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Mimetic finite difference methods: theory and applications 

Konstantin Lipnikov and Mikhail Shashkov 
Los Alamos National Laboratory 
MS B284, Los Alamos , NM 87545 

{lipnikov ,shashkov }@lanl.gov 

Abstract 

The talk is about development and analysis of advanced numerical methods that prCficrve or 
mimic important properties of underlying PDEs, such as conservation laws , symmetry and positivity 
of a solution, and fundamental indentities of vector and tensor calculus. This talk will summarize 
our progress in development and analysis of mimetic finite difference (MFD) methods. 

The MFD method lies between finite volume and finite element methods. Like finite volume 
methods, the MFD method works on arbitrary polygonal, polyhedral and generalized polyhedral 
meshes. Like finite element methods, it readily handles tensorial coefficients and enforces duality 
relationships between discrete operators (e.g. divergence and gradient). Combining best of two 
worlds , the MFD method has a few unique features. For instance, a parametric family of MFD 
methods is used to enlarge the monotonicity region. The developed convergence analysis is now 
used by other researchers to prove convergence of finite volume methods such as the multi-point 
flux approximation (MPFA) methods. 

\Ve present a general framework for development of MFD methods for PDEs and illustrate their 
performance with diffusion , advection-diffusion, Stokes, and magnetostatic problems. The mimetic 
discretization methods is the core of the M3 methods, our effort in development of multilevel 
multiscale methods for efficient simulation of two-phase flows in porous media. Another application 
of the MFD methodology, that will be mentioneci in the talk, is development of artificial viscosity 
methods for Lagrangian shock calculations. 

\Ve also present research results on non-linear monotone finite volume methods that preserves 
positivity of solutions of advection diffusion equations, and therefore are also mimetic methods. 
All aforementioned methods are considered for use in the Advanced Simulation Capability for 
Environmental Management (ASCENI) project. 

Some of the mentioned results is the join research with D.Svyatskiy, D.Moulton (LANL), 
Yu.Vassilevski (INM , RUSSIA), F.Brezzi ,A.Buffa,L.Beirao da Veiga, M.Manzini (IMATI, ITALY), 
and I.Yotov (Univ. of Pittsburgh). 



Mimetic Finite D-fference (MFD) 

Methods: Theory and Applications 

N.CkNMI Hue"" Security Admln/afnltlon 

Konstantin Lipnikov Mikhail Shashkov 

Los Alamos National Laboratory 
{lipnikov,shashkov} @ lanl.gov 

~Alamos 
~- ----- NATIONAL LABORATORY 



Collaborators in 2008·2010 
Franco Brezzi 

Instituto Universitario di Studi Superiori, Pavia, Italy 

• Annalisa Buffa, Marco Manzini, Lourenco Beirao da Veiga 

IMATI, Pavia, Italy 

• Vitaliy Gyrya, Leonid Berlyand 

PennState University, PA 

• Daniil Svyatskiy 

Los Alamos National Laboratory, NM 

Valeria Simoncini 

Universita di Bologna, Bologna, Italy 

• Yuri Vassilevski 

Institute of Numerical Mathematics, Moscow, Russia 

Ivan Yotov, Danail Vassilev 
.~r----.. 

~~ ............... \ University of Pittsburgh, PA ~Alamos 
NATI ONAL LABORATO RY 



Acknowledg e ts 

• The research was supported by the DOE Office of 
Science Advanced Scientific Computing Research 
(ASCR) Program in Applied Mathematics Research . 

• It would be very hard to test new discretization 
methods without the MSTK library written by Rao 
Garimella, T-5, LANL. 

~Alamos 
N ATI O N A L L AB O RAT O RY 



ow 

1. Discrete vector and tensor calculus 

2. Tools for analysis of MFD lllethods 

3. Applications: diffusion, Stokes, lllagnetostatics 

4. Outreach 

5. Alternative approach to the lllaxilllulll principle 

6. Applications: artificial viscosity, flows in porous 
llledia 

. SUllllllary and future work 

~Alamos 
NATIONAL LABORATOR Y 



Nature chooses poly edra 

In 1887, Lord Kelvin forlllulated a conjecture about how 
the space should be partitioned into cells of equal volume 
with the least area of surface between thelll 

Kelvin (1887) tetrakaidecahedron Weaire-Phelan (1994) 
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We 0 ten mimic e nature 

The Weaire-Phelan structure is the inspiration for the 
design of the aquatic center for the 2008 Olympics in 

Beijing in China. 

