
LA-UR-16-23235
Approved for public release; distribution is unlimited.

Title: DIORAMA Location Type User's Guide

Author(s): Terry, James Russell

Intended for: Report

Issued: 2016-05-09

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

DIORAMA Location Type User’s Guide

J. Russell Terry

29 January 2015

Contents

1 Introduction 1
1.1 Special-valued location type . 2
1.2 The geodetic location type (PosGeoWGS84) . 2
1.3 The Earth-centered, Earth-fixed location type (PosITRF) 2
1.4 The Earth-centered, inertial location type (PosTEME) 2
1.5 The two-line element set location type (TLE orbit WGS72) 2

2 API development and reference 3

3 Use cases 4
3.1 Instantiating a LocationType object . 4
3.2 Assignment of a location type object . 5
3.3 Obtaining Earth-fixed positions for a DIORAMA location type 5
3.4 Progating a TLE location type . 6
3.5 Obtaining the sub-type identifier of a location object 7
3.6 Casting a location type to its underlying sub-type 7
3.7 Obtaining a string representation of a location object 8

1 Introduction

The purpose of this report is to present the current design and implementation of the DIORAMA
location type object (LocationType) and to provide examples and use cases. The LocationType
object is included in the diorama-app package in the diorama::types namespace.

Abstractly, the object is intended to capture the full time history of the location of an object or
reference point. For example, a location may be specified as a near-Earth orbit in terms of a two-
line element set, in which case the location type is capable of propagating the orbit both forward
and backward in time to provide a location for any given time. Alternatively, the location may be
specified as a fixed set of geodetic coordinates (latitude, longitude, and altitude), in which case the
geodetic location of the object is expected to remain constant for all time.

From an implementation perspective, the location type is defined as a union of multiple independent
objects defined in the DIORAMA tle library. Types presently included in the union are listed and

1

described in subsections below, and all conversions or transformation between these location types
are handled by utilities provided by the tle library with the exception of the “special-values” location
type.

1.1 Special-valued location type

The special-valued location object is the only sub-type of the LocationType union that is not
implemented in the tle library. This object is implemented as a member class of the LocationType
object called LocationType::SpecialValue. This object is intended to handle specialized locations
and trajectories. However, at present, an unspecified location is the only special-value location type
that has been implemented. This special value is intended to indicate an unspecified location and
serves as the default type of the LocationType union if no parameters are provided to the object
constructor.

1.2 The geodetic location type (PosGeoWGS84)

The geodetic location object within the DIORAMA LocationType union is defined as a PosGeo
class template (provided by the tle library) with a geoid of WGS84 and reference frame of ITRF.

1.3 The Earth-centered, Earth-fixed location type (PosITRF)

The earth-centered, earth-fixed Cartesian location object within the DIORAMA LocationType
union is defined as a PosXYZ class template (provided by the tle library) with a reference frame
of ITRF.

1.4 The Earth-centered, inertial location type (PosTEME)

The earth-centered, inertial Cartesian location object within the DIORAMA LocationType union
is defined as a PosXYZ class template (provided by the tle library) with a reference frame of TEME.

1.5 The two-line element set location type (TLE orbit WGS72)

The near-Earth orbit location type within the DIORAMA LocationType union is defined as the
TLE orbit WGS72 type definition, which is provided by the tle library. Within the tle library,
the propagation of a two-line element set is handled by the SpacetrackOrbit object, which allows
the user to choose a gravity model (geoid) for the propagation. However, in the DIORAMA API,
emphasis has been placed on specifying choices such as geoid and reference frame at compile time
within object types. Therefore, a class template called TLE orbit has been defined in the tle library
that is a near-trivial subclass of the SpacetrackOrbit object. The TLE orbit class template has a
single template parameter, which specifies the geoid to use for orbit propagation, and the primary
difference between the TLE orbit template and the underlying SpacetrackOrbit object is that the
geoid is taken from the template parameter and cannot be altered by the user. The tle library
provides a type definition called TLE orbit WGS72, which consists of a TLE orbit object with a

2

WGS72 geoid. The WGS72 geoid is used as the default for TLE orbit propagation in DIORAMA
because this is the gravity model used by NORAD to produce TLE sets for tracked bodies in orbit.

2 API development and reference

The DIORAMA location type (diorama::types::LocationType) is a simple class consisting of a
single member data object: the location variant. The location variant type is a union of multiple
position and trajectory types provided by the tle library. However, since the C++ union specifier is
restricted to plain-old-data types (e.g., int, double, etc.), the union is constructed using the BOOST
variant class template. The list of member sub-types of the variant are given in Section 1 above,
and one may review the API documentation for the tle library (and the diorama-app library in the
case of the SpecialValue sub-type) for further details on the design and implementation of these
objects.

