

The Real-Space Model Validation Approach as a Unifying? Extended Hybrid of the ASME VV10 and VV20 Approaches

Vicente Romero

**V&V, UQ, and Credibility Processes Dept.
Sandia National Laboratories**

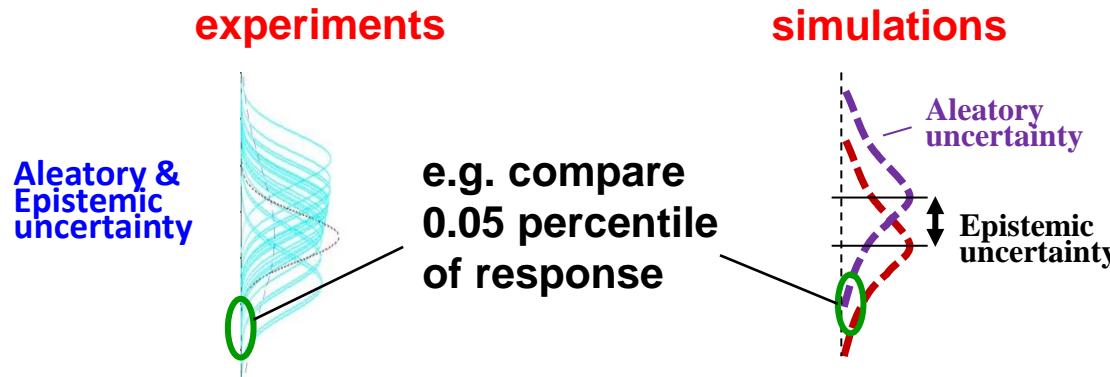
Albuquerque, NM

Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

ASME 2015 V&V Symposium, May 13-15, Las Vegas, NV

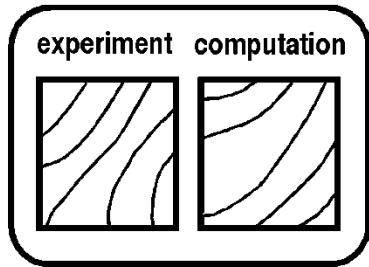
Real-Space Uncertainty Accounting and Comparison System for Experimental and Simulation Results

—applicable in both calibration and validation

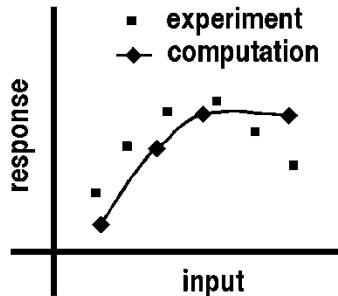


- General problem involves Probability Boxes of experimental and sim. uncer.
- Intuitive visual indication of how accurate the model is, on several fronts:
 - Means of the predicted and experimental populations
 - Variance of the predicted and experimental populations
 - Percentiles of the predicted and experimental populations
- **👉 granular quantification of how the model is doing, as compared to validation metrics of integrated measure of mismatch at whole-distribution level**
- Percentile comparisons are particularly useful for calibration and validation of models to be used for analysis of performance and safety margins (e.g. QMU).

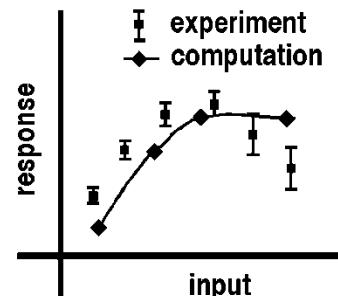
5 Levels of Increasing Rigor in Treatment of Experimental and Simulation Uncertainties in Model Validation