The design is ideally suited to absorbing the energy 
from earthquakes. 

A 
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Discrete Vector and Tensor Calculus 
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. Primary a d derive opera ors 

N space of node-based functions 

R space of edge-based functions 

X space of face-based functions 

Q - space of elelllent-based functions 

Primary operators 

DIV: X ~ Q 

gRAD: N ~ R 

Derived operators 

~ 

gRAD: Q ~ X 

---------DIV: R ~ N 
~ 

CURL: R ~ X CURL: X ---+ R A 
• LOs Alamos 
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remary operators 

U sing the divergence theoreIll, directional derivative, and 
Stokes's theoreIll, we define the primary operators: 

div u 
1 

(VIV U)E = E L Uj f 
jE8E 

Vs · T 

curl e 

~Alamos 
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erived grad-ent ope ator 

Let p == 0 on the boundary. We start with 

u· OC- 1 (OC\7p) dx = - p div u dx 
n n 

and use approxilllations 

and 

u· OC-1 iJ dx ~ v TMX u 
n 

~Alamos 
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Der·ved gradie operator 

The discrete integration by parts forInula is 

~ 

vTMX QRADp = - pTMQDIVv . 

Since p and v are arbitrary, we get 

~ 

QRAD == -M X DIVT M Q . 

~Alamos 
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·Derived operators 

~ 

gRAD == -M X DIVT MQ 

~ 

CURe = M R CUReTMx 

Derivation of accurate inner product matrices M 

is the heart of mimetic methods ~Alamos 
NATIONAL LAB ORATORY 



S mmary of prope tees 

DIVu == 0 iff u == CURLe for SOIne e E R 

CURLe == 0 iff e == gRAD s for some s E N 

--------• DIVe == 0 iff e == CUR£u for some u E X 
-------- --------• CUR£u == 0 iff u == gRADp for a p E Q 

For any u E X with given values on an, we have 

u == gRADp + CURLe, P E Q, e E R 

For any e E R with given values on an, we have 

--------e == gRADs + CUR£u , s E N , U EA 
LOs Alamos 
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Tools for Analysis, I 
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Algebraic co sistency condit-0 s 

Matrix M is assembled from elemental matrices ME­
Consider matrix M X E' Let X E be restriction of X to , 
element E and i1 == IKE V p correspond to U E E X E: 

IKEl(IKEVp)v dx = - p divv dx + p v · ndx 
E E 8E 

Its discrete analog is 

p dx+ L V j p dx 
E jE8E j 

A 
Los Alamos 
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. A ge a · c co s· stency conditions 

p dx+ L Vf p dx 
E jE8E j 

Since v E is arbitrary, we get 

11 
h P dx-IEI 

• 
• 
• 

p dx 
E 

p dx - Ifni p dx 
fn E E 

~Alamos 
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A gebraic consistency condit·ons 

We search for an SPD matrix MI X E such that the above , 
condition is exact for linear p and corresponding constant 
11 == JKEVp. Taking p == x, y, Z, we get three equations: 

a == x, y, z. 

The algebraic consistency condition is 

MIx EN = IR, , 

where N = [Nx, Ny, Nz] and IR = [IRx, IRy, IRz]' By 
construction 

A 
LOsAlamos I 
NATI ONAL L ABOR AT ORY ! 



Solution of this lllatrix equation requires to calculate the 
null space of NT. Let NTITJ) = O. Then 

M X E = JR (JRTN) -1 JRT + ITJ) 1[J ITJ)T, , 

where 1[J is an arbitrary lllatrix such that 

1[J == 1[JT > o. 

The construction works for non-convex, degenerate and 
~ neralized polyhedra. 

