LA-UR-16-23217

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

OpenMC In Situ Source Convergence Detection

Aldrich, Garrett Allen
Dutta, Soumya
Woodring, Jonathan Lee

Report

2016-05-07

VA

.
s LonLuamos

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for

the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

OpenMC In Situ Source Convergence Detection

Garrett Aldrich? 2, Soumya Dutta® 3 and Jonathan Woodring!
1Los Alamos National Lab, 2University of California Davis, 3The Ohio State University

Intro:

We designed and implemented an in situ version of particle source convergence for
the OpenMC particle transport simulator. OpenMC is a Monte Carlo based particle
simulator for neutron criticality calculations [2]. For the transport simulation to be
accurate, source particles must converge on a spatial distribution. Typically,
convergence is obtained by iterating the simulation by a user-settable, fixed number
of steps, and it is assumed that convergence is achieved. We instead implement a
method to detect convergence, using the stochastic oscillator for identifying
convergence of source particles based on their accumulated Shannon Entropy.
Using our in situ convergence detection, we are able to detect and begin tallying
results for the full simulation once the proper source distribution has been
confirmed. Our method ensures that the simulation is not started too early, by a
user setting too optimistic parameters, or too late, by setting too conservative a
parameter.

Shannon Entropy:

Shannon entropy is a measurement, from information theory, for the amount of
uncertainty in a system. When there is more randomness in a system, it has greater
entropy, and conversely, when there is more certainty in an event, there is a less
amount of entropy. Using Shannon entropy, as a method for detecting convergence
of the fissionable source distribution in neutrino transport simulations has been
well established [3]. The entropy value is useful because it reduces the effective
spatial information of a large number of particles (millions or more) to a single
scalar value. This value can be plotted in time, against the number of simulation
iterations, to indicate to the user that convergence has been detected.

The Shannon entropy is calculated from the source distribution by defining a
regular grid over the simulation domain and binning the number of source particles.
The percentage of particles in each cell,

N;
Sizﬁ

Where N; is the number of particles in cell i and M is the total number of particles in
the system. The Shannon entropy for all particles is then defined as,

H=—X{",S;log,S;

Where n is the total number of cells in the regular grid. When H converges around a
value, we consider the source distribution to have converged, as well.

12.10

15.25

2185

I
12.05 f|

12.00

nost |

11.90

11.85

11.80

175

5
‘\n._‘mMN\qu AN WWM ‘/.WJ-\\”

15.20

15.15

1510} |

1505 |

15.00

14.95

14.90

\
\\“‘\'—”\m:&w

21.80

2175

2170

21.65

21.60

21.55

21.50

2145

11.70

14.85

50

100 200 300 400 500 100 200 300 400 500 100 200 300 400
Figure 1: The Shannon entropy over simulation iterations is shown for 100 thousand (green), 1 million
(red), and 100 million (blue) source particles in the same benchmarking model. The entropy values
increase with the number of particles, but the high frequency noise reduces with the increase.

In Fig. 1, we show the Shannon entropy for three simulation runs using the OpenMC
benchmarking model. Each of these simulations was run for 500 time steps, and the
Shannon entropy for source particles is plotted against the number of time steps.
These graphs show that as the number of particles in the system increase, the total
entropy also increases. However, the high-frequency noise in the system is
significantly reduced as the number of source particles is increased. Detecting
convergence visually is therefore much easier when many source particles are used.
Given the possibility of high frequency noise and our desire to do it automatically at
run-time, we must introduce an online analysis method to automatically detect
convergence.

Stochastic Oscillator:

The stochastic oscillator is an analysis method most often used to indicate trends in
stock prices over time. However, it has also been shown to be useful in the
detection of convergence in oscillating systems, such as the Shannon entropy of
source particles. The stochastic oscillator first normalizes the entropy values within
a window, such that when values are increasing over time, the most recent
normalized values are close to 1, and when they are decreasing, the normalized
values are close to 0. A moving average is also used to smooth the output of the
stochastic oscillator.

In particular, the stochastic oscillator for Shannon entropy is defined as,

0 H™ — min (H™P)
"~ max(H™P) — min (H"P)

Where K" is the normalized value, H" is the entropy at time step n and H™? is the
entropy values over the last p time steps. We further smooth K" by taking the
moving average,

Source convergence is detected when both the normalized values and their moving
average settle on 0.5, indicating that the entropy values are neither increasing nor
decreasing. Specifically we test that,

