to 0.6% (20- and 19.767-keV beams merge into
a single beam), whereas Gy, at 800 GHz is already zero for percent energy spread
as little as 0.2%. Hence, to build a two-beam amplifier involving 0.7-mm and 0.5-A
beams interacting at 30 GHz (blue curve), we would need electron guns with energy
spread less than 4.3% to obtain gain half as big as that for 0% spread. In contrast,
the two-beam amplifier with comparable gain and operating at 800 GHz (burgundy

curve) would require guns with percent energy spread as little as 0.15%.

7.4.2 Effects on bandwidth capability

In Section 7.3, we discussed gain bandwidth plots for simulations involving the in-
teraction of cold beams. In this subsection, we will consider the effect on nonzero

energy spread on gain bandwidth for the interaction of warm and modulated beams

at 30 GHz and 110 GHz.

Figure 7.44 shows gain bandwidth plots for the interaction of two 0.7-mm and
0.3-A modulated beams at 30 GHz. The blue curve is the same as that in Figure 7.25.
For the green and burgundy curves in Figure 7.44, the beams were warm with 3%
and 5% energy spread, respectively. The modulation amplitude in each case was
1% and the bandwidth curves were generated by driving the beams at frequencies

ranging from 2.5 GHz to 60 GHz.

According to Figure 7.44, the ratio between the endpoints of the green curve (3%
spread) is the same as that for the blue curve. In addition, the gain bandwidth of
the green curve estimated at FWHM equals 39 GHz (11 GHz to 50 GHz), which is
about 23% larger than for the blue curve (30 GHz). Hence, we can conclude that the
gain bandwidth for the cold beams in Figure 7.44 is not reduced for energy spread

even as large as 3%. By contrast, due to a significant overlap (1880 eV) of the beam
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Figure 7.44: Gain bandwidth for two 0.7-mm and 0.3-A modulated beams interacting
at 30 GHz. The blue, green, and burgundy curves correspond to 0%, 3%, and 5%
energy spread.

energies, the bandwidth curve for 5% spread collapses and becomes discontinuous.
Hence, the gain bandwidth for the cold beams is severely affected for energy spread

as large as 5%.

In Figure 7.44, the blue and green curves peak at 30 GHz. This is in agreement
with Equation 4.39, which predicts that two 0.7-mm and 0.3-A beams with energies
20 keV and 17.6 keV will interact at 30 GHz. Although the FWHM bandwidth of
the green curve is comparable to or greater than that of the blue curve, Gy, for
the cold beams is larger than that for the warm beams with 3% spread over most of
the frequency range shown. Note that as percent energy spread increases from 0%
to 5%, Gy at 30 GHz decreases by more than 72%. Therefore, we should expect

negligible interaction and growth for the interaction of two 0.7-mm warm beams with
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5% energy spread.

Figure 7.45 is similar to Figure 7.44 and depicts gain bandwidth plots for the

interaction of 0.7-mm and 0.5-A modulated beams at 30 GHz. The red curve is
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Figure 7.45: Gain bandwidth for two 0.7-mm and 0.5-A modulated beams interacting
at 30 GHz. The three datasets correspond to 0%, 3%, and 5% energy spread.

the same as that in Figure 7.25. As in Figure 7.44, the green and burgundy curves

correspond to 3% and 5% energy spread, respectively.

In Figure 7.45, the FWHM bandwidth of the green curve (3% spread) is roughly
the same as that of the green curve in Figure 7.44. Thus, as was the case for I =
0.6 A in Figure 7.44, the bandwidth for 3% in Figure 7.45 is greater than for 0%
spread, which is approximately equal to 31 GHz. Comparing Figures 7.44 and 7.45,
to first order we may conclude that the FWHM bandwidth for 0% spread and that
for 3% are independent of total beam current. Note that the burgundy curve (5%
spread) in Figure 7.45 is markedly different from that in Figure 7.44. Specifically,

the former is no longer discontinuous due to a larger AFE and has a nonzero gain
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bandwidth. The gain bandwidth of the burgundy curve in Figure 7.45, estimated at
FWHM, yields 31.0 GHz (4 GHz to 35 GHz), which is surprisingly as large as that
for 0% spread.

According to Figure 7.45, the red and green curves are centered at 30 GHz, which
agrees with Equation 4.39. By contrast, the burgundy curve peaks and is centered at
20 GHz. Even though the green curve (3% spread) in Figure 7.45 possesses the same
bandwidth as that in Figure 7.44, the former yields a larger amplification due to a
larger AE and beam current. In Figure 7.45, the interaction of warm beams with
5% spread will yield a fairly low amplification within the range 5 < f < 35 GHz.
As can be seen in Figure 7.45, we should expect no interaction and growth for 5%

when the driving frequency is greater than or equal to 40 GHz.

We close this section by exploring gain bandwidth plots for the interaction of two
0.7-mm and 0.5-A beams at 110 GHz. In Figure 7.46, the red curve is the same as
that in Figure 7.27. The black curve corresponds to 1% energy spread.

In Figure 7.46, the gain bandwidth of the black curve (1% spread) estimated at
FWHM equals 139 GHz (38 GHz to 177 GHz) and is larger than that (134 GHz)
for the red curve representing cold beams. This is similar to what we observed in
Figure 7.45 for the interaction at 30 GHz. Based on the limited amount of data in
Figure 7.46, to first order we can conclude that the gain bandwidth is unaffected
for energy spread less than or equal to 1%. Hence, the interaction of two 0.7-mm
and 0.5-A warm beams with 1% has a gain bandwidth as impressive as that for the

interaction of two 0.7-mm and 0.5-A cold beams at 110 GHz.

Although the red and black curves have comparable gain bandwidths, over most
of the frequency range of interest shown the black curve yields Gg;p, that is ap-
proximately 32% less than that for the red curve (0% spread). Last but not least,
Equation 4.39 predicts that two 0.7-mm and 0.5-A beams with energies 20 keV and
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Figure 7.46: Gain bandwidth for two 0.7-mm and 0.5-A modulated beams interacting
at 110 GHz. The two datasets correspond to 0% and 1% energy spread.

19.165 keV (the same as those in Figure 7.46) will interact at 110 GHz. As we can

see in Figure 7.46, the largest gain for both curves does occur at 110 GHz.

7.5 Chapter summary

In Chapter 7, we discuss simulation results for the interaction of two modulated (with
initial energy modulation) cold and warm electron beams at frequencies ranging from
low (30 GHz) to high (1 THz). As in Chapter 6, the emphasis is placed on the
variation of numerical gain, Ggj,,, with space charge, frequency, and percent energy

spread.
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The analysis of axial electric field reveals that |E.| exhibits strong exponential
growth regardless of interaction frequency. In addition, before saturation, |F.| is
shown to have a single dominant frequency component. By contrast, |FE,| for un-
modulated beams has a fairly large FWHM frequency which increases from low to
medium interaction frequencies. Besides a single-mode operation, after the onset of
nonlinearities, the interaction of modulated beams can generate multiple harmonics
whose magnitudes are comparable to or greater than that of the fundamental mode.
For example, the interaction of two 0.5-A beams at 30 GHz produces three harmonics
at 60 GHz, 90 GHz, and 120 GHz. This means that the interaction at 30 GHz can be

used to generate radiation at, say, 120 GHz via some frequency selection technique.