~Alamos 
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·ff s·oo: po ygooal meshes 

p(x, y) == x 3y2 + x sin(27TXY) sin(27TY), oc== 
-xy 

-xy (x + 1)2 
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·Diffus·on: polygo al meshes 

p(x, y) == x3 y 2 + xsin(27fxy) sin(27fY), JK== 
-xy 
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Diffusion: hexahe ral meshes 
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Methods with one velocity unknown per strongly 
curved mesh face do NOT converge ~Alamos 
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• 663 polyhedrons with up to 23 faces 

• numerical results: 

feature top bottom 

eN (min) 1.002 1.009 

eN (max) 2.500 115.0 

eN (avg) 1.316 2.194 

Illp _phlllQ 8.3ge-3 1.76e-2 

IIlu - uhllix 9.20e-2 2.20e-1 

/lIp - ph 11100 1.68e-2 2.95e-2 

Illu - uhlil oo 2.43e-1 5.70e-1 

~Alamos 
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sio : error est-rna es 
Assull1e that 

[2 has a Lipschitz continuous boundary 

Every elell1ent E is uniforll1ly strictly star-shaped. 

Every face f is uniforll1ly strictly star-shaped. 

The nUll1ber of faces in E is unifofll1ly bounded. 

Then, 

If [2 is convex, then 

~Alamos 
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· Stokes: consistency condition 

To include elasticity, we aSSUllle that (C is the full tensor. 
Taking il as a linear function, we obtain: 

(C D ( il): D ( iJ) dx = ((C D (il) · n) · iJ dx . 
E BE 

The algebraic consistency condition is 

The falllily of sYlllllletric solutions is 

§ N E = }R (}RTN) -l}RT + lIJ) 1[J lIJ)T, , 1[J == 1[JT > 0 

--:fc?s Alamos 
NATIONAL LABORATORY 



Stokes: olygo a 

u(x,y)== 
r(x) sin(27rx) 

r(x) sin(27rY) 

es es 

~J 
10 -

r(x) == (1 - x) sin(27rx) 

~ 

'OK 
~ .. 

-a- H 1 error in u 

-K- L2 error in u 

.. .. ~L2 error in p 

~ .. .. .. .. 

. ·1· 

.. ,. 
" .. .. .. .... .. .. .. 

"'-K 
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S okes: olyh dral eshes 

27rr sin(27rY) cos(27r z) 

11 == -r' cos(27rY) cos(27rz) , P == sin(27rx) sin(27rY) sin(27rz), r == x4 

-2r' sin(27rY) sin(27r z) 

g 
w 
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2 
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1/h 

. --- L2 error in u 

. : ... L 2 
error in 
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Stokes: stability ana ys·s 

We use the stabilized PI - Po discretization. The MFD 
lllethod allows us to add the stabilizing bubbles only to 
selected edges; thus reducing the problelll size. 
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Sto es: erro es imates 
ASSUllle that 

• n has a Lipschitz continuous boundary 

Every elelllent E can be decomposed into the 
uniformly bounded nUlllber of silllplexes 

Each simplex is shape-regular in a sense of Ciarlet 

Then, 

h 
p - p Q + u - u h 

1 N < Ch , 

~Alamos 
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Magnetostatics: consiste cy con etio 

Taking il as a divergence-free linear vector-function, we 
obtain: 

curIil· 17dx = 17· (n x 11) dx. 
BE 

The algebraic consistency condition is 

M R ,EN = IR. 

The faIllily of sYIllIlletric solutions is 

M R E = IR (IRTN) -1 IRT +]J) lO]J)T, , 

~Alamos 
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· Magnetostatics: C-magne 

AII-hex lllesh calculation of the lllagnetic induction B in 
a C-shape lllagnet: 

Module ofB 

1.0Se+03 

947 

- 843 

740 

223 

120 

162 

For lllodel problellls, nUlllerical results show: 
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Tools for Analysis, II 

A 
------------ Los Alamos 
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· Lifting opera ors 

Lifting operator allows us to connect the algebraic 
construction of lllatrix M with basis functions. Explicit 
construction of the basis functions is expensive. 