The interface for the location type is fairly lean, only implementing methods that existed prior
to a refactoring to incorporate the variant member datum. The LocationType object includes a
default constructor that creates a location variant with an “unspecified location” special value sub-
type. The destructor is trivially implemented, and the interface includes dedicated constructors
for each of the following sub-types: TLE, geodetic, Earth-centered/Earth-fixed Cartesian, and
Earth-centered/inertial Cartesian. There is no constructor for the special value sub-type since,
at present, the only defined special type is “unspecified location”, which is used by the default
LocationType constructor. Given the prolific use of constant references in the DIORAMA API,
at present, all explictly defined accessor methods for the LocationType object are defined with
the const specifier, and the only means of modifying a LocationType object is by assignment from
another LocationType object.

Accessor methods of the LocationType object are briefly discussed here. For a more complete (and
possibly up-to-date) documentation of the LocationType object and supporting sub-type objects,
one should review API documentation for the diorama-app and tle packages. The LocationType
object provides member methods Geo() and XYZ() to respectively convert the location to a geodetic
or Cartesian Earth-centered, Earth-fixed position. Note that there is no method for converting the
LocationType object to an inertial position (or orbit state vector). The Geo() and XYZ() methods
provide a single tle::time::gps time t argument. In the case that the LocationType object has an
Earth-fixed sub-type (i.e., kLocationWGS84 and kLocationITRF), a time argument is not required
for these methods. However, for inertial and TLE sub-types, a time argument must be provided;
otherwise, a runtime error is thrown.

The LocationType provides an “equal-to” comparison operator for comparison between location
types. This method was included to better facilitate unit testing. This comparison operator only
returns true if the sub-types of each LocationType are identical and the sub-type objects are equiv-
alent. The LocationType object also provides access to the enumerated sub-type identifier through
the Type() methods and a STL string representation of the location through the GetLocation-
String() method.

As the LocationType object is intended to be a more abstract interface for a set of position and
trajectory objects, for the most part member data specific to a given sub-type is typically not
accessible through the LocationType interface. However, since propagation of TLE orbits is a

3

common task in DIORAMA, an accessor method to get the epoch for the orbit (GetEpoch) is
included in the LocationType API. This method only returns a valid tle::time::gps time t for a
TLE sub-typed location type. In all other cases, a special value of “not a date time” is returned.

Given that the LocationType object does not provide any significant access to methods and param-
eters of the underlying sub-types, the API includes a method for casting the variant to its sub-type
object type. This is achieved using the GetAs method template, and example use cases are given
in section 3 below.

3 Use cases

3.1 Instantiating a LocationType object

To create a TLE location type follow the example given in listing 1.

Listing 1: Instantiating a DIORAMA LocationType object with TLE sub-type.

std : : vector<std : : s t r i ng> TLE = {
”GPS BIIA−10 (PRN 32) ” ,
”1 20959U 90103A 14288.52961711 −.00000043 00000−0 00000+0 0 5389” ,
”2 20959 54.2811 204.1626 0114410 355.3978 4 .5268 2.00568263174942 ”

} ;
diorama : : types : : LocationType l o c a t i o n (TLE) ;

To create a geodetic location type follow the example given in listing 2.

Listing 2: Instantiating a DIORAMA LocationType object with geodetic sub-type.

auto a l t i t u d e = 2 .E4 ∗ datur : : un i t s : : km;
auto l a t i t u d e = 0 . ∗ boost : : un i t s : : degree : : degree s ;
auto l ong i tude = 0 . ∗ boost : : un i t s : : degree : : degree s ;
diorama : : types : : LocationType l o c a t i o n (t l e : : PosGeoWGS84(l a t i t ude , long i tude , x)) ;

To create an Earth-centered, Earth-fixed Cartesian location type follow the example given in list-
ing 3.

Listing 3: Instantiating a DIORAMA LocationType object with Earth-centered, Earth-fixed Carte-
sian sub-type.

auto x = 2 .E4 ∗ datur : : un i t s : : km;
auto y = 0 . ∗ datur : : un i t s : : km;
auto z = 0 . ∗ datur : : un i t s : : km;
diorama : : types : : LocationType l o c a t i o n (t l e : : PosITRF(x , y , z)) ;

To create an Earth-centered, inertial Cartesian location type follow the example given in listing 4.

4

Listing 4: Instantiating a DIORAMA LocationType object with Earth-centered, inertial Cartesian
sub-type.

auto x = 2 .E4 ∗ datur : : un i t s : : km;
auto y = 0 . ∗ datur : : un i t s : : km;
auto z = 0 . ∗ datur : : un i t s : : km;
diorama : : types : : LocationType l o c a t i o n (t l e : : PosTEME(x , y , z)) ;

Although it is doubtful that the user would need or want to do this, for completeness, to create an
unspecified location type follow the example given in listing 5.