The variation of the gain of growing modes with space charge density shows that
the agreement between the 1-D theory and simulations is very good at low inter-
action frequencies. As in the case of unmodualted beams, a discrepancy remains
between Gg;, and Gy, for medium and high frequencies. One of the causes of this
discrepancy is thought to be the plasma reduction factor, F', which overestimates
Gip- The analysis of numerical gain shows that Gg;p, is independent of interac-
tion frequency and modulation amplitude over a wide frequency range, specifically,
0.03 < f < 1THz. The values of Gy, obtained are impressive. For instance, the
interaction of two 0.7-mm and 0.5-A beams (typical in this dissertation) yields Ggjpy,
of 0.35 dB/mm, which is an order of magnitude greater than that (0.03 dB/mm)
reported in the literature for a proposed two-stream relativistic klystron amplifier

involving 1.0- and 5.0-kA annular relativistic electron beams [23].

In addition to possessing a large Ggjp,, the potential two-beam amplifier has an
impressive gain bandwidth over a wide range of frequencies. Namely, it is found
that the ratios between end frequencies exceed a decade. Also, the ratios between
0.707 Ggip, points (at FWHM) are greater than an octave. Hence, the interaction

of two electron beams at 30 GHz can amplify frequencies ranging from 5 GHz to
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55 GHz. Moreover, the interaction of two beams at 800 GHz is capable of amplifying
frequencies from 200 GHz to 1 THz and beyond.

For two electron beams with given energies, currents, and beam radii the gain
bandwidth at FWHM is found to be greater than or equal to fbunching predicted
by Equation 4.39. Also, a comparison of gain bandwidth curves for low, medium,
and high interaction frequencies shows that the FWHM bandwidth (to first order) is
independent of interaction frequency. Hence, based on the data in this dissertation,
the two-beam source possesses an incredibly wide gain bandwidth from the microwave

to the far infrared region of the electromagnetic spectrum.

For the interaction of two warm beams, the gain bandwidth is comparable to
that for cold beams provided the beam energies do not significantly overlap. For
example, for two 0.3-A warm beams interacting at 30 GHz, the gain bandwidth is
the same as that for cold beams as long as energy spread is less than or equal to 3%.
The gain bandwidth becomes severely deteriorated for energy spread as large as 5%.
For the interaction at 110 GHz, cold beams and warm beams with 1% spread have
similar gain bandwidths. However, negligible amplification is observed for energy
spread greater than or equal to 1.5%. Even though cold and warm beams can have
comparable gain bandwidths, the magnitude of Gy, is in general smaller for nonzero

energy spread. Specifically, the warmer the beams are, the smaller Gg;,,, becomes.

The analysis of exponentially growing modes, for a given beam current and beam
radius, shows that they saturate at the same longitudinal position regardless of in-
teraction frequency. Hence, without modifying the interaction region, the potential
two-beam amplifier is capable of amplifying signals form 30 GHz to 1 THz and,
possibly, beyond. For the interaction of two 0.7-mm beams at 30 GHz it is found
that the saturation length for modulated beams is on average 26% less than that for
unmodulated beams. In addition, for I = 1.0 A, it is determined that the interaction

of two 0.7-mm beams minimizes the saturation (interaction) length and maximizes
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gain, which makes is superior to the interaction of either two 1.0-mm or two 1.4-mm

beams.
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Chapter 8

Conclusions and future work

This dissertation presents the results of 2-D particle-in-cell simulations of the in-
teraction region of the potential mm and sub-mm radiation source based on the
two-stream instability. The interaction region consists of a beam pipe with radius r,
and two co-propagating and interacting electron beams of radius r,. The simulations
performed involve the interaction of unmodulated (no initial energy modulation) and
modulated (energy-modulated, seeded at a given frequency) electron beams. In addi-
tion, both cold (monoenergetic) and warm (Gaussian) beams are treated. Moreover,

the interaction frequencies considered range from 30 GHz up to and including 1 THz.

The primary emphasis in this dissertation is on exploring exponentially growing
modes and comparing their gain from simulations, Gg,,, with that from theory,
Gy, in order to validate the 1-D theory discussed in Chapter 4. At low interaction
frequencies it is found that Gy, and Gy, are in very good agreement. Also, both vary
as m , where I and r;, are the total beam current and beam radius, respectively. A
discrepancy arises between Gy, and Gy, for medium and high frequencies. Namely,
the higher the interaction frequency, the farther apart Gg;p,, and Gy}, are. One of the

reasons for this discrepancy is believed to be the plasma reduction factor, F', which

198



Chapter 8. Conclusions and future work

overestimates Gy, (Equation 4.38).

Besides comparing numerical and theoretical gain, we also make a comparison
between Gy, for modulated beams and Gy, for unmodulated beams. Simula-
tions show that Gy, is independent of interaction frequency and modulation ampli-
tude for all interaction frequencies considered. Specifically, Gy, is found to be

independent of frequency and modulation amplitude within the frequency range

003 < f < 1 THz.

The values of Gg;y, obtained are impressive for both unmodulated and modulated
cases. For instance, the interaction of two 0.7-mm and 0.5-A beams with energies
20 keV and 16.95 keV yields Gg;jyy, of 0.35 dB/mm, which is an order of magnitude
greater than that (0.03 dB/mm) reported in the literature for a proposed two-stream
relativistic klystron amplifier involving 1.0- and 5.0-kA annular relativistic electron
beams [23]. Note the difference of about four orders of magnitude between the beam
currents. Hence, the two-beam amplifier promises to be a reliable and inexpensive
source of millimeter and sub-millimeter wave radiation and has the potential to

generate watts of power at THz frequencies.

A large portion of this dissertation is devoted to a detailed analysis of the magni-
tude of axial electric field, | E,|, which is used throughout to evaluate numerical gain,
Ggip- For unmodulated beams |E.| is shown to exhibit a strong exponential growth
at all interaction frequencies considered. However, simulations also show a multi-
mode behavior and a fairly large FWHM frequency. For example, as the interaction
frequency ranges from 30 GHz to 210 GHz, the FWHM frequency of |E,| increases
by more than a factor of 10 from about 9 GHz to 125 GHz. This is in contrast to
theory (Equation 4.39), which states that two electron beams will interact at a single

frequency in accordance with their energies, currents, and beam radii.

As opposed to unmodulated beams, |E,| for modulated beams is shown to have
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a single dominant frequency component (before saturation) regardless of interaction
frequency. In addition, after the onset of nonlinearities, |E,| shows a significant
harmonic content. It is determined that the interaction of modulated beams can
generate multiple harmonics whose magnitudes are comparable to or greater than
that of the fundamental mode. For example, the interaction of two 0.5-A beams at
30 GHz produces three harmonics at 60 GHz, 90 GHz, and 120 GHz. Hence, the
potential two-beam source operating at 30 GHz could be used to generate radiation
at four times the fundamental frequency, 120 GHz, via some frequency selection

technique.

The study of gain bandwidth for cold and modulated beams reveals that the two-
beam amplifier has an impressive gain bandwidth over a wide range of frequencies.
Namely, it is found that the ratios between end frequencies exceed a decade. Also,
the ratios between 0.707 Gy, points (at FWHM) are greater than an octave and
the FWHM bandwidth is comparable to or greater than fbunching predicted by
Equation 4.39. Moreover, it is determined that the gain bandwidth at FWHM is,
to first order, independent of interaction frequency. According to simulation results,
the interaction of two electron beams at 30 GHz can amplify frequencies ranging
from 5 GHz to 55 GHz, while the interaction of two beams at 800 GHz is capable
of amplifying frequencies from 200 GHz to 1 THz and beyond. Hence, the potential
two-beam source possesses an astonishingly wide gain bandwidth from the microwave

to the far infrared region of the electromagnetic spectrum.

