
 
The Real-Space Model Validation Approach 

as a Unifying? Extended Hybrid 

of the ASME VV10 and VV20 Approaches 
 

 

  

 
Vicente Romero 

V&V, UQ, and Credibility Processes Dept. 

Sandia National Laboratories 

Albuquerque, NM 
  

 

 

 

ASME 2015 V&V Symposium, May 13-15, Las Vegas, NV  
 

Sandia is a multi-program laboratory managed and operated by Sandia 

Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, 

for the U.S. Department of Energy’s National Nuclear Security 

Administration under contract DE-AC04-94AL85000.  

 

Sandia National Laboratories document SAND2012-yyyyC (unlimited release) 

SAND2015-3752C



Real-Space Uncertainty Accounting and Comparison 

System for Experimental and Simulation Results 

—applicable in both calibration and validation  

 

2 

• General problem involves Probability Boxes of experimental and sim. uncer. 

• Intuitive visual indication of how accurate the model is, on several fronts: 

– Means of the predicted and experimental populations  

– Variance of the predicted and experimental populations 

– Percentiles of the predicted and experimental populations 


 granular quantification of how the model is doing, as compared to validation 

metrics of integrated measure of mismatch at whole-distribution level 
 

• Percentile comparisons are particularly useful for calibration and validation 

of models to be used for analysis of performance and safety margins 

(e.g. QMU). 
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5 Levels of Increasing Rigor in Treatment of 

Experimental and Simulation Uncertainties 

in Model Validation 

“Real Space” 

validation approach 
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pragmatically treats  

all uncertainties on 
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experiments and 
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 Figs from “Increasing Quality of Validation Metrics,” Sandia National Laboratories 

report SAND2003-3769, Oberkampf, Trucano, & Hirsch 
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For now assume: 

• No measurement 

errors on inputs or 

outputs 

• Negligible solution 

error/uncertainty in 

model predictions 



Experimentally inferred trend if 
sparse data (2 replicate samples) from 
stochastic system used—data should 
not be used for trend information 
because the small x-differences here 
affect results on order not >> 
stochastic response variations 

Change Context to  

Stochastic Systems and Replicate Experiments 
 

Aleatory Experimental Uncertainty (Variability) 
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• Complex engineered systems usually involve non-trivial geometric and physical 

behavior variability, (“stochastic” systems).  

• Replicate experiments can illuminate the effects of stoch. system variability by 

examining output/response variability in repeated tests at the ~same input conditions. 

• Input conditions often cannot be exactly repeated in replicate tests, but instead are 

controlled to within small changes.  

• E.g, in the following we try to control the input condition to a value x_target, but in two 

tests we obtain slightly different values x1 and x2;      x1 ≈ x2 ≈ x_target 
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—and more samples at random new x 
values won’t help provide a reliable 
regression trend. 



Stochastic Systems and Replicate Experiments 

— Aleatory Experimental Uncertainty 
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• Nonetheless, the model results and experimental data can be used to characterize mis-

prediction of the deterministic model vs. experimental stochastic system response.  

Distribution of Differences: 
samples of prediction error can 
be said to come from a parent 
population (PDF) of model 
prediction bias at the ~target 
input conditions 
x_target ≈ x1 ≈ x2  

in the validation assessment. 

Samples of prediction error 
of deterministic model 

Mean bias 



Stochastic Systems and Replicate Experiments 

— Aleatory Experimental Uncertainty 
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• Thus, one can consider the samples of prediction bias, ∆1 and ∆2, to be from the ~same 

PDF of prediction bias at input values x in the vicinity of x_target ≈ x1 ≈ x2  

• Can go further and pick a convenient x value to consolidate the prediction bias 

information, realizations ∆1 and ∆2, for any further validation or calibration analysis  

• E.g., choose input level x1 and consolidate prediction-bias information there in order 

to carry out any further val. or cal. analysis 
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Advantage of Real Space Consolidation of 

Replicate Results to Single Input Value 

Calibration 

• allows calibration of model at one set of input conditions 

instead of many perturbed sets, while addressing the same 

full set of bias information 

• calibrations traditionally formulated in terms of cal. params. 

iterated so real-space response values are matched, not cal. 

parameter deltas calibrated to match output response deltas 

Validation 

• allows propagation of model input uncertainties and val. 

assessment for one set of experimental input conditions, 

instead of multiple perturbations 
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• The development to this point reconciles the Difference Approach 

with prior results arrived at from a different perspective—the Real 

Space model validation approach. 