Example: For almost any matrix M X E there exist a , 
lifting operator LE from the space X E to H(div, E) s.t. 

L E ( v ) preserves constant vector functions 

L E ( v ) has constant normal components on faces f 
L E ( v ) has constant divergence in E 

A • LosAlamos 
NATIONAL LABORATORY 



Outreach 

Interaction with applications: 

• Progralllmatic: MFD is used to ilTIprove accuracy of 
Lagrangian silllulations on polyhedral meshes (more 
accurate diffusion discretizations; new artificial 
viscosity methods) . 

• ASCEM, SciDAC: falllily of MFD methods is 
analyzed to extract monotone methods. Nonlinear 
nonlinear MFD lllethods are developed to enforce 
the discrete lllaxilllum principle. 

A 
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. Outreach: artific· al viscosity 

The artificial tensor viscosity can be interpreted as the 
lllillletic approximation of the elliptic terlll in the 
lllodified mOlllentum equation 

Du 
p == -\lp + div(p,\lu ) 

Dt 

Viscosity requirements: 

zero for uniforlll expansiori illlplies :: .. 
• so 

that the approxilllation must be 
exact for linear u 

• no viscosity along the shock front 
. implies that p, lllUst be a tensor 

~ 
• Los Alamos 
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Outreach: flows en poro s edia 

We developed a two-phase flow siITlulator for testing new 
algorithITls for siITlplified but relevant probleITls for 
ASCEM and SciDAC applications. 

Cells log(K) v Cells saturatlon 

'1.29 0 .898 

3.5S 0.818 

- 2.BS -0.738 

-2.19 -0.658 

1.5 0.579 

0 .71l6 0 .'199 

0.0968 
0.'119 

-0.602 
0.339 

0 .26 
-13 

0.18 
-2 

0 .1 
- 2.7 

perITleability fine-scale ITlultiscale 
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The ~aximum p · cip e 

The focus is on the diffusion problem in a lllixed form. 

M X E =}R (}RTN)-l}RT + 1IJ)1[J1IJ)T, 1[J == 1[JT > o. , 

M-lllatrix analysis provides a set of inequalities for the 
entries of the arbitrary matrix 1[J. Analytical solution of 
these inequalities is possible for 

silllplicialllleshes : well-know bounds are 
reproduced; 

parallelepiped llleshes and full tensor coefficients; 

• 2D orthogonal AMR llleshes and full tensor 
coefficients 

~Alamos 
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The aximu .pr-nci Ie 

Another approach to the DMP is developlllent of 
nonlinear lllillletic methods that generalize the work of 
Le Potier. The nonlinear two-point flux 

uses coefficients dependent on the solution. The lllethod 

is locally conservative; 

preserves solution positivity; 

works on unstructured llleshes and full tensors; 

• results in a cOlllpact stencil; 

is second-order accurate. 
A 

LOs Alamos 
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e maximum rine·ple 

Consider the advection-dispersion-reaction equations: 

The second-order discretization of the advective flux 
iJcn is already nonlinear. Thus, nonlinear millletic 
discretization of the dispersive flux ¢JKV' Cn

, 

will not bring new numerical complications. 

~Alamos 
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Linear methods (left) produce oscillations and 
non-physical solute fluxes. Nonlinear millletic lllethod 
(right) gives a non-oscillatory solution. 

Concentration 
profile ___ ~ ...... 

A 
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. S mmary and future work 

• Mimetic Methods (MMs) ailll at a better 
representation of fundalllental physical laws. 

• Mimetic operators satisfy discrete vector and tensor 
identities and therefore are less sensitive to mesh 
non -smoothnes s. 

MMs are inexpensive and easy to implelllent on 
arbitrary (not totally crazy!) polyhedralllleshes. 

The number of theoretical results grows. 

• Future work: Continue analysis of lllonotone MFD 
lllethods and developlllent of theory of high-order . 

· 'M hd A . / _ FD met 0 s. LosAlamos. 
NATIONAL LABORATORY' 