Since in the laboratory electron beams are not monoenergetic, we examine the
variation of G, as a function energy spread for the interaction of both unmodulated
and modulated warm beams at low through high frequencies. According to the
small-signal theory presented in Chapter 4, AE (energy difference of two interacting
beams) increases with decreasing interaction frequency and increasing space charge.

Hence, the warmer the beams are and the higher the interaction frequency is, the
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faster Gy, drops off. For example, if we take 7, = 0.7 mm and [ = 1.0 A, Gy,
at 30 GHz is still nonzero for energy spread as large as 5%, while Gg;;,, at 210 GHz
is already negligible for energy spread approximately equal to 0.85%. By contrast,
Gyim at 800 GHz becomes negligible for energy spread as little as 0.2%. Hence, to
build the two-beam source involving 0.7-mm and 0.5-A warm beams interacting at
30 GHz, we would need electron guns with energy spread less than 4.3% to obtain
gain half as large as that for cold beams. In contrast, a device with comparable gain

and operating at 800 GHz would require guns with percent energy spread as little

as 0.15%.

The analysis of gain bandwidth for nonzero energy spread shows that bandwidth
curves for warm beams are comparable to those for cold beams provided the beam
energies do not significantly overlap. It is also determined that the higher the in-
teraction frequency is and the warmer the beams are, the faster the gain bandwidth
deteriorates. For instance, for two 0.3-A warm beams interacting at 30 GHz, the
gain bandwidth is the same as that for cold beams as long as energy spread is less
than or equal to 3%. The gain bandwidth becomes severely deteriorated for energy
spread as large as 5%. For the interaction at 110 GHz, cold beams and warm beams
with 1% spread have similar gain bandwidths. However, negligible amplification is

observed for energy spread greater than or equal to 1.5%.

Note that despite running hundreds of simulations, only a limited number of beam
currents, beam radii, and modulation amplitudes have been covered in this disserta-
tion. Hence, future simulations should involve more extensive parameter scans. In
addition, future investigations may include studies of the two-beam amplifier in the
nonlinear regime. For instance, a detailed analysis of the onset of nonlinearities for
different modulation levels and that of the relationship between fundamental modes
and various harmonics. Moreover, since the simulations presented are in two dimen-

sions only, future work should include 3-D simulations for a better understanding
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of the underlying physics involved, especially in the nonlinear regime. Last but not
least, it is believed that the PIC simulations presented in this dissertation will pro-
vide a solid foundation for successful experiments involving the sub-mm and mm

radiation source based on the two-stream instability.

In conclusion, the simulation results presented in this dissertation demonstrate
that the two-beam amplifier, which relies on low-energy and low-current electron
beams for operation, can be a compact, simple, and inexpensive alternative to con-
ventional sources of mm and sub-mm wave radiation. In addition, due to its large
gain and impressive gain bandwidth, it has the potential to generate watts of power
at frequencies ranging from the microwave to the far infrared region of the electro-
magnetic spectrum. Moreover, the two-beam source would be an invaluable tool to a
wide variety of research fields such as cancer research, terahertz imaging, agriculture,

homeland security, environmental monitoring, and satellite communications.
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Appendix A

Convergence considerations

A.1 Introduction

This appendix is devoted to a quantitative discussion of convergence with regard
to dz, dr, and the number particles emitted per cell and per time step (PPC). dz
and dr are responsible for accuracy and stability of electromagnetic solutions and
represent the cell size in axial and radial directions, respectively. PPC is crucial to
successful electron bunching and we will attempt to determine the minimum amount
of PPC necessary to properly resolve electron bunches at 30 GHz and different beam

modulation amplitudes.

A.2 Convergence for dz

Consider two electron beams (0.7-mm and 0.3-A each) with energies E; = 20 keV
and Fy = 17.6 keV propagating in a 2-mm beam pipe. According to Equation 4.39
(Section 4.3), the expected frequency of bunching is 30 GHz. The beams are thus
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modulated at the bunching frequency and the modulation amplitude, JE, is 1%.
Using the average velocity of the beams, v &~ 8.13x 10" m/s, the bunching wavelength
at 30 GHz is given by

813 x 107

A
30 x 109

~ 2.71 mm. (A.1)

Figure A.1 shows gain as a function of dz for 7 different runs. For each of the 7

0.30

Gain [dB/mm)]

i N e L L !
0.1 02 03 04 05 06

dz [mm]

Figure A.1: Gain versus dz for two 0.7-mm and 0.3-A modulated beams with energies
20 keV and 17.6 keV interacting at 30 GHz.

runs dr was held fixed at 0.1 mm, while dz values ranged from 0.542 mm (A = 5dz)
to 0.1 mm (A = 27.1dz). According to Figure A.1, when 6dz < A\ < 27.1dz, the
percent variation in gain is within 3.3%. For A < 5dz, however, the value of gain is
reduced by as much as 22%. The conclusion we can draw from this short analysis is

as follows:

e Convergence with regard to dz is achieved for A > 6 dz
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e )\ = 6dz is a threshold value and all solutions corresponding to A < 6 dz cannot

not be properly resolved.

It should be noted that the ratio of dz to dr is greater than 5 for A = 5dz and, thus,

an additional source of errors [13].

A.3 Convergence for dr

To study convergence for dr, 6 cases were run, the beam and beam pipe parameters

BRI

0.20

015

Gain [dB/mm]

0.05 -

0.00 | i I i i I I |
0.0s 010 015 0.20 0.25 0.a0 0.35

dr [mm]

Figure A.2: Gain versus dr for two 0.7-mm and 0.3-A modulated beams with energies
20 keV and 17.6 keV interacting at 30 GHz.

being identical to those in Section A.2. Plotted in Figure A.2 is again gain as a

function of dr for 6 different runs. Here dz was fixed at 0.17 mm and dr varied from
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0.05 mm to 0.35 mm. For the 0.7-mm cathode, dr = 0.05mm and dr = 0.35mm

correspond to more than 10 and merely two emission cells, respectively.

From Figure A.2, the percent variation in gain is within 1.2% when 0.5 < A <
0.17mm. Therefore, in terms of the number of emission cells in the cathode, con-
vergence is achieved providing there are at least four emission cells. In the range
dr > 0.2mm (three emission cells and less) gain is markedly different, deviating
from its converged value by as much as 21% for dr = 0.35 mm (merely two emission
cells). The large error cannot be attributed to the apect ratio (dr/dz), which is two
for dr = 0.35mm and, thus, acceptable [13]. Hence, we can conclude that beam
emission processes in MAGIC are properly represented if and only if the number of

emission cells is greater than or equal to four.

A.4 Convergence with respect to the number of

particles emitted per cell and per time step

(PPC)

For this convergence test, two sets of simulations were performed. The beam di-
mensions, energies, currents, and modulation frequency were identical to those in
Section A.2. However, the modulation amplitudes used were 1% and 0.1% (Ap-
pendix D) for the first and second sets, respectively. Also, dz and dr were kept fixed

at 0.1 mm for both sets of simulations.

Gain as a function PPC shown in Figures A.3 and A.4 was generated by varying
PPC from 6 to 12. For modulation amplitudes as high as 1% and as low as 0.1%, as
can be seen in Figures A.3 and A.3, convergence is achieved for PPC = 6. Indeed,
the percent variation in gain between PPC = 6 and PPC = 12 is within 1%. This

leads us to conclude that at modulation amplitudes equal to or greater than 0.1% of
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Figure A.3: Gain versus PPC for two 0.7-mm and 0.3-A modulated beams with
energies 20 keV and 17.6 keV interacting at 30 GHz. Modulation amplitude, 0 F, is
1%.