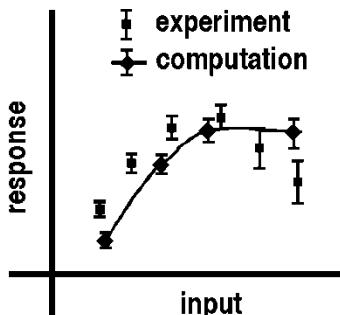
(a) Viewgraph Norm



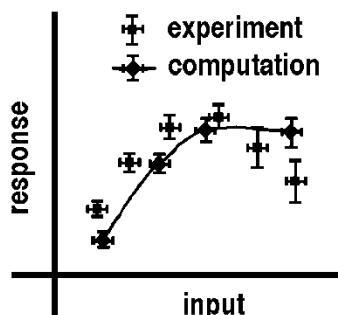
(b) Deterministic



(c) Experimental Uncertainty



(d) Numerical Error

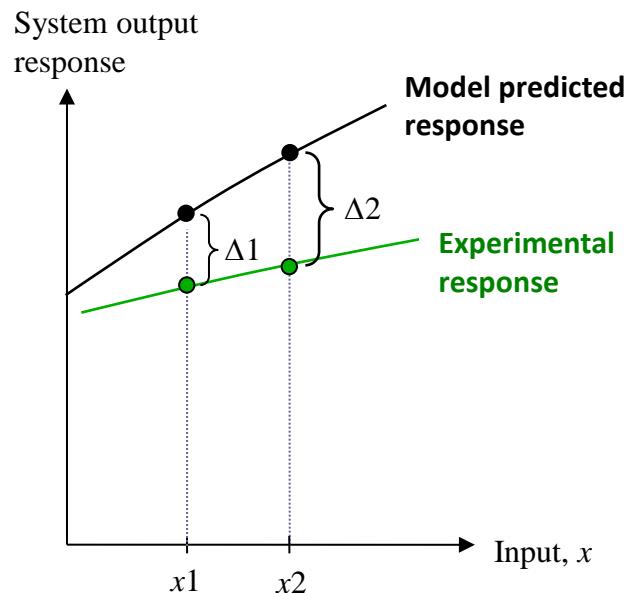


(e) Nondeterministic Computation

“Real Space” validation approach appropriately and pragmatically treats all uncertainties on inputs & outputs of experiments and simulations

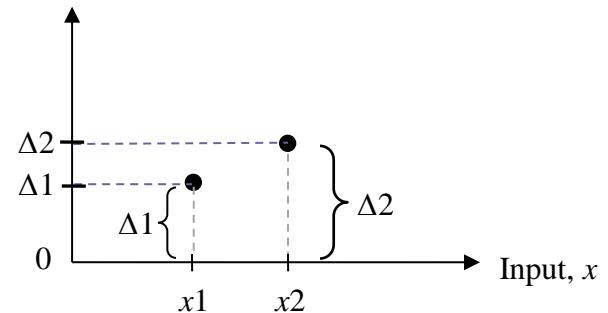
Consider Subtractive Difference of Deterministic Experimental and Model Results as Fcn. of Input X

Simulated and Experimental results at various input values of x .



Subtractive Differences of results

(Sim. – Exper.) output difference



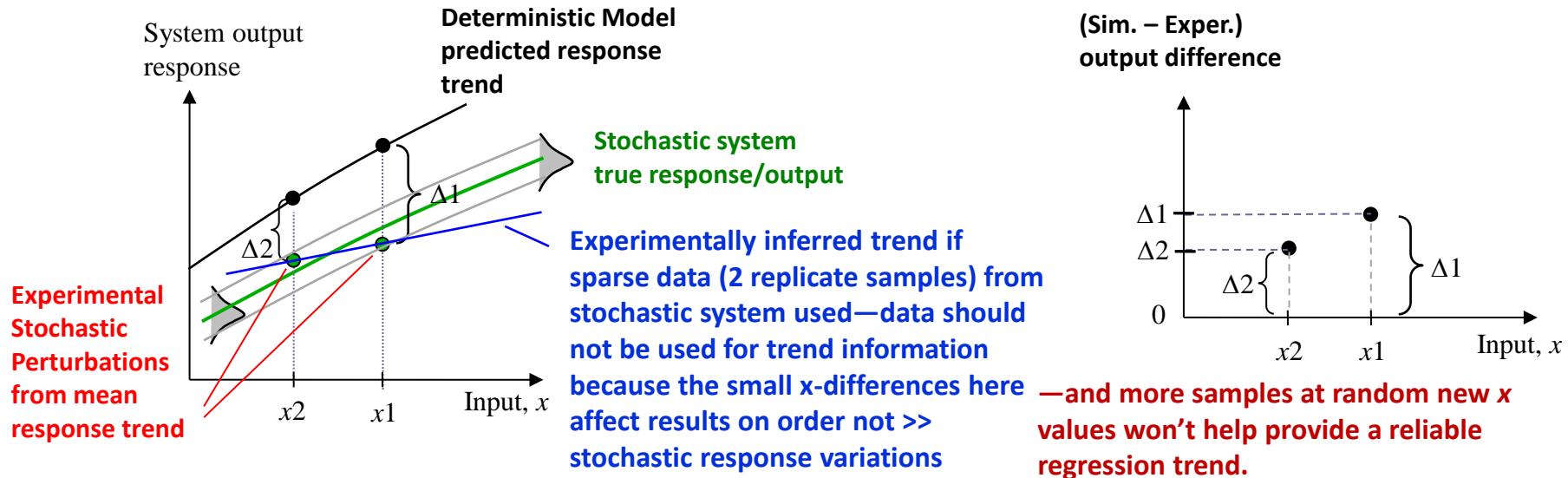
For now assume:

- No measurement errors on inputs or outputs
- Negligible solution error/uncertainty in model predictions

Change Context to Stochastic Systems and Replicate Experiments

⇒ Aleatory Experimental Uncertainty (Variability)

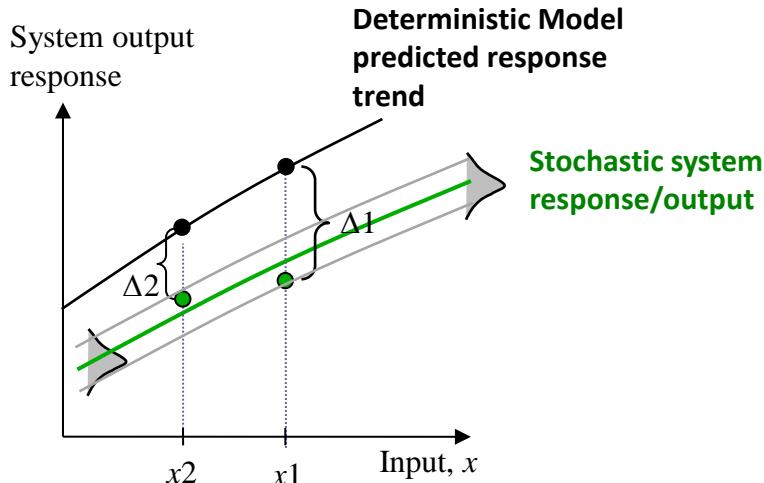
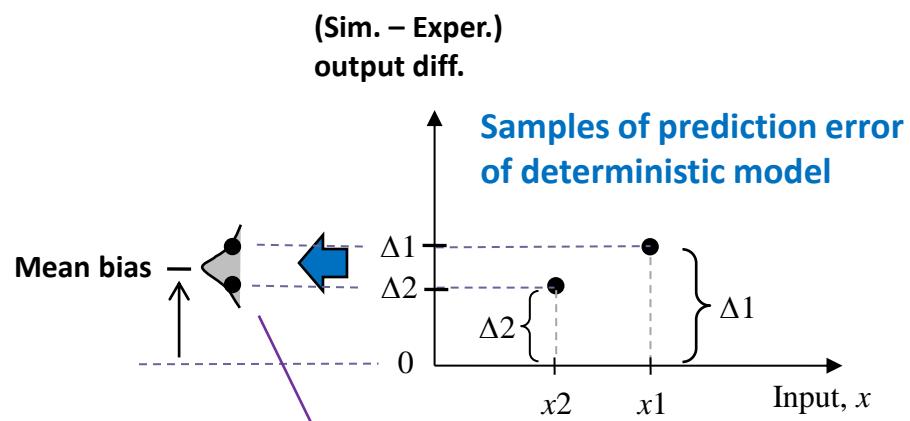
- Complex engineered systems usually involve non-trivial geometric and physical behavior variability, (“stochastic” systems).
- Replicate experiments can illuminate the effects of stoch. system variability by examining output/response variability in repeated tests at the ~same input conditions.
- Input conditions often cannot be exactly repeated in replicate tests, but instead are controlled to within small changes.
- E.g, in the following we try to control the input condition to a value x_{target} , but in two tests we obtain slightly different values x_1 and x_2 ; $x_1 \approx x_2 \approx x_{\text{target}}$



Stochastic Systems and Replicate Experiments

— Aleatory Experimental Uncertainty

- Nonetheless, the model results and experimental data can be used to characterize mis-prediction of the deterministic model vs. experimental stochastic system response.