Listing 5: Instantiating a DIORAMA LocationType object with an unspecified location sub-type.

diorama : : types : : LocationType l o c a t i o n ;

3.2 Assignment of a location type object

Presently, the LocationType assignment operator is trivially implemented by the compiler. There is
no implementation of specialized assignment operators for specific sub-types of the LocationType.
Therefore, assignment to a LocationType object can only be made from another LocationType
object. For example, the example code given in listing 6 assigns a TLE location type to a default-
constructed LocationType object.

Listing 6: Instantiating a DIORAMA LocationType object with Earth-centered, sub-type.

// i n s t a n t i a t e a l o c a t i o n type
diorama : : types : : LocationType l o c a t i o n ;
// the d e f au l t−cons t ruc t ed l o c a t i o n o b j e c t has a ’ s p e c i a l−va lue ’ l o c a t i o n sub−t ype

// as s i gn a TLE l o c a t i o n to the d e f a u l t cons t ruc t ed o b j e c t
std : : vector<std : : s t r i ng> TLE = {

”GPS BIIA−10 (PRN 32) ” ,
”1 20959U 90103A 14288.52961711 −.00000043 00000−0 00000+0 0 5389” ,
”2 20959 54.2811 204.1626 0114410 355.3978 4 .5268 2.00568263174942 ”

} ;
l o c a t i o n = diorama : : types : : LocationType (TLE) ;
// the l o c a t i o n o b j e c t now has a TLE l o c a t i o n sub−t ype

3.3 Obtaining Earth-fixed positions for a DIORAMA location type

Presently, the LocationType object only provides methods for obtaining Earth-centered, Earth-fixed
positions, both geodetic and Cartesian using respectively the Geo and XYZ object methods. Each
of these methods takes a single GPS time argument (tle::time::gps time t). If the time argument
is not provided, a default special value of “not a date time” is assumed as a default argument.
Examples of obtaining Earth-fixed positions from a location object of various sub-types are given
in listing 7. The case of obtaining positions from a TLE sub-typed location are treated in section 3.4
as this is also the method for propagating a TLE orbit in DIORAMA.

5

Listing 7: Obtaining Earth-centered, Earth-fixed positions from a DIORAMA location.

// c rea t e an Earth−centered , i n e r t i a l l o c a t i o n
auto x = 2 .E4 ∗ datur : : un i t s : : km;
auto y = 0 . ∗ datur : : un i t s : : km;
auto z = 0 . ∗ datur : : un i t s : : km;
diorama : : types : : LocationType i n e r t i a l l o c a t i o n (t l e : : PosTEME(x , y , z)) ;

// conver t i n e r t i a l p o s i t i o n to Earth−f i x e d g eod e t i c a t g i ven time
t l e : : time : : gp s t ime t t ime 0 = t l e : : time : : FromUTCString (”2014−01−01T00 : 0 0 : 0 0 . 0 Z”) ;
t l e : : PosGeoWGS84 geo 0 = i n e r t i a l l o c a t i o n . Geo(t ime 0) ;

// c rea t e an Earth−centered , Earth−f i x e d Cartes ian po s i t i o n
diorama : : types : : LocationType e a r t h f i x e d l o c a t i o n (t l e : : PosITRF(x , y , z)) ;

// conver t the Earth−f i x e d p o s i t i o n to g eod e t i c . note t ha t a time argument i s not
// requ i r ed . i f an argument i s given , i t i s q u i e t l y ignored .
t l e : : PosGeoWGS84 geo pos = e a r t h f i x e d l o c a t i o n . Geo ()

3.4 Progating a TLE location type

The propagation of a TLE orbit is a common task within the DIORAMA framework. The TLE
sub-typed location has been developed to handle orbit propagation under the hood such that no
input from the user is required other than specification of the two-line element set. Therefore,
propagation of a TLE orbit is simply a special case of obtaining positions from a location type.
Calls to the underlying TLE orbit propagation library are handled as-needed behind the scenes.
An example of propagation of a TLE orbit in DIORAMA is given in listing 8.

Listing 8: Propagating a TLE orbit in DIORAMA.