AFE, bunches are properly resolved for PPC > 6. To estimate the number of particles

per bunch corresponding to PPC = 6, we can use the following simple formula

T
# of particles/bunch = PPC x

=~ (A.2)

where T is the inverse of bunching frequency, 30 GHz, and 4t is the electromagnetic
time step used. Substituting the values for T, 6t, and PPC, it is straightforward to
show that PPC = 6 is equivalent to approximately 1200 particles per bunch.

It is interesting to note that convergence tests with regard to PPC for unmodu-
lated beams were unsuccessful. Despite the fact that we exhausted the entire amount
of particle allocation space (5,000,000 particles for the current version of MAGIC),

no convergence was observed. It looks as though this issue will not be resolved until
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Figure A.4: Gain versus PPC for two 0.7-mm and 0.3-A modulated beams with
energies 20 keV and 17.6 keV interacting at 30 GHz. Modulation amplitude, 0 F, is
0.1%.

after a new version of MAGIC, capable of supporting 10 times as many particles, is

released.
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Appendix B

A theoretical curve fit to |F.(z,t)]

B.1 Introduction

This appendix describes our attempt to derive a theoretical curve-fit formula to the
magnitude of the ac component of axial electric field, |F,(z,t)|, using the small-signal
theory presented in Chapter 4. This is accomplished by imposing the appropriate
boundary conditions on the magnitudes of the ac components of electric field, veloc-
ity, and current density at z = 0 mm. Derived curve-fit expressions (for modulated
and unmodulated beams) are fitted to |F,(z,t)|-versus-z data obtained from simu-

lations.

B.2 Derivation of curve fit formulas
A general expressions for total electric field may be written as follows:

ETOT(Za t) = EO —f- Ez(z, t) = EO —I— Z EAciej(Wt_kiz). (B].)

=1
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With the help of Equations 4.11 and 4.12, total velocity and current density read:

Vror(2,t) = vo + v.(2,t) = vy + jz Z A i (wi=kiz) (B.2)
v i—1 ]Ce — k‘z
. WIQJ = Eci (wt—k;z)

Jror(z,t) = Jo + J.(2,t) = Jo + jweg— Z %63 wimRiz) (B.3)

where, as before, the dc and ac quantities are denoted by the subscripts 0 and z,
respectively. Also, the summation is included to account for all roots of a given
dispersion relation. It should be emphasized that Fror, vror, Jror, Fo, Vo, Jo, Faci
are all real quantities. Even though the ac quantities, namely, F., v,, and J,, are
written in terms of complex expressions, it is implied in Equations B.1 through B.3
that Im(E,) = Im(v,) = Im(J,) = 0. According to Equation 4.20, a dispersion

relation for two co-propagating electron streams reads

(K2 — k2) {1 . f%vm . j}%UQP} —0, (B.4)

where v, and vy are the beam velocities, whereas wfﬂ and wfﬂ are the electron plasma
frequencies. Taking w?, = w2, = wy, Equation B.4 admits 6 solutions and it can
be shown that four of those roots are real, while the remaining two are complex
conjugates of one another. To simplify the analysis, we will assume that of the 6
roots only four, namely, +ky and complex conjugate solutions, are dominant. Hence,

the roots to be included in the ac parts of Equations B.1 through B.3 will be
kLQ = ke :thé and l{?3’4 = :l:k?(), (B5>
where k; 5 represent growing and decaying waves, whereas k3 4 correspond to forward

and backward traveling waves, respectively. k. = w/v, where v is the average velocity

of two beams, and « in Equation B.5 are real and positive. Substituting k; and
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ks 4 into Equations B.1 through B.3, the ac component of electric field, velocity, and

current density become

E.(z,t) = (Ae**eIh* 4 Bem®2e dke® . Cemik0z 1 Deikoz)eivt (B.6)
(o) = i1 L L (aeos  perosyemmer G0 L DY gy
V,(2,1) = 71=49)—Ae" — Dbe e e e, .
o ’a ke —ko | ke + ko
. wl?) 1 az —az\ ,—jkez
J.(z,t) = ijOW{_Oﬂ(Ae + Be™*)e +
Ce_jk()z De]koz )
+ + elvt, B.8
(ke — ko)? (ke + ko)Q} (B8)

where A = Eyc1, B = FE,c2, C = Euc3, and D = F,4 are real quantities. To deter-
mine A, B, C, and D, we will impose boundary conditions on |FE,(z,t)|, |E.(z,t)|,
lv.(2,t)|, and |J,(2,t)| at z = 0, where |E.(z,t)|" stands for the derivative of |E.(z,1)|
with respect to z. Taking the absolute value of Equation B.6 and doing some algebra,

we get

|E.(z,t)| = {[(Aeo‘z + Be™**) cos(kez) 4+ (C + D) cos(koz)]* +

+ [(Ae™ 4+ Be*)sin(k.2) + (C — D) sin(ko2)]*} (B.9)

Differentiating Equation B.9 with respect to z and evaluating the result at z = 0,

the slope of |E,(z,t)| becomes
|Ez(07t)|/ = Oé(A - B>’ (BlO)

provided |E,(0,t)| = A+ B+ C + D # 0. The magnitude of v,(z,t) at z = 0 is

1 C D 72
LA By B.11
J2( U Vi ) I (B.11)

[0:(0,1)] =

Sl
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while that of |.J,(z,t)| reads

w? 1 ¢ D
O . B.12
2.0, wez_ﬂ{ 24 )+(ke—ko)2+(ke+ko)2} o

The boundary conditions for two modulated beams, with energies £y and FEs, co-

propagating and interacting in a beam pipe read

|E.(0,t)] = Ey, |E.(0,0)]"'=1, |v.(0,t)]=wg, and [J.(0,t)] = Jo, (B.13)
where Fy and Jy are related via Maxwell’s equations and represent the values of
|E.(z,t)] and |J.(z,t)| at z = 0. Moreover, [, the slope of |E,(z,t)] at z = 0, is
positive and is a function of vy, where vq is related to the modulation amplitude,
OFE = z(E, — Es), as follows

vo = /2N E, (B.14)

where x = 0 amounts to 0% modulation. With the boundary conditions thus defined,

Equations B.9 through B.12 become

A+B+C+D=E, (B.15)
a(A—B) =1, (B.16)
@A B G e = <ww> (B1%)
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The curve fit to |F,(z,t)| is given by Equation B.9, where A, B, C, D, k., ko,
and « are related via the constraint Equations B.15 through B.18. Hence, the curve-

fitting formula for modulated beams reads

|E.(z,t)] = { KB(G“Z +e %)+ le‘”) cos(kez) + (C'+ D) cos(koz)] +

«

+ [(B(e"‘z +e )+ lea2> sin(k.z) + (C' — D) Sin(koz)l 2}1/2 7 (B.19)

(0%

where A has been eliminated with the help of Equation B.16 and C'+ D and C'— D

are given by the following expressions

(T — 2uk,)
C+D=1"— ——F"~ B.20
+ a? + k3 — k2’ ( )
4, 1202 9 2/ .2 B 9
o Uk R0 — The 4+ Uk) + k(0% + Th, — 20K2) B2

ko(a? + kg — k2) ’

where 1) = jZ\/(’UOY_)/W)Q —2/a* and T = Ey + Jo ( v’a’ )

2
weowy

The curve fit to |E.(z,t)| for unmodulated beams is obtained from Equation B.19
by setting vy and [ equal to zero to yield

|E.(2,1)] = {[2B cosh(az) cos(ke2) + (C + D) cos(ko2)]” +

+ [2B cosh(az) sin(k.z) + (C' — D) sin(koz)]2}1/2 : (B.22)

where C+ D = Ey — 2B, C — D = —k./ko(Ey — 2B), and k., ko, and « are related

via

Ey
ko — [k 2{1—}. B.2
\/0+04 2R ( 3)
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Figure B.1: |E,(z,t)| versus z for two 0.5-A modulated beams interacting at 30 GHz
(green curve) and Equation B.19 (red curve).