|[K" —.5| < € and |A" — 5| < ¢

Stochastic Oscillator p = 20 m = 30 Stochastic Oscillator p = 50 m = 30 Stochastic Oscillator p = 100 m = 30
10 10 10
08 08 08
06 06 06 |ﬁ
1
L] | | | 7 LI | !\l
04 [T T 04 | '\ \ 04 I \lH/fg I
02 02 02
00 00 00
100 200 300 200 500 50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400
OpenMC Batch OpenMC Batch OpenMC Batch
Stochastic Oscillator p = 20 m = 50 Stochastic Oscillator p = 50 m = 50 Stochastic Oscillator p = 100 m = 50
10 10 10
08 08 08
A Ihak |
06 b 06 : / 06
| LN | ' N | 7 y
04 I/ LT 04 WAL 04 I \lﬂ/l'g !
02 HM ’ N 02 02
00 00 L 00
100 20 300 200 500 50 100 150 200 250 300 350 400 450 S0 100 150 200 250 300 350 400
OpenMC Batch OpenMC Batch OpenMC Batch
Stochastic Oscillator p = 20 m = 100 Stochastic Oscillator p = 50 m = 100 Stochastic Oscillator p = 100 m = 100
10 10 10
08 08 M 08 A J
* THL \ o /TN 4 o l:ﬁ\J/f\/y
04 l] M | 04 ,' 04 / ﬂl l ” ”4 '
02 MM N 02 02 \/V\(
00 00 00
100 20 300 200 500 S0 100 150 200 250 300 350 400 450 S0 100 150 200 250 300 350 400
OpenMC Batch OpenMC Batch OpenMC Batch

Figure 2: The window sizes and epsilon values can significantly effect the detection of convergence.

Here, we show a series of graphs where

p = 20,50,100 (varying on the y)and m = 30,50,100 (varying on the x). K" is shown in green, and
the moving average A" is shown in blue. The convergence point, .5, and the epsilon bound (.1) are shown
in magenta and red.

While this method works for detecting convergence, the obvious problem is setting
the correct parameters for p, m, and, €. Current literature suggests a set of values,
which works well in most cases (p = 20,m = 50,& = .1) [1], however the detection
can fail, producing a false positive. This can happen on difficult simulations where
convergence takes many steps. Another concern, especially when implementing the
in situ detection, is that convergence detection can only occur p + m iterations after
convergence has actually happened. This is due to the averaging windows. So while

larger values of p, and m can provide a better indication of convergence, it comes at
the cost of delayed realization.

Stochastic Oscillator p = 20 m = 50 Stochastic Oscillator p = 20 m = 50

i
. | //F H I\ \

LA b |- G |- W

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400
OpenMC Batch OpenMC Batch OpenMC Batch

Stochastic Oscillator p = 20 m = 50

<

=

500

Figure 3 The results of the stoichastic oscillator applied to the 100K, 1M and 100M particle simulations

In Situ Implementation:

We implemented the stochastic oscillator as an in situ early convergence test in the

OpenMC code base. After each batch has finished, we test for convergence, given
that convergence has not already been found, and some maximum number of
inactive iterations has not been reached. Once convergence is detected, active
batches are started and the results can be tallied.

5000 =m0 penMC 10000 === penMC
4000 7 e=n-Situ 8000 1 = 1-Situ
3000 6000
2000 4000
1000 2000
0 0 T T 1
D 0 v X D Lo 3072 6144 12288
%) \9 t‘bcb /\(O '\<,°{b

Figure 4 A scaling study using the original code and our in situ early convergence detection. The X axis
indicates the number of cores, and the Y axis indicates the run time in seconds. On the left, we
ran a 1 million particle simulation and on the right 100 million particles were used. These
results show that the in situ addition to the OpenMC code has negligible impact on performance.

One concern with the analysis is that it would cause a significant performance
penalty to the simulation, in particular, due to the communication and
synchronization to calculate global entropy after each iteration. In Fig. 4, we show
the results of two strong scaling studies, one done with 1 million particles, and the
other with 100 million. Both were performed on the LANL Mustang supercomputer,
with 24 cores per node. The timing differences between the original OpenMC code
and the in situ version with convergence detection are nearly identical. To ensure a
fair test, we used the same number of inactive batches for the original code.

Conclusion and Future Work:

We implemented the known stochastic oscillator as an in situ early convergence
detection for source particle distribution in the OpenMC code. We have shown that
for the provided benchmark input, the method works well and does not impact
performance. More work needs to be done to understand the impact on a greater
number of applications, but early indications are positive. The main caveats include
setting correct detection parameters for the stochastic oscillator, and the related
delay on confirmation of convergence due to the need for temporal smoothing.

(a) (b) (c)
Figure 5 Here, we show a 3D histogram showing the spatial particle density for the 1 million particle
simulation. Blue indicates few or no particles, while red is a high density of particles. In the top row we
show the raw data, sliced along the x-y plane, on the bottom row the same data is shown, but has been
smoothed using a Gaussian filter. The initial time step (a), a time step near the convergence point (b),
and several time steps after the source has converged (c) are shown.

In future work, we are interested in applying spatial smoothing on top of the
temporal smoothing. In Fig. 5, we show that simple Gaussian smoothing of the
source distribution can greatly decrease noise between time steps. This could
remove much of the noise we see in the entropy graph, increase the accuracy of
convergence detection, and potentially shrink the period of detection.

Bibliography:

[11 Romano, Paul K. "Application of the Stochastic Oscillator to Assess Source Convergence in
Monte Carlo Criticality Calculations." International Conference on Mathematics, Computational
Methods & Reactor Physics. 2009.

[2] Romano, Paul K., and Benoit Forget. "The OpenMC Monte Carlo particle transport
code." Annals of Nuclear Energy 51 (2013): 274-281.

[3] Ueki, Taro, and Forrest B. Brown. "Stationarity diagnostics using Shannon entropy in monte
carlo criticality calculation I: F test." American Nuclear Society 2002 Winter Meeting, November.
2002.

