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Mimetic finite difference methods: theory and applications

Konstantin Lipnikov and Mikhail Shashkov
Los Alamos National Laboratory
MS B284, Los Alamos, NM 87545
{lipnikov,shashkov } @lanl.gov

Abstract

The talk is about development and analysis of advanced numerical methods that preserve or
mimic important properties of underlying PDEs, such as conservation laws, symmetry and positivity
of a solution, and fundamental indentities of vector and tensor calculus. This talk will summarize
our progress in development and analysis of mimetic finite difference (MFD) methods.

The MFD method lies between finite volume and finite element methods. Like finite volume
methods, the MFD method works on arbitrary polygonal, polyhedral and generalized polyhedral
meshes. Like finite element methods, it readily handles tensorial coefficients and enforces duality
relationships between discrete operators (e.g. divergence and gradient). Combining best of two
worlds, the MFD method has a few unique features. For instance, a parametric family of MFD
methods is used to enlarge the monotonicity region. The developed convergence analysis is now
used by other researchers to prove convergence of finite volume methods such as the multi-point
flux approximation (MPFA) methods.

We present a general framework for development of MFD methods for PDEs and illustrate their
performance with diffusion, advection-diffusion, Stokes, and magnetostatic problems. The mimetic
discretization methods is the core of the M? methods, our effort in development of multilevel
multiscale methods for efficient simulation of two-phase flows in porous media. Another application
of the MFD methodology, that will be mentioned in the talk, is development of artificial viscosity
methods for Lagrangian shock calculations.

We also present research results on non-linear monotone finite volume methods that preserves
positivity of solutions of advection diffusion equations, and therefore are also mimetic methods.
All aforementioned methods are considered for use in the Advanced Simulation Capability for
Environmental Management (ASCEM) project.

Some of the mentioned results is the join research with D.Svyatskiy, D.Moulton (LANL),
Yu.Vassilevski (INM, RUSSIA), F.Brezzi,A.Buffa,L.Beirao da Veiga, M.Manzini (IMATI, ITALY),
and I.Yotov (Univ. of Pittsburgh).
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‘Talk flow

1. Discrete vector and tensor calculus

2. Tools for analysis of MFD methods
Applications: diffusion, Stokes, magnetostatics
Outreach

Alternative approach to the maximum principle

P B = W

Applications: artificial viscosity, flows in porous
media

wz:»_\ Summary and future work
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Nature chooses polyhedra

In 1887, Lord Kelvin formulated a conj
the space should be partitioned into cel

ecture about how
s of equal volume

with the least area of surface between t
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‘We often mimic the nature

The Weaire-Phelan structure 1s the inspiration for the
design of the aquatic center for the 2008 Olympics in
Beijing in China.

The design 1s 1deally suited to absorbing the energy
A from earthquakes.
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Discrete Vector and Tensor Calculus
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Primary and derived operators

IN' — space of node-based functions
R — space of edge-based functions
X — space of face-based functions

() — space of element-based functions

7N
92'

Primary operators Derived operators

DIV: X — Q GRAD: Q — X

GRAD: N —- R DIV:R — N
A CURL: R— X CW:X%RA
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Primary operators

Using the divergence theorem, directional derivative, and
Stokes’s theorem, we define the primary operators:

div u (DIV’U,)E — 5

» Los Alamos
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Derived gradient operator

Let p = 0 on the boundary. We start with

/ﬂf-Kl(KVp) da:—/pdivﬂfdx
0 0

and use approximations

/ﬁ-Klﬁdx%vTMXu
0

T
/qudxmp Maa.

:LA>osAIamos
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Derived gradient operator

The discrete integration by parts formula is

v' My GRADp = —p" MgDIVv.
Since p and v are arbitrary, we get

Ty AT ;| T
GRAD = —MX DTV MQ.