Let us now fit Equations B.19 and B.22 to |E,(z,t)|-versus-z data from simula-
tions. Figure B.1 shows |E.(z,t)| as a function of z for two 0.5-A modulated beams
interacting at 30 GHz. Plotted on top of the data in Figure B.1 is Equation B.19
(red curve). A plot of |E.(z,t)| as a function of z for unmodulated beams, 0.5 A
each, also interacting at 30 GHz is displayed in Figure B.2. The curve fit to the data,

Equation B.22, is again represented by the red curve.

According to Figures B.1 and B.2, the slope of |E,(z,t)| at z = 0 mm is clearly
nonzero/positive and nearly zero for the modulated and unmodulated beams, re-
spectively. Even though Equations B.19 and B.22 model the shape of the data well,
in both cases the fit is poor for small values of z. Only for large values of z, in the
linear region, which is due to exponenetial growth, do Equations B.19 and B.22 and
the corresponding data from simulations converge. Gain calculated from the slope of
the linear regions in Figure B.1 and Figure B.2 is 0.351 4+ 0.016 dB/mm and 0.358
+ 0.012 dB/mm, while that from the 1-D theory is 0.36 dB/mm. Hence, the values
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Figure B.2: |E,(2,t)| versus z for two 0.5-A unmodulated beams interacting at 30
GHz (blue curve) and Equation B.22 (red curve).

of gain are within 2.5% and the agreement is very good. The discrepancy (for low
values of z) between Equations B.19 and B.22 and the data in Figures B.1 and B.2
should be attributed to the fact that we ignored two roots of the dispersion relation
(Equation B.4) in deriving Equations B.19 and B.22. The two disregarded solutions
to Equation B.4 span multiple lines when written in analytical form and do not
lend themselves to any reasonable simplification. Therefore, the derivation of curve-
fitting expressions to |E,(z,t)| with all 6 roots included can only be accomplished

numerically.
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The impact of scalloping on gain

C.1 introduction

In this appendix our goal is to determine whether or not gain is affected by scal-
loping, which is a sinusoidal variation of the beam envelope. We will examine the
interaction of two modulated beams at 30 GHz for three different values of the focus-
ing magnetic field, B,. The corresponding scalloping amplitudes range from small

to large, approximately 6% and 30% of the beam radius, respectively.

C.2 Two-beam interaction for different scalloping
amplitudes

Figure C.1 shows the magnitude of the ac component of axial electric field, |E.,]|

(left-hand vertical axis), and 7 (right-hand vertical axis) versus axial distance, z, for

two 0.7-mm and 0.5-A beams with energies 20 keV and 16.950 keV interacting at 30
GHz. The beams are cold and modulated. The modulation amplitude, 6F, is 1% at
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Figure C.1: |E,| and r as a function of z for the interaction of two 0.7-mm and 0.5-A

beams at 30 GHz. B, is 0.0969 T (green), 0.09 T (blue), and 0.08 T (red).

30 GHz. The curves and particle plots in Figure C.1 correspond to three different
values of the focusing magnetic field, B., namely, 0.0969 T (green), 0.09 T (blue),
and 0.08 T (red).

According to the particle plots in Figure C.1, the smaller B, is, the larger the
departure from the initial beam radius, r,, which is equal to 0.7 mm. The scalloping
amplitude is as little as 5.7% and as much as 30% of r, for 0.0969 T and 0.08 T
magnetic fields, respectively. For large values of z, z > 90 mm, we can observe the
expansion of the beams due to a significant amount of bunching at 30 GHz. The
scalloping wavelength, )‘scallopv is inversely proportional to B, and is given by [12]

dmv
Ascallop = B, (C.1)

where v is the average beam velocity and 7 is the electron charge-to-mass ratio. Sub-
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stituting v ~ 7.84 x 10" m/s into Equation C.1, )‘scallop corresponding to 0.0969 T,
0.09 T, and 0.08 T is approximately 41 mm, 44 mm, and 49.5 mm, respectively.
These values are fairly close to those in Figure C.1. Note that the dips in the curves
line up (with the exception of B, = 0.09 T around z = 44 mm) with those in the
particle plots. Also, the larger the scalloping amplitude is, the more pronounced
the dips become. The dips for B, = 0.09 T (blue curve) are misaligned around z
= 44 mm due to the absence of an FFT probe there (see Section 5.3), the closest

probes being at z = 40.5 mm and z = 50 mm, respectively.

Figure C.2 shows |E,|-versus-z curves from Figure C.1 along with curve fits to

I —®—-EB=0095T

| —®-B=009T e = 4
—A—B=008T o ;‘;‘AK
10 )

IE| [KV/m/GHz]
I

0.1
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0 20 40 (18] 80 100 120 140 160 180
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Figure C.2: The variation of |E,| with z for the same beams as in Figure C.1. B,
is 0.0969 T (squares), 0.09 T (circles), and 0.08 T (triangles). Red curves are curve
fits given by Equation 5.9.

the linear regions of the data. The curve fits are given by Equation 5.9,

y = A(GRZ +€_Rz),
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where A and R are fitting parameters. The values of R extracted from the curve
fits in Figure C.2 are 0.0405 + 0.0018, 0.0419 4+ 0.0013, and 0.0322 4+ 0.0014 for
0.0969 T (squares), 0.09 T (circles), and 0.08 T (triangles), respectively.

Plotted in Figure C.3 is gain versus scalloping amplitude for the three datasets

0.40

= = -Theory

—— Sirmulation
0.36 |

032

0.28

0.24 -

Gain [dB/mm]

0.20 -

018

0_12.|.|.E|.|.|.|.E|.|.|.|.|.|.|.|.|:.
0 2 4 53 & 10 12 14 16 18 20 22 24 26 28 30 32

Scalloping amplitude [% deviation from rb]

Figure C.3: Gain versus scalloping amplitude for the same beams as in Figure C.1.
Dashed line represents a theoretical value given by Equation 4.38.

shown in Figure C.2. The plot was generated by substituting the values of R obtained
from Figure C.2 into Equation 5.10 (numerical gain formula). The dashed line is a

theoretical value of gain given by Equation 4.38.

As we can see in Figure C.3, the variation of numerical gain is negligible (including
error bars) as long as the scalloping amplitude is kept within 13% of the beam radius.

The average deviation (excluding error bars) between the numerical and theoretical
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gain is less than 4% when the scalloping amplitude is less than or equal to 13% of
ry. For scalloping amplitudes as large as 30% of ry,, as can be seen in Figure C.3, the

value of numerical gain is reduced by as much as 21%.

On the basis of the foregoing quantitative analysis we may conclude that simu-
lation results will be valid provided the scalloping amplitude is less than or equal to
13% of the beam radius, 7,. Note that for all simulation considered in this thesis the

scalloping amplitude never exceeds 6% of ry,.
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Appendix D

Beam emission in MAGIC and

various beam types

D.1 Introduction

In this appendix, we briefly discuss the beam emission process used in simulations
(MAGIC [13]) and the generation of cold, energy-modulated, and warm electron

beams.

D.2 Beam emission and cold, energy-modulated,
and warm beams

All simulations presented in this thesis use an “emission beam” process in MAGIC

to generate co-propagating electron streams. The process takes a number of optional

and mandatory parameters, the latter being beam current densities, beam energies,

the number of particles emitted per emission cell and per time step (PPC), and the
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particle emission interval. By default, the particle emission interval is equal to the

electromagnetic time step, ¢, which is given by Equation F.15

X dz x dr

ot =X
¢ VdE 1 dr?