// c rea t e a TLE sub−typed l o c a t i o n o b j e c t
std : : vector<std : : s t r i ng> TLE = {

”GPS BIIA−10 (PRN 32) ” ,
”1 20959U 90103A 14288.52961711 −.00000043 00000−0 00000+0 0 5389” ,
”2 20959 54.2811 204.1626 0114410 355.3978 4 .5268 2.00568263174942 ”

} ;
diorama : : types : : LocationType l o c a t i o n (TLE) ;

// ge t the epoch from the l o c a t i o n
// note t h a t t h i s method only re tu rns a v a l i d date and time f o r a TLE sub−typed
// l o c a t i o n . a l l o ther sub−t ype s re turn a no t a da t e t ime s p e c i a l va lue
t l e : : time : : gp s t ime t epoch = loca t i on−>GetEpoch () ;

// ge t the g eod e t i c and Cartes ian po s i t i o n o f the TLE l o c a t i o n type at epoch
t l e : : PosGeoWGS84 geo at epoch = l o c a t i o n . Geo(epoch) ;
t l e : : PosITRF xyz at epoch = l o c a t i o n .XYZ(epoch) ;

// ge t the g eod e t i c p o s i t i o n o f the o r b i t a t epoch + 1hr
t l e : : time : : gp s t ime t TLE epoch plus 1hr = TLE epoch + 60 .∗ datur : : un i t s : : minute ;
t l e : : PosGeoWGS84 g e t a t epo ch p l u s 1h r = l o c a t i o n . Geo(epoch p lus 1hr) ;

6

3.5 Obtaining the sub-type identifier of a location object

The location type can behave differently with respect to execution of object methods, depending on
the underlying location sub-type. Therefore, it will often be necessary to test for a given sub-type
before executing a block of code. The example code given in listing 9 shows how to access the
location sub-type identifier and to test for specific sub-types.

Listing 9: Identifying DIORAMA location sub-type.

// assume tha t the o b j e c t ’ l o c a t i o n ’ has been prev ious dec l a r ed as a
// diorama : : t ype s : : LocationType
i f (l o c a t i o n . Type () == diorama : : types : : kLocationTLE) {

// execu te code f o r TLE sub−typed l o c a t i o n
} else i f (l o c a t i o n . Type () == diorama : : types : : kLocationWGS84) {

// execu te code f o r g e od e t i c sub−typed l o c a t i o n
} else {

// o ther l o c a t i o n sub−t ype i d e n t i f i e r s i n c l ude :
// kLoca t ionSpec ia l ,
// kLocationITRF ,
// kLocationTEME , and
// kLoca t i onSpec ia l

}

3.6 Casting a location type to its underlying sub-type

The DIORAMA location type serves as a unified interface for a number of fixed position and trajec-
tory objects. Many of the specialized features or parameters of the various location sub-types are
not made available through the DIORAMA location object. Therefore, the location type provides
a method for “casting” the location to an object of the underlying sub-type type1. It is important
to note that the location object can only be cast to an object type that matches its underlying sub-
type. For example, a TLE location type can only be cast to a tle::TLE orbit WGS72-typed object,
and a Earthed-centered, Earth-fixed Cartesian location can only be cast to a tle::PosITRF-typed
object. Example code for location casting based on sub-type is given in listing 10.

1The term “casting” is quoted here because, as opposed to a standard C++ casting operator, the boost::get
function is used to convert the location type member data to the underlying sub-type.

7

Listing 10: Casting DIORAMA location by sub-type.

std : : vector<std : : s t r i ng> TLE = {
”GPS BIIA−10 (PRN 32) ” ,
”1 20959U 90103A 14288.52961711 −.00000043 00000−0 00000+0 0 5389” ,
”2 20959 54.2811 204.1626 0114410 355.3978 4 .5268 2.00568263174942 ”

} ;
diorama : : types : : LocationType l o c a t i o n (TLE) ;

i f (l o c a t i o n . Type () == kLocationTLE) {
auto t l e o r b i t = l o c a t i o n . GetAs<t l e : : TLE orbit WGS72>() ;
// execu te code wi th t l e TLE orbit o b j e c t here

} else i f (l o c a t i o n . Type () == kLocationWGS84) {
auto geo pos = l o c a t i o n . GetAs<t l e : : GeoPosWGS84>() ;
// execu te code wi th t l e g e od e t i c p o s i t i o n o b j e c t here

}

3.7 Obtaining a string representation of a location object

The DIORAMA location type object provides an STL string of simplified location information
through the LocationType::GetLocationString method. This method is used to fill status and error
messages throughout the DIORAMA code. An example use case for this method is shown in
listing 11.

Listing 11: Example using DIORAMA location string method.

// assume l o c a t i o n i s an o b j e c t o f type diorama : : t ype s : : LocationType
try {

// c a l l i n g Geo method wi th no time argument . throws an excep t i on i f
// the l o c a t i o n sub−t ype i s not g e od e t i c or Earth−f i x e d Cartes ian
auto geo pos = l o c a t i o n . Geo () ;
// execu te code wi th geo pos o b j e c t here

} catch (std : : except ion& e) {
std : : c e r r << ”Caught except ion −−− ” << e . what () << std : : endl ;
// prov ide a l i t t l e more in format ion i f we are debugg ing
i f (v e rbo s i t y >= VERB debug) {

std : : c e r r << l o c a t i o n . GetLocat ionStr ing () << std : : endl ;
}

}

8