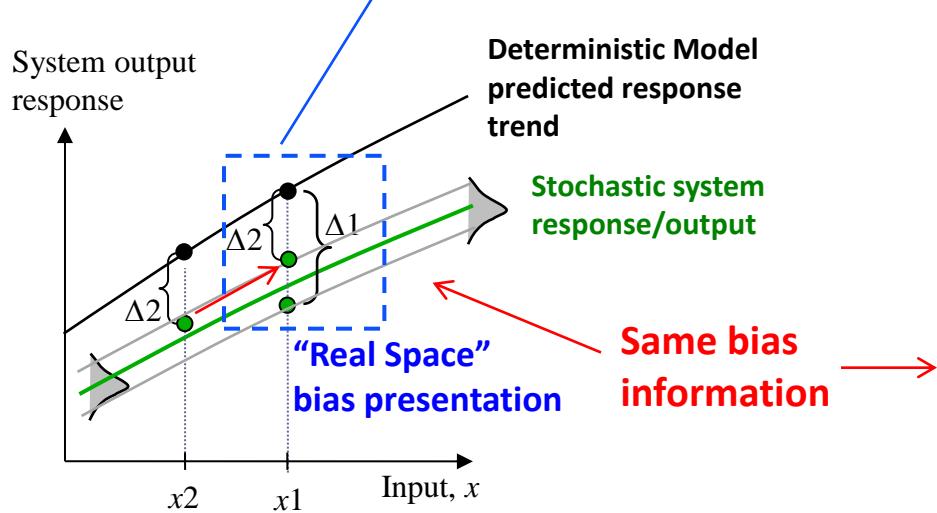
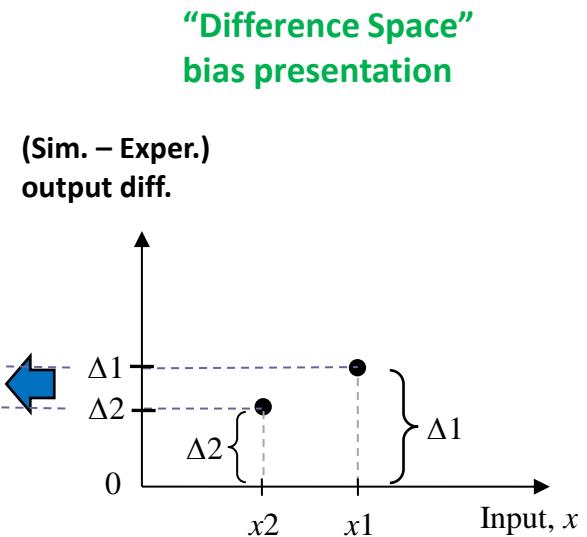


Distribution of Differences:
samples of prediction error can
be said to come from a parent
population (PDF) of model
prediction bias at the ~target
input conditions
 $x_{\text{target}} \approx x_1 \approx x_2$
in the validation assessment.

Stochastic Systems and Replicate Experiments

— Aleatory Experimental Uncertainty

- Thus, one can consider the samples of prediction bias, $\Delta 1$ and $\Delta 2$, to be from the ~same PDF of prediction bias at input values x in the vicinity of $x_{\text{target}} \approx x_1 \approx x_2$
- Can go further and pick a convenient x value to consolidate the prediction bias information, realizations $\Delta 1$ and $\Delta 2$, for any further validation or calibration analysis
- E.g., choose input level x_1 and consolidate prediction-bias information there in order to carry out any further val. or cal. analysis



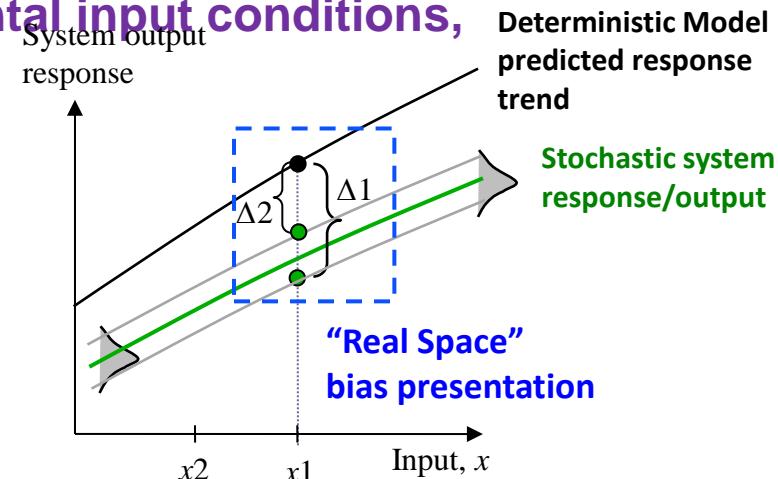
Advantage of Real Space Consolidation of Replicate Results to Single Input Value