(D.1)
where x = 0.8 is the Courant ratio, c is the speed of light, dz and dr are grid
dimensions in axial and radial directions, respectively. The values of dz and dr
in Equation D.1 are dependent upon convergence (Appendix A) and aspect ratio
requirements. The latter states that the ratio of dz to dr (or vice versa) must
not exceed 5. In choosing the number of particles emitted per emission cell and
per time step (PPC), we must take into account convergence with regard to PPC
(Appendix A) and the total number of particles available to us (5 x 10° particles in
the current version of MAGIC).

Having determined the electromagnetic time step and PPC, the “emission beam”
process requires that we also specify beam current densities, J; and J5, and energies,
FE, and E5. For simulations involving cold electron beams, both current densities
and energies are specified as constants, equal to their dc values. In the case of
energy-modulated beams, J; and J; are again input as constants, while £y and Fs

are modified as follows
ELQ + 2% x AE x sin(27rft) = ELQ + 0F x sin(27rft), (D2>

where AE = FE) - Es, f is the modulation frequency, and x is greater than or equal
to 0 (for unmodulated beams = = 0). The modulation amplitude, denoted in this
thesis by 0F, is always specified as some percentage of the beam energy difference,
AE. Hence, by stating that two beams are modulated at one percent level (or, that,
the modulation amplitude is one percent), we mean that 0E = 0.01xAFE. Warm

beams in this thesis have a Gaussian (bell-shaped) energy profile. The transition
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from cold to warm beams is accomplished by modifying E; and F, as follows

(r—1)?
Ero 4+ w% X Eavg X exp{ — 572 , (D.3)

where Ej 5 represents the mean of the bell-shaped distribution, w is greater than
or equal to 0, Fayg is the average energy of two interacting beams, r is a random

number between 0 and 1, and o (the variance) affects the full width at half maximum

(FWHM). The value of o, namely, 0.18, is chosen such that the FWHM energy is
FWHM energy = 2 x w% X Eayg (D.4)

for any given Gaussian profile. J; and J; for warm beams are input as constants and
are the same as those for cold and energy-modulated beams. Figure D.1 shows a

Gaussian energy profile for a warm 20-keV electron beam. The peak is slightly shifted
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Figure D.1: Gaussian profile of a warm 0.3-A beam with r, = 0.7 mm and F; =
20 keV. w is 0.01 and FWHM energy from Equation D.4 is 376 eV.

from 20 keV due to potential depression (Section 3.1). The data in Figure D.1 are
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taken from a simulation involving the interaction of two 0.7-mm and 0.3-A warm
beams (w = 0.01) with energies F; = 20 keV and E; = 17.6 keV. Substituting the
average energy of the beams, Fayg = 18.8 keV, into Equation D.4, the FWHM energy

can be calculated to yield

FWHM = 2 x 0.01 x 18.8 = 376¢V,

which is seen to be in good agreement with that shown in Figure D.1.

If two beams under consideration are both warm and modulated, beam energies

are expressed via a combination of Equations D.2 and D.3 and read

—1)2
Eyo +6E x sin(2m ft) + w% X Eayg X exp {— (7’2 2) } . (D.5)
o

As in the case of cold, energy-modulated, and warm beams, current densities, J; and

Ja, for both warm and modulated beams are input as constants (dc values).
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Appendix E

Waveguide modes coexisting with

exponentially growing modes

E.1 The impact of TM,; waveguide modes on the
frequency and gain of exponentially growing

modes

In this appendix we analyze the influence of TMy; waveguide modes of a circular
beam pipe on the frequency and gain of an exponentially growing mode. The results
presented here are from four simulations involving two 0.3-A electron beams with
energies 20 keV and 17.6 keV propagating and interacting in the setup shown in Fig-
ure 5.1. The simulations are performed with four different beam pipe radii, namely,
r, = 3.825 mm, r, = 3.275 mm, r, = 2.875 mm, and r, = 1.275 mm. The cutoff
frequencies of TMg; modes corresponding to the four beam pipe radii are 30 GHz, 35
GHz, 40 GHz, and 90 GHz, respectively. The cutoff frequencies of these four TMq;

modes along with several TMy; modes are displayed in Figure E.1.
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Figure E.1: Cutoff frequency for TMy; and TMg, waveguide modes as a function
beam pipe radius, 7.

According to Section 4.3, the beams will interact at 30 GHz, henceforth called
the exponential mode, regardless of the beam pipe radius. Our goal is to determine
the following: 1) does the frequency of the exponential mode shift as we vary the
beam pipe radius? and 2) is the growth rate of the exponential mode affected by the

proximity of the four TMy; modes?

Figure E.2 shows an FFT of the magnitude of the ac component of axial electric

filed as a function frequency. The FFT plots are recorded at the same axial location

of 173.5 mm.

According to Figure E.2, the largest magnitude occurs at 30 GHz, which is in
agreement with that predicted by the 1-D theory in Section 4.3. In addition, the
frequency of interaction is always 30 GHz irrespective of the beam pipe radius. More-

over, except for minor differences in the magnitude, the FFT curves are on top of
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Figure E.2: |E,| of the exponential mode versus frequency for the four beam pipe
radii: r, = 3.825 mm, r, = 3.275 mm, r, = 2.875 mm, and r, = 1.275 mm.

Let us now examine to what extent the growth rate of the exponential mode
is affected by the four TMy; modes. By the growth rate we mean gain in units of

dB/mm.

Figure E.2 shows a snapshot of |E,| at a given longitudinal distance. Plotted in
Figure E.3 is the variation of |E,| of the exponential mode with longitudinal distance,
z, for the four beam pipe radii. According to Figure E.3, the closer the frequencies
of the exponential and TMy; modes are, the larger the magnitude of the latter for
small values of z. Indeed, for r, = 3.825 mm (f. ;o7 = 30 GHz), the TMy; mode
is clearly dominant up to approximately z = 80 mm, at which point it is overtaken
by the exponential mode. The dominance of the TMy; mode for small values of z

diminishes quickly, however, as indicated by a 10-fold decrease in its initial magnitude
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Figure E.3: | E,| of the exponential mode versus z for the four beam pipe radii. Solid
red lines (given by y = Ae®* + Be ) represent curve fits to data.

for r, = 3.275 mm (f.1op = 35 GHz). Despite the difference in the shape of the
data curves for small values of z, they all converge in the linear region (for large
values of z), where the exponential mode is always dominant regardless of the beam

pipe radius.

Shown in Figure E.4 is the gain of the exponential mode as a function of the
cutoff frequency of TMy; modes. Figure E.4 is generated by fitting each of the
curves in Figure E.3 with y = Aef** + Be * function (solid red lines in Figure E.3)

and substituting the value of R thus obtained into Equation 5.10 (numerical gain)
G = 201log,,{ef"}.

According to Figure E.4, the gain starts at 0.275 dB/mm and asymptotically ap-

proaches 0.289 dB/mm as the beam pipe radius is decreased from r, = 3.825 mm
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Figure E.4: Gain of the exponential mode versus cutoff frequency of TMy; modes for
four beam pipe radii: 7, = 3.825 mm (f. 1o = 30 GHz), r, = 3.275 mm (f. o =
35 GHz), r, = 2.875 mm (f. 1o = 40 GHz), and r, = 1.275 mm (f.,1og = 90 GHz).

(f

cutoff = 30 GHz) to r, = 1.275 mm (f. 1o = 90 GHz). Hence, the gain varies by

less than 5% if we were to exclude the error bars. With the error bars included, as

can be seen in Figure E.4, the variation is negligible.