• RS model validation methodology arrives at completely consistent 

results, but from a different direction and w/ a different interpretation 

• use the model to “normalize” or consolidate replicate data to 

the same reference input condition 

• The consolidated data  

(green dots) are viewed as 

sample realizations of response 

variability in the replicate tests 

of the stochastic system    

• Duality Relationship: consolidated samples 

of prediction bias, ∆1 and ∆2 at x1, are  

consistent with the RS view that the green  

dots are samples of the stochastic response at x1 

Consolidated Bias Presentation originally arrived 

at from different perspective: Real Space Validat’n. 
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• VV10 starts from a condition of consolidated response samples when 

stochastic systems and replicate tests are involved 

• Doesn’t show how to deal with experimental inputs that cannot be exactly 

repeated in replicate tests —the reality in many/most val. & cal. experiments. 

• Having shown how to transform to the starting point for VV10, we go on to 

compare from this starting point 

 

• VV10 Area Metric 

• CDF of replicate experimental results  

is formed, as is a CDF of predicted  

stochastic response 

 

• area between simulated and 

experimental CDFs is a measure of  

mismatch between sim. and exper. stochastic response 

Dozens of model runs/ 
samples assumed here, gives 
~smooth CDF 

ASME VV10 Supplement’s Starting Point  

for Response Samples of Stochastic Systems 
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• Sparse-Data CDFs are not 
“anchored” in any way 

• Adding more data not only adds 
more stair-steps to the CDF, but also 
shifts the CDF and alters it’s variance 
 

• Highly uncertain 
val. metric value 
from sparse data 
is not accounted for 
in VV10 approach. 

• VV10 does not present an approach for dealing with the large epistemic 

uncertainty in CDFs built from few samples. 

• Real Space method does, see ASME V&V 2015 Symposium presentation 

“Approximate Probability Boxes and Other Shortcuts…,” V. Romero. 

Dozens of model 
runs/ samples 
assumed here, gives 
~smooth CDF 

Handling Sparse Experimental Data 
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Non-Uniqueness of Area Metric 

of CDF Mismatch 

 

     Real Space method 

• like-percentiles of CDFs are 

  compared  

• Unique and more granular 

  quantification of how CDFs 

  differ 

• reveals different prediction 

  risks in these two cases  

response 

value 

sim. experim. 

 

• non-uniqueness of Area Metric can 

hide prediction risk and undermine 

metric use for extrapolation (next 

slide) 

Consider two  

cases where relative 

uncertainties in 

experiment and 

simulation results 

are very different 

case 1 case 2 

Exp. vs. Sim. aleatory 

uncertainties, 2 cases 

Area Metric 

• same area value both  
  cases; risk-indifferent 

case 1 case 2 

area = A0 in both cases and for  
∞ other CDFs that could be  
                                        compared   



Val. pt. 1 

this 

Real Space method 

• reveals differing 

sim. & exper. trends 
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also obscure the Trend of Model Error 
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• Validation and Calibration often involve significant aleatory and epistemic 

uncertainties in the experiments and simulations.  

•  epistemically uncertain CDFs of the aleatory 

variability in the experiments and predictions  

• VV10 does not present an approach for dealing with epistemically uncertain 

experimental and/or predicted CDFs, but “Probability Box” extensions exist 

in the literature for doing so (e.g. Oberkampf, Ferson, Roy)  

• These extensions do not appropriately handle “traveling” epistemic 

uncertainties that are an intrinsic part of the model being validated, e.g. 

uncertainty parameterized into the model to account for model-form error  

 

 

 

Handling Epistemic Uncertainty 

Traveling – model quantities and uncertainties proposed to “travel” consist- 

                    ently from the validation space to intended application space. 