Calibration

- allows calibration of model at one set of input conditions instead of many perturbed sets, while addressing the same full set of bias information
- calibrations traditionally formulated in terms of cal. params. iterated so real-space response values are matched, not cal. parameter deltas calibrated to match output response deltas

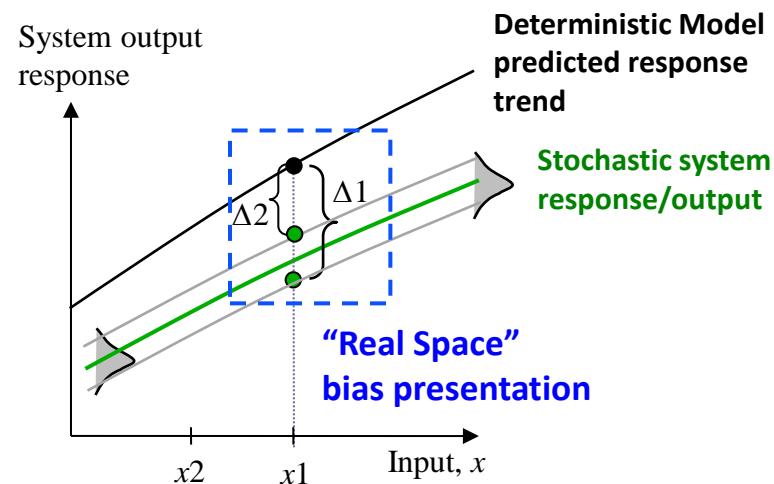
Validation

- allows propagation of model input uncertainties and val. assessment for one set of experimental input conditions, instead of multiple perturbations



Consolidated Bias Presentation originally arrived at from different perspective: Real Space Validat'n.

- The development to this point reconciles the Difference Approach with prior results arrived at from a different perspective—the Real Space model validation approach.
- RS model validation methodology arrives at completely consistent results, but from a different direction and w/ a different interpretation
 - use the model to “normalize” or consolidate replicate data to the same reference input condition
 - The **consolidated data (green dots)** are viewed as sample realizations of response variability in the replicate tests of the stochastic system
 - Duality Relationship: consolidated samples of prediction bias, $\Delta 1$ and $\Delta 2$ at x_1 , are consistent with the RS view that the green dots are samples of the stochastic response at x_1

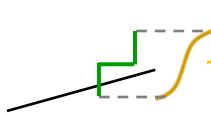


ASME VV10 Supplement's Starting Point for Response Samples of Stochastic Systems

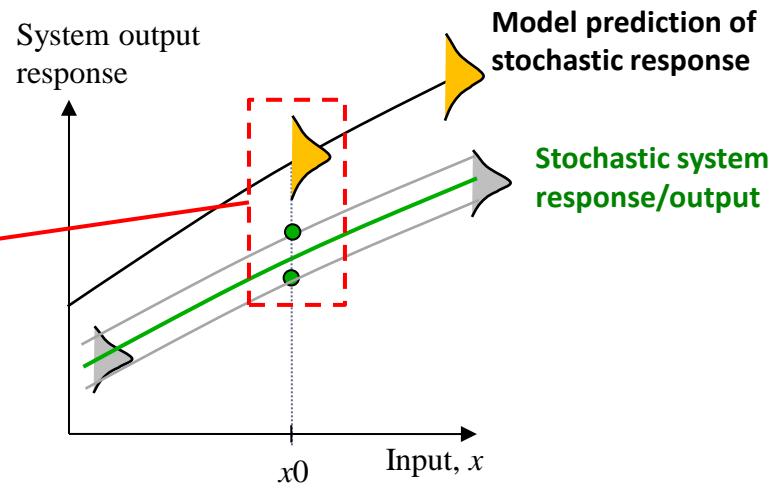
- VV10 starts from a condition of consolidated response samples when stochastic systems and replicate tests are involved
- Doesn't show how to deal with experimental inputs that cannot be exactly repeated in replicate tests —the reality in many/most val. & cal. experiments.
- Having shown how to transform to the starting point for VV10, we go on to compare from this starting point

VV10 Area Metric

- CDF of replicate experimental results is formed, as is a CDF of predicted stochastic response

 Dozens of model runs/ samples assumed here, gives ~smooth CDF

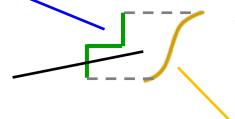
- area between simulated and experimental CDFs is a measure of mismatch between sim. and exper. stochastic response