The foregoing analysis leads us to make the following conclusions:

e TMy; waveguide modes do not affect the frequency of the exponential mode

e The impact of TMy; modes on the gain of the exponential mode is negligible.
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Appendix F

Numerical techniques in

electromagnetics and MAGIC

F.1 Introduction

Up until the 1940s, scientists relied on analytical techniques, such as the separation
of variables, integral transforms, conformal mapping, and perturbation methods, to
solve fairly difficult electromagnetic (EM) problems [18]. As EM problems grew in
complexity, however, it became apparent that the said analytical methods were no
longer adequate to solve EM problems involving inhomogeneous/anisotropic media
with complex shapes, time-dependent/mixed boundary conditions, etc. The avail-
ability of digital computers around the mid-1960s enabled researchers to start inves-
tigating involved EM problems using numerical techniques that provided sufficient
accuracy and were much less time-consuming than their analytical counterparts.

Some of the most common numerical techniques in use today are as follows [18]:

e [Finite difference method
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e Finite element method

e Monte Carlo method

e Moment method.

These techniques are not confined to electromagnetics and find application in such

problems as heat transfer, acoustics, etc. [18].

EM problems are formulated in terms of partial differential equations (PDEs),

the general form (in 2-D) of which in Cartesian coordinates reads [18]

0*U 0*U 0% ov ov
A B D—+FE—+FV = F.1
Ox? + Oxdy + C@yQ + Ox + oy + f7 (F.1)

where U is an unknown field quantity, A through F' are given coefficients, and f
is a known forcing function. Equation F.1 is linear provided A, B, and C' are not
functions of ¥. Depending on the sign of B? — 4AC, Equation F.1 is classified as
elliptic, hyperbolic, or parabolic. If B> — 4AC < 0, Equation F.1 is elliptic (good
examples being Poisson and Laplace’s equations) and is applicable to EM problems
with closed boundaries. When B2 —4AC > 0, Equation F.1 is hyperbolic and arises
in propagation problems. Thus, hyperbolic PDEs have associated with them both
initial and boundary values (e.g. a one-dimensional scalar wave equation). Finally,
if B2 —4AC = 0, Equation F.1 is called parabolic, the most common example being
a one-dimensional diffusion equation. It should be noted that EM problems are also
classified in terms of the solution region in question (closed/open), boundary con-
ditions (homogeneous/inhomogeneous Dirichlet/Neumann conditions or the mixture

of the two), and constitutive parameters (o, €, 1) of the region being considered [18].
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F.2 Finite difference method

Developed by A. Thom in the 1920s, the finite difference (FD) technique is a widely
used tool for solving PDEs. The FD method consists of the following three steps [18]:

e Division of the solution region into a grid

e Conversion of the underlaying PDEs to finite-difference equations, which are

algebraic in nature

e Solution of the finite-difference equations over the gridded region subject to

appropriate boundary conditions.

As an example, let us solve a one-dimensional scalar wave equation,

2 2

T (F2)
in free space by deriving second-order accurate, central-difference expressions for the
first and second partial derivatives of the function u, which is a continuous, single-
valued function of x and ¢ and has continuous partial derivatives with respect to x
and t. ¢ in Equation F.2 is the speed of light. Suppose z; — Ax, z;, and x; + Az

are neighboring grid points. Using a Taylor series, we can express u(x; + Az, t) and

u(z; — Az, t) in terms of u(x;,t) (keeping t fixed at t,,) to give [18]

Ax? Ax?

u(w; + Az, t,) = u + uAx + Una =y + Usza gy + O1]Az?], (F.3)
Az? Az?
u(r; — Az, t,) = u — u Azr + ume' — umx?)—ic + Oy[Ax?], (F.4)

where u,, Uz, and u,,, are the first, second, and third partial derivatives of u with

respect to x and O; and O, represent the error incurred due to truncating the series
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and are of the order Az?. Some algebraic manipulation of Equations F.3 and F.4

yields the following expressions for u,(z;,t,) and u.,(x;, t,):

_u(x + Az, ty,) —u(r; — Ax,ty,)

2
Uy AL + O[Az7], (F.5)

" — u(x; + Az, t,) — QumeZ;t) + u(z; — Az, ty,) N O[A:L‘2]. (F.6)

Keeping x; constant and retracing the steps, one can obtain similar expressions for
u (x4, tn) and uy(z;, t,), the first and second partial derivatives of u with respect to

t

u(zg, ty, + At) — u(wy, t, — At)

oA +0[A, (F.7)

U =

w(i, ty + At) — 2u(x;, t) + u(w;, t, — At) N

N O[A#?]. (F.8)

Ut =
Equations F.5 through F.8 are second-order accurate, central-difference approxima-
tions to the first and second partial derivatives of u with respect to x and ¢, re-
spectively. If we denote a spatial position by a subscript ¢ and a temporal one by a
superscript n (i and n being integers), Equations F.5 through F.8 may be rewritten

as follows [18]:

n n
Uiy — U g

el ) = =57 + OlAe7), (F.9)
Uge|(z4,tn) = Ui _Zlf;+ Ui + O[|Az?, (F.10)
U] (s 1) = W + O[A#), (F.11)
e N (F.12)

(@istn) = NG
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With this notation, u}, |, for instance, represents the value of the function at a spatial

position (i + 1)Az and a time point nAt. Substituting Equations F.10 and F.12 into

n+1

Equation F.2 and solving for u] ™, we get [18]:

n n n
uilyy — 20 +u
Ax?

W = (cAt)? { } Lo — w4 O[AZ?) + O[AR].  (F.13)
Note that the right-hand side of Equation F.13 contains known quantities since all

the values of the function u are from the previous time steps nAt and (n — 1)At.

n+1

Therefore, u; ™", the latest value of u, can be calculated explicitly over the entire
grid of the solution region. Solution of Equation F.13 for every subsequent time step,
until the time-stepping is completed, constitutes the numerical finite-difference time-
domain (FDTD) solution of the one-dimensional scalar wave equation [18]. Owing to
its robustness, versatility, ease of implementation, and efficiency, the FDTD method

has become the most popular technique in computational electromagnetics [18].

Numerical methods are useful so long as produced numerical solutions approx-
imate exact ones (provided they exist) with a desirable/acceptable degree of accu-
racy [18]. Because of their inherently approximate nature, every single numerical
method is a source of truncation and roundoff errors. Using the FDTD solution of
Equation F.2 as an example, we introduced truncation errors by retaining four terms
in the Taylor series representation of u(x;+Ax, t,) and u(z; — Az, t,) (Equations F.3
and F.4). Roundoff errors arise because computers can carry only a finite number of
significant digits, after which they rounds off, and the accumulation of rounded values
over many iterations degrades accuracy. Although the finer mesh (smaller Az and
At) or more terms kept in the Taylor series will reduce truncation error, this approach
will eventually become impractical in terms of computation time and expense [14].
Also, the finer grid amounts to more calculations per time step (increased roundoff
error), thereby diminishing accuracy. Therefore, one can anticipate the existence of

an optimal mesh (Axz and At) for which the combined numerical error (truncation
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plus roundoff) is minimized [14]. Another factor that imposes further restrictions on
the size of the time step is the numerical stability of computed solutions. Numerical
instability results in computed values increasing spuriously with time. Referring to
the FDTD solution of Equation F.2, it can be shown that Equation F.13 is stable

providing

At < =2 (F.14)

C

Should Equation F.14 be violated, u ' from Equation F.13 will grow unboundedly,

by approximately a common factor on each time step, yielding unphysical results [18].