                    These define the (traveling) ‘model’ in model validation.  

Non-Traveling – quantities and uncertainties that are exclusive to the 

                            validation space. These are outside the control volume or 

                            boundary that contains and defines the traveling model.    

simulations 

experiments 

Real Space 

example 



ASME VV20 Standard for V&V in Computational Fluid Dynamics and  

Heat Transfer  

• treats non-traveling epistemic uncertainties appropriately 

• does not appropriately treat traveling epistemic uncertainties  

• VV20 and Real Space approaches for handling epistemic 

uncertainties are procedurally different 

• But the results can be shown to be equivalent for the non-traveling 

subset of epistemic uncertainties  

• Different but Equivalent: 

• analogous to the duality relationship presented earlier between 

variance of prediction bias vs. experimental variance  

Handling Epistemic Uncertainty 



• VV20’s Subtractive Difference operation  

does not appropriately extend to model  

predictions of stochastic response 

—see example on next slide  

• VV20 may have to move to Probability Boxes 

or other uncertainty representation and accounting  

approach to appropriately handle validation involving 

stochastic systems and models. 
 

• Furthermore, neither VV20 nor VV10 currently explicitly account 

for randomly varying measurement errors in multiple replicate 

experiments. Real Space does. 

  – Especially important when only a few replicates are involved.  

VV20 Uncertainty Treatment improperly treats 

Model Predictions of Stochastic Response 

(Traveling Aleatory Uncertainty in the Model) 
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VV20 Uncertainty Treatment is 

Improper when Model Predictions of 

Stochastic Aleatory Uncertainty are involved 

Real Space approach 
 works; no model 

    error indicated  

    when like percentiles 

    compared 

 

ASME V&V20 Sub- 

tractive Diff. approach 
• attributes uncertainty 

  as model bias 

VV 10 Area Metric 

 works; no model  
    error indicated 

response 

value exper. and sim. 

distributions lie on 

top of each other  

{Diff} = {Sim} – {Exper}  

 

• Conditions: no measurement errors in 

the experiments; and “large” # of tests 

• Observed response variability is due to 

unit-to-unit stochastic variability of the 

tested systems 

E.g., let simulated 

stochastic variability 

of system exactly 

equal variability of 

real system tested 

many times 

PDF should have zero width for exact 
experim. / sim. variability match above 
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– ASME V&V20 2009 Standard for V&V in CFD and Heat Transfer  

• geared for validation of deterministic (non-stochastic) systems 

• no aleatory-epistemic differentiation 

• equivalent to Real Space for probabilistic uncertainty and non-

traveling epistemic uncertainty 
 

 

 

– ASME V&V10 2012 Supplement for V&V in Computational Solid 

Mechanics 

• built for validation of stochastic systems 

• segregates aleatory and epistemic uncertainties (Prob. boxes) 

• uses Ferson & Oberkampf “area” validation metric (CDF matching)  

• does not show how to incorporate important types of experimental 

epistemic uncertainty that ASME VV20 and Real Space do  

Real Space approach can be viewed as an 

extended hybrid of published ASME frameworks 

—contains and extends beyond their capabilities 
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• The Real Space validation methodology is versatile and 

practical, geared for: 
– expensive computational models (minimal # of simulations) 

– stochastic phenomena and models  

– multiple replicate experiments with random and systematic uncers. 

– few replicates (sparse data) 

– rollup of various types, sources, and representations of uncertainty 
• aleatory and epistemic 

• probabilistic, interval, and discrete variables and functions 

 

• Real Space Validation results are: 
– relatively straightforward to interpret  

– especially relevant for assessing models/quantities to be used in the 

analysis of performance and safety margins (QMU) 
 



this 

 
 

 

The Real Space validation approach will be featured in 

Joint Army/Navy/NASA/Air Force (JANNAF) document: 

 
 

“Advances in Model V&V, UQ, and Simulation Credibility for 

Propulsion and Energetics” 

 

due out in Sept. 2015. 

Closing 