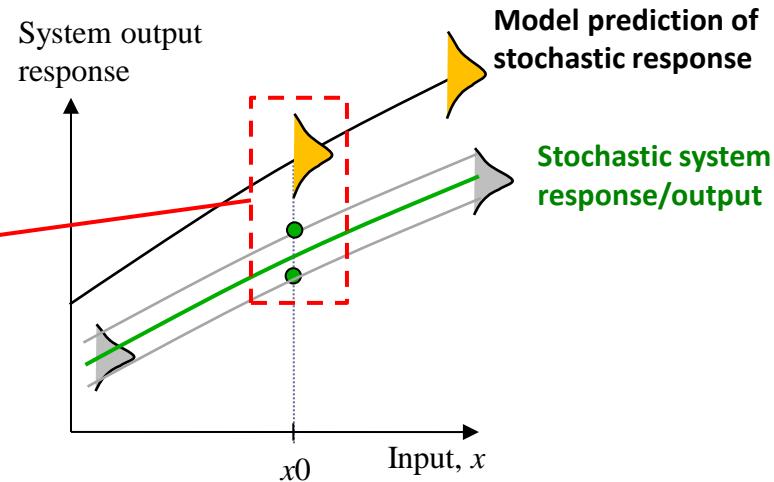
Handling Sparse Experimental Data

- VV10 does not present an approach for dealing with the large epistemic uncertainty in CDFs built from few samples.
- Real Space method does, see [ASME V&V 2015 Symposium presentation “Approximate Probability Boxes and Other Shortcuts...,” V. Romero.](#)

- Sparse-Data CDFs are not “anchored” in any way
- Adding more data not only adds more stair-steps to the CDF, but also shifts the CDF and alters its variance
- Highly uncertain val. metric value from sparse data is not accounted for in VV10 approach.

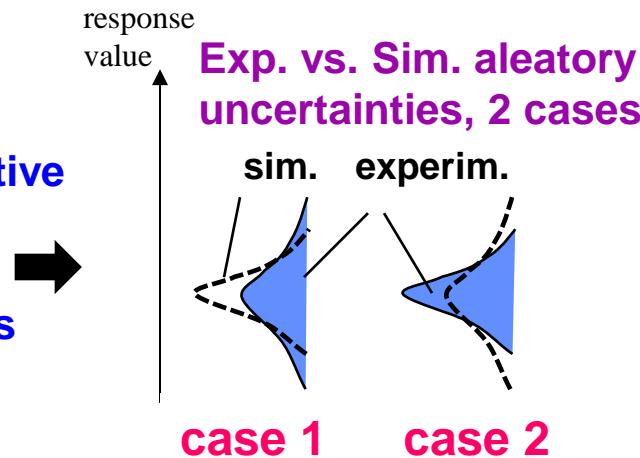


Dozens of model runs/ samples assumed here, gives ~smooth CDF



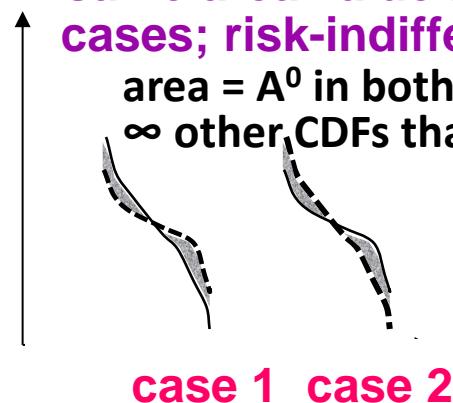
Non-Uniqueness of Area Metric of CDF Mismatch

Consider two cases where relative uncertainties in experiment and simulation results are very different



Area Metric

- same area value both cases; risk-indifferent
 $\text{area} = A^0$ in both cases and for ∞ other CDFs that could be compared



- non-uniqueness of Area Metric can hide prediction risk and undermine metric use for extrapolation (next slide)

Real Space method

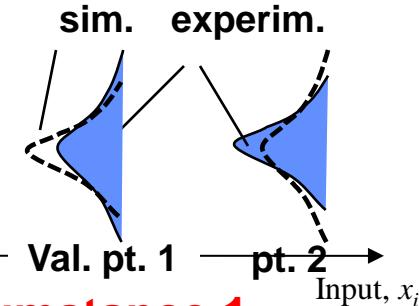
- like-percentiles of CDFs are compared
- Unique and more granular quantification of how CDFs differ
- reveals different prediction risks in these two cases