+ Los Alamos
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Derived operators

> ATy - T
GRAD = —MX D1V MQ

N —1 T
DLV = —MN GRAD MR

CURL = Mp CURL' M x

Derivation of accurate inner product matrices Ml

is the heart of mimetic methods 12
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Summary of properties

mDIVu =0 iff u=CURLe forsomee € R
wmCURLe =0 iff e = GRADs for some s € N

-ﬁ/ezo 1ff e:mu for some u € X

N

BCURLu =0 iff u=GRADp forap € Q

= For any v € X with given values on 02, we have

w=GRADp +CURLe, peQ. ecR

= For any e € R with given values on 0¢2, we have

A5y e=GRADs+CURLu, seN,ueX

» Los Alamos

OOOOOOOOOOOOOOOOOO

Y ey




Tools for Analysis, 1
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Algebraic consistency conditions

Matrix M 1s assembled from elemental matrices M g.
Consider matrix My .. Let X g be restriction of X to

element £ and © = KgVp correspond to up € X g:

]Kgl(KEV]))fUda';— /[)divﬁdaf+/ pv-ndr
E E OF

[ts discrete analog is

u%MX’EvE — (DIV’UE)//)dzL‘+ Z 'vf/pda:'
E feOk /

» Los Alamos
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Algebraic consistency conditions

u%MX’EvE:(DIVvE)/pder Z ’vf/pdx
& fcOE H

Since v 1s arbitrary, we get

( J1 f
pdx pdx
J1 Fl JE

| fnl /
pdx pdx
k/fn El JE

» Los Alamos
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Algebraic consistency conditions

We search for an SPD matrix M X £ such that the above

condition 1s exact for linear p and corresponding constant
u = KgVp. Taking p = x,y, z, we get three equations:

MX’ENCX:]RQ, a=171,-=2.
The algebraic consistency condition 1s

My ,N=R,

where N = [N, N, N,|and R = [R,,R,,R,|. By
construction

N'R = |E|Kg = R'N.
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Algebraic consistency conditions

My ;N=R

Solution of this matrix equation requires to calculate the
null space of N”. Let N'ID = 0. Then

My ,=RR'N)"'R' +DUD",
where U 1s an arbitrary matrix such that

U=U!>o.

The construction works for non-convex, degenerate and
ggeralized polyhedra.
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Diffusion: polygonal meshes

sy | (z+1)°+y*  —ay
p(z, y) = x°y* + xsin(2rxy) sin(27y), K =

— 2y (x + 1)2
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Diffusion: polygonal meshes

- ‘ | (x+1)>+y* —zy
p(x, y) = x°y° + xsin(27zy) sin(2my), K =

—y (z 4+ 1)?
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Diffusion: hexahedral meshes

2

mesh L_ norm of error

r ~6— MFD: pressure] -
3 aonaees oo | —e—MFE: pressure| |

© | == MPFD: velocity |1
L ;{H|=W=MFE: velocity




Diffusion: polyhedral meshes

¥ numerical results:

W 663 polyhedrons with up to 23 faces

feature top bottom
CN (min) 1.002 1.009
CN (max) 2.500 115.0
CN (ave) 1316  2.194
p—p"|lo | 83%-3 | 1.76e-2
u—ul|||x | 9.20e-2 | 2.20e-1
p—p™||lee | 1.68e-2 | 2.95e-2
u —u"||| | 2.43e-1 | 5.70e-1

» Los Alamos
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Diffusion: error estimates

Assume that
= () has a Lipschitz continuous boundary

= Every element £ 1s uniformly strictly star-shaped.
= Every face f is uniformly strictly star-shaped.

= The number of faces in £ is uniformly bounded.
Then,

P ="l + Illu —u'l[ x < Ch
If €2 1s convex, then

. h )
iy |lp —p"lllg < CH".
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Stokes: consistency condition

To include elasticity, we assume that C is the full tensor.
Taking u as a linear function, we obtain:

/(CD dx/aE(CD(ﬁ)-n)-ﬁdx.

The algebraic consistency condition 1s

SN N =R.
The family of symmetric solutions is

=R([R'N)"'R"+DUD", U=U" >0

» Los Alamos
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Stokes: polygonal meshes

. _‘r(:z:) sin(27x) -
Wz, y) = :
g r(x) sin(27y)

e —_

p(z,y) = zy°,

T
TIGESS:
00330‘3'

008!
NS0 g
= \\‘,\. 10-4 | 1
‘ ¥ SN 10

r(x) = (1 — x)sin(2wx)

b

~&-H' errorin u
-%=L2 error in u |
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Stokes: polyhedral meshes

277 sin(27y) cos(2mz) !
U= | —r cos(2my)cos(2nz) | , p = sin(27z)sin(2ny)sin(27r2), r=z*
| —2r' sin(27y) sin(27z)_
’
1 10’
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Stokes: stability analysis

We use the stabilized P, — F, discretization. The MFD
method allows us to add the stabilizing bubbles only to
selected edges; thus reducing the problem size.
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Stokes: error estimates