F.3 MAGIC

MAGIC is a 2- and 3-D particle-in-cell (PIC) code developed by ATK Mission Re-
search. It is based on the FDTD method, which divides space and time into grids.
Having created a spatial grid, MAGIC calculates an electromagnetic time step, dt,
and uses it to advance interacting charged particles and electromagnetic fields in

time in a self-consistent manner as follows [13]:

e For each dt, Maxwell’s coupled curl equations are solved for electric and mag-

netic fields

e The Lorentz force equation is solved next to determine the charged particle

momenta and coordinates

e The continuity equation is solved and the charge and current densities obtained

are input to Maxwell’s equations on the following time step.

This procedure is schematically shown in Figure F.1. As with any other numerical
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Figure F.1: Self-consistent interaction of particles and fields [13].

package, one must take into account various accuracy and stability considerations
when running MAGIC in order to obtain valid results. Accuracy and stability in
the electromagnetic solution is determined by spatial resolution (the cell size rela-
tive to wavelength) and time step. Any wavelength shorter than about 6 cells will
degenerate into noise and be lost from the solution. The size of the time step, dt,
is limited by a Courant stability criterion and particle dynamics: one must ensure
that no particle is able to move more than one cell in a particle time step. Rapid,
catastrophic failure results from exceeding this limit [13]. The centered-difference

Courant stability criterion is given by xy < 1, where

1
i=1 (d[lj'l)z

hE

X2 — CQCStQ

(F.15)

is the Courant ratio squared, dz; is the cell size in meters, ¢ is the speed of light,
and N is the number of dimensions (2 or 3). Once the spatial grid is completed,

it is automatically searched to find the most restrictive cell. Then the default time
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step is calculated using y = 0.8. Other important stability constraints that may be
encountered include the cyclotron frequency resolution, w.0t < 1, an orbit resolution
problem associated with high applied magnetic fields, and the plasma resolution,
wpdt < 2, a problem associated with high-density plasmas that can result in catas-

trophic instability [13].
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Sector magnet with a field gradient

G.1 Equations of motion and the transfer matrix
of a sector magnet with a field gradient n
In this appendix we shall derive the horizontal and vertical equations of motion and

transfer matrix for a sector magnet shown in Figure G.1 [10]. The magnetic field,

By, at the central ray (r = R) and at r = R + y is given as
By(r = R) = B, (G.1)

By(r=R+y) :BO{;}_R. (G.2)

The derivation is based on the following assumptions [10]:

e The boundaries of the magnet are perpendicular to the central ray (orbit)

located at r = R

e r ~ R or y < R. Therefore, we shall only retain first-order terms in y/R as if

the motion were about the central orbit
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- Y

Figure G.1: Side (left) and top views of the tapered sector magnet [10].

e The magnetic field is static (V x B = 0) and ~ is a constant

e The gap width is smaller than the particle gyroradius: edge focusing is ne-

glected.

Using Equations 2.7 and 2.8, the horizontal (r), azimuthal (¢), and vertical (z)

componenets of the equation of motion take the form [10]

&2r do\*> ¢ do

@ =T <E> + ET%BZ’ (G?))
d [ ,do q dr

— (=) =-Lr=B 4
dt( dt) m dt (G4)
d*z q do

= ma (G.5)
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Substituting Equation G.2 into Equations G.3 and G.4, the latter become

d2r do\*  do ., .

E =T <dt> + UJ%T R s (G6)
d [ ,do B dr |, .

o (7‘ dt> = wdtr R", (G.7)

where w = qBy/m. Integrating Equation G.7 and using a binomial expansion (keep-

ing only y/R terms), we have [10]

d R+
7’2—¢ = —wR"/ yrl_"@dt =
dt R dt
do R*y
When r = R, Equation G.8 reduces to
dp _y
xR (G.9)

Using the fact that d¢/dt = —w when r = R, to first order in y/R we can write

Cj;f = —w (1 - ]y%> . (G.10)

Upon substitution of Equation G.10 into Equation G.6 (again keeping only y/R

terms), the radial equation of motion becomes [10]

*(R+y) 2 y\° n, 2 1-n Y
d2
d—t‘g + (1 = n)w’y = 0. (G.11)
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In component form V x B = 0 reads

— — N aBZ 8B¢ n aBT aBz A~ aB(f) aBT ~
B = _ 7 — — = 0. 12
VX T(a¢ az>+¢<82 m)“(ar a¢) 0. (G12)

Since the unit vectors are linearly independent, Equation G.12 will hold if and only
if the components of V x B vanish. Setting the azimuthal component equal to zero,
we get

OB, 0B,
0z  Or

(G.13)

If we take B, = 0 at z = 0 (azimuthal symmetry), to first order (r &~ R) we obtain

[0 r)" ~ nBy

Substitution of Equation G.14 into Equation G.5 reduces the latter to

d*z 9

Equations G.11 and G.15 are called the Kerst-Serber equations [10]. When 0 < n <
1, the solutions to these equations are sinusoidal functions, which means that the sec-

tor magnet may act as a focusing lens in both horizontal and vertical directions [11].

To construct a transfer matrix, we need entrance and exit positions and incli-
nation angles with respect to the central orbit. If = is a variable along the central
orbit, then with a change of variables x = Rwt time derivatives can be converted to

x derivatives to give

d d £ £
~ —R d — = R%W?*—. G.16
at - W MY ae Y2 (G-16)

Substitution of Equation G.16 into Equations G.11 and G.15 yields [10]

d2
de; +k2y =0, (G.17)
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d2
2 k=0, (G.18)

dx?

where k7 = (1 —n)/R?* and k2 = n/R?. Solving Equation G.17, we have for the

dispplacement (y) and angle (¢) in the horizontal direction
y(x) = Acos(kpz) + Bsin(kpx) = Csin(kpx + ), (G.19)
g(x) = Cky, cos(kpx + vp). (G.20)

The entrance position and angle (y;, ¥;) anf the exit position and angle (y¢, 47) can be

determined by setting x equal to 0 and R®, respectively, in Equations G.19 and G.20

yi = Csinyy, (G.21)
yi = Ckycosyp, '

= cos(kp®R)y; + Snknlh),.
Yy (kr®R)y Y (@22)

Yy = —kpsin(ky®R)y; + cos(kn,®R)y;,

where ® is the angle subtended by the magnet. The exit position and angle in
the vertical direction (solution to Equation G.18) are identical to those given in
Equation G.22 with kj, replaced by k,. In matrix form the exit position and angle in

the horizontal and vertical directions are given as [10]

cos(kp,®R sin(kn 2H) i
U - (hn®R) b il (G.23)
Yr —kp, sin(k,®R) cos(k,PR) Ui
z cos(k, PR sin(ky ®R) Zi
T = (k.2 R) ko . (G.24)
%y —k,sin(k,®R) cos(k,PR) 2
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In view of Equations G.23 and G.24, the focal planes in horizontal and vertical

directions are located at [11]

oo B maeR) = — T cor(wy), (G.25)
921 1—n 1—n
aiy R R

Fy= -2 = 2% cot(k,®R) = —— cot (W), G.26
= cot(kBR) = o cot(V) (.20

where ¥y = k,®R and ¥y = k,®R. When 0 <n <1 and ¥;5 < 90°, F}, and F), are
positive (located outside the lens), which means that the sector magnet is focusing
in both transverse directions. When n = 0.5, F}, and F, are equal. Therefore, the
magnet can produce a 2-D image. If the magnetic field is uniform (n = 0), the
magnetic lens is focusing in the horizontal direction only, the focusing distance in

the vertical direction tending to infinity [11].
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