Area Metric Non-Uniqueness can also obscure the Trend of Model Error

Real Space method

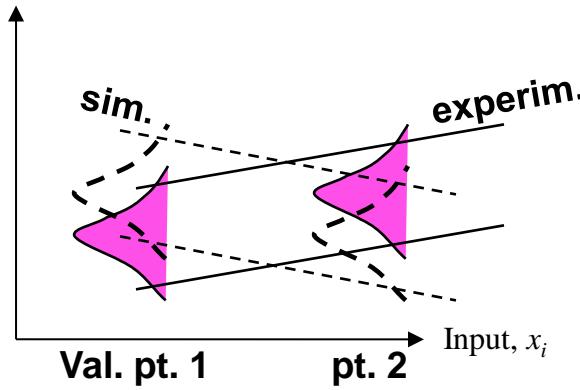
response value

- reveals differing sim. & exper. trends



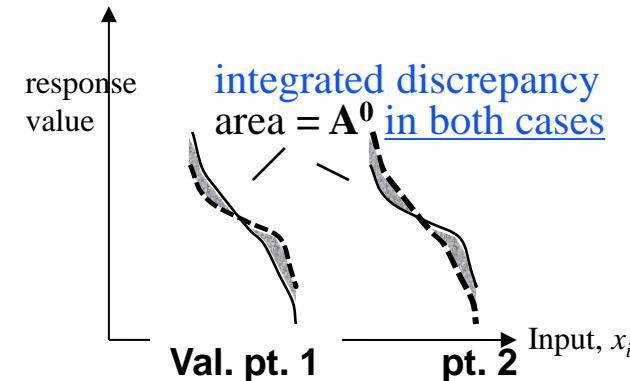
circumstance 1

circumstance 2

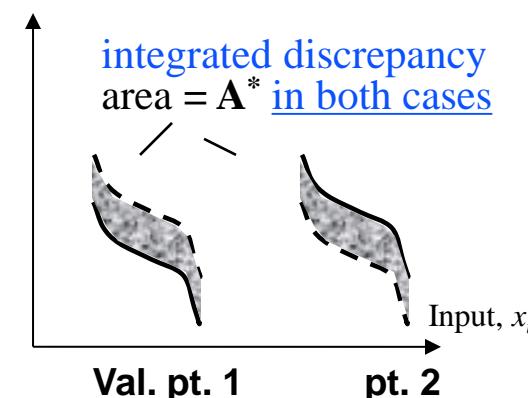


Area Metric

- same areas for diff. model trend errors



circumstance 1



Handling Epistemic Uncertainty

- Validation and Calibration often involve significant aleatory and epistemic uncertainties in the experiments and simulations.
 - \Rightarrow epistemically uncertain CDFs of the aleatory variability in the experiments and predictions
 - VV10 does not present an approach for dealing with epistemically uncertain experimental and/or predicted CDFs, but “Probability Box” extensions exist in the literature for doing so (e.g. Oberkampf, Ferson, Roy)
 - These extensions do not appropriately handle “traveling” epistemic uncertainties that are an intrinsic part of the model being validated, e.g. uncertainty parameterized into the model to account for model-form error

Traveling – model quantities and uncertainties proposed to “travel” consistently from the validation space to intended application space.
These define the (traveling) ‘model’ in model validation.

Non-Traveling – quantities and uncertainties that are exclusive to the validation space. These are outside the control volume or boundary that contains and defines the traveling model.

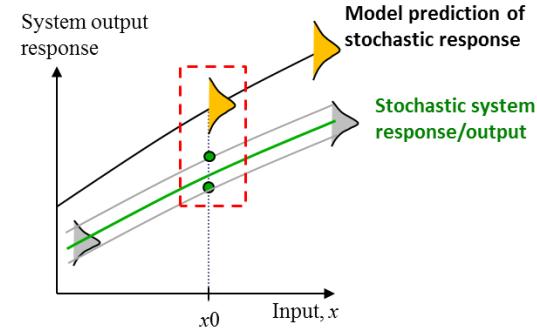
Handling Epistemic Uncertainty

ASME VV20 Standard for V&V in Computational Fluid Dynamics and Heat Transfer

- treats non-traveling epistemic uncertainties appropriately
- does not appropriately treat traveling epistemic uncertainties
- VV20 and Real Space approaches for handling epistemic uncertainties are procedurally different
- But the results can be shown to be equivalent for the non-traveling subset of epistemic uncertainties
- Different but Equivalent:
 - analogous to the duality relationship presented earlier between variance of prediction bias vs. experimental variance