Assume that
= () has a Lipschitz continuous boundary

= Every element £ can be decomposed into the
uniformly bounded number of simplexes

» Each simplex 1s shape-regular in a sense of Ciarlet
Then,

llp —P"lllQ +lllu—u*|l], Ny < Ch

» Los Alamos
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Magnetostatics: consistency condition

Taking u as a divergence-free linear vector-function, we

obtain:
/curlﬁ’-ﬁdx*/ v (n X u)de.
E OF

The algebraic consistency condition 1s

Mp N=R.
The family of symmetric solutions is

Mp;=RE®R'N)T'R"+DUD", U=U">0

<
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‘Magnetostatics: C-magnet

All-hex mesh calculation of the magnetic induction B 1n
a C-shape magnet:
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For model problems, numerical results show:

@ h
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Tools for Analysis, 11
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Lifting operators

Lifting operator allows us to connect the algebraic
construction of matrix M with basis functions. Explicit
construction of the basis functions 1s expensive.

Example: For almost any matrix M x . there exist a
lifting operator L from the space X p to H(div, F) s.t.

m L E('v) preserves constant vector functions

» Lp(v) has constant normal components on faces f

m Lz(v) has constant divergence in F

(u) - Lp(v)dx

» Los Alamos
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Outreach

Interaction with applications:

» Programmatic: MFD is used to improve accuracy of
Lagrangian simulations on polyhedral meshes (more
accurate diffusion discretizations; new artificial
viscosity methods).

= ASCEM, SciDAC: family of MFD methods is
analyzed to extract monotone methods. Nonlinear
nonlinear MFD methods are developed to enforce
the discrete maximum principle.
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Outreach: artificial viscosity

The artificial tensor viscosity can be interpreted as the

mimetic approximation of the elliptic term in the
modified momentum equation

D
D—"; — —Vp + div(uVu)

o
AR
N
i

RN

QN
\\‘§$$\§\\ i

Viscosity requirements:

m zero for uniform expansion implies

that the approximation must be |-
exact for linear u

® no viscosity along the shock front
<& 1mplies that ¢ must be a tensor




Outreach: flows in porous media

We developed a two-phase flow simulator for testing new

algorithms for simplified but relevant problems for
ASCEM and SciDAC applications.

Cells Log{K) o Cells saturation Y

4.29
[ 3.59
- 2.89

2.19

0.898
0.818
0.738

permeability fine-scale multiscale
field solution SOlUt1OK2 Atarmos
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The maximum principle

The focus is on the diffusion problem in a mixed form.
My .,=RR'N)'R"+DUD*, U=U">0.

M-matrix analysis provides a set of inequalities for the
entries of the arbitrary matrix U. Analytical solution of
these inequalities 1s possible for

» simplicial meshes: well-know bounds are
reproduced;

» parallelepiped meshes and full tensor coetficients;

m 2D orthogonal AMR meshes and tull tensor
. coefficients

» Los Alamos
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The maximum principle

Another approach to the DMP is development of
nonlinear mimetic methods that generalize the work of
Le Potier. The nonlinear two-point flux

ur = A(p)pe, — B(p)pE,

uses coefficients dependent on the solution. The method
= 1s locally conservative;
m preserves solution positivity;
m works on unstructured meshes and full tensors;
= results in a compact stencil;

<em 18 second-order accurate.
7

s Los Alamos
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‘The maximum principle

Consider the advection-dispersion-reaction equations:
0(¢ C")
ot

The second-order discretization of the advective flux
vC™ 1s already nonlinear. Thus, nonlinear mimetic
discretization of the dispersive flux oKV C",

Uy = A(C)CEl o B(C)CEzv

— div(p KVC™) — div(vC™) + R(C*, ..., C").

will not bring new numerical complications.
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The maximum principle

Linear methods (left) produce oscillations and
non-physical solute fluxes. Nonlinear mimetic method

(right) gives a non-oscillatory solution.

Concentration

profile ——____
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Summary and future work

m Mimetic Methods (MMs) aim at a better
representation of fundamental physical laws.

m Mimetic operators satisty discrete vector and tensor
1dentities and therefore are less sensitive to mesh
non-smoothness.

» MMs are inexpensive and easy to implement on
arbitrary (not totally crazy!) polyhedral meshes.

= The number of theoretical results grows.

= Future work: Continue analysis of monotone MFD
_wéﬁ\ methods and development of theory of high-order

22 MFD methods. £ pamos.
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