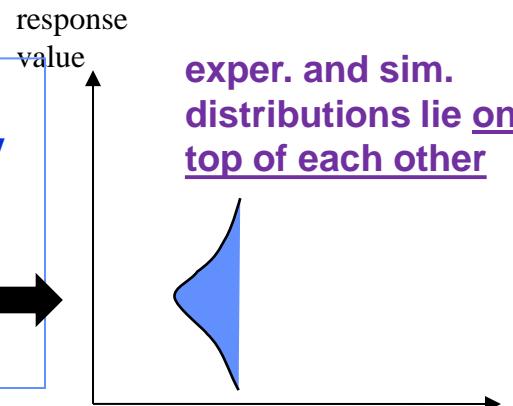
VV20 Uncertainty Treatment improperly treats Model Predictions of Stochastic Response (Traveling Aleatory Uncertainty in the Model)

- **VV20's Subtractive Difference operation does not appropriately extend to model predictions of stochastic response**
—see example on next slide
- **VV20 may have to move to Probability Boxes or other uncertainty representation and accounting approach to appropriately handle validation involving stochastic systems and models.**
- **Furthermore, neither VV20 nor VV10 currently explicitly account for randomly varying measurement errors in multiple replicate experiments. Real Space does.**
– Especially important when only a few replicates are involved.



VV20 Uncertainty Treatment is Improper when Model Predictions of Stochastic Aleatory Uncertainty are involved

E.g., let simulated stochastic variability of system exactly equal variability of real system tested many times



- Conditions: no measurement errors in the experiments; and “large” # of tests
- Observed response variability is due to unit-to-unit stochastic variability of the tested systems

Real Space approach
✓ works; no model error indicated when like percentiles compared

ASME V&V20 Subtractive Diff. approach
• attributes uncertainty as model bias

$$\{\text{Diff}\} = \{\text{Sim}\} - \{\text{Exper}\}$$

PDF should have zero width for exact experim. / sim. variability match above

VV 10 Area Metric
✓ works; no model error indicated

**Real Space approach can be viewed as an
extended hybrid of published ASME frameworks**

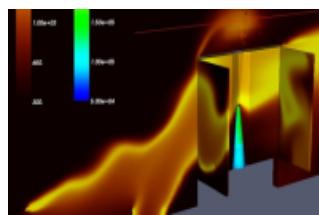
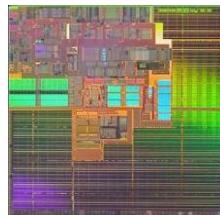
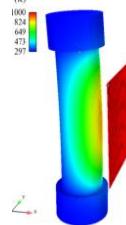
—contains and extends beyond their capabilities

— **ASME V&V20 2009 Standard for V&V in CFD and Heat Transfer**

- geared for validation of deterministic (non-stochastic) systems
- no aleatory-epistemic differentiation
- equivalent to Real Space for probabilistic uncertainty and non-traveling epistemic uncertainty

— **ASME V&V10 2012 Supplement for V&V in Computational Solid Mechanics**

- built for validation of stochastic systems
- segregates aleatory and epistemic uncertainties (Prob. boxes)
- uses Ferson & Oberkampf “area” validation metric (CDF matching)
- does not show how to incorporate important types of experimental epistemic uncertainty that ASME VV20 and Real Space do



Sandia
National
Laboratories

- **The Real Space validation methodology is versatile and practical, geared for:**
 - expensive computational models (minimal # of simulations)
 - stochastic phenomena and models
 - multiple replicate experiments with random and systematic uncers.
 - few replicates (sparse data)
 - rollup of various types, sources, and representations of uncertainty
 - aleatory and epistemic
 - probabilistic, interval, and discrete variables and functions
- **Real Space Validation results are:**
 - relatively straightforward to interpret
 - especially relevant for assessing models/quantities to be used in the analysis of performance and safety margins (QMU)

Closing

The Real Space validation approach will be featured in Joint Army/Navy/NASA/Air Force (JANNAF) document:

“Advances in Model V&V, UQ, and Simulation Credibility for Propulsion and Energetics”

due out in Sept. 2015.