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Real-Space Uncertainty Accounting and Comparison

System for Experimental and Simulation Results @ﬁalt]dial
dtiona

—applicable in both calibration and validation
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« General problem involves Probability Boxes of experimental and sim. uncer.
* Intuitive visual indication of how accurate the model is, on several fronts:

— Means of the predicted and experimental populations

— Variance of the predicted and experimental populations

— Percentiles of the predicted and experimental populations

@~ dranular quantification of how the model is doing, as compared to validation
metrics of integrated measure of mismatch at whole-distribution level

» Percentile comparisons are particularly useful for calibration and validation
of models to be used for analysis of performance and safety margins

(e.g. QMU). 2



5 Levels of Increasing Rigor in Treatment of
Experimental and Simulation Uncertainties @ggggﬁa,
In Model Validation
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Figs from “Increasing Quality of Validation Metrics,” Sandia National Laboratories
report SAND2003-3769, Oberkampf, Trucano, & Hirsch



Consider Subtractive Difference of Deterministic
Experimental and Model Results as Fcn. of Input X @ﬁg‘t}ﬂﬁa,
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Simulated and Subtractive Differences
Experimental results at of results
various input values of x.
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For now assume:

R * No measurement

> Input, X .

xI X2 errors on inputs or
outputs

* Negligible solution
error/uncertainty in
model predictions




Change Context to
Stochastic Systems and Replicate Experiments @53,.(“&
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=Aleatory Experimental Uncertainty (Variability)

Complex engineered systems usually involve non-trivial geometric and physical
behavior variability, (“stochastic” systems).

Replicate experiments can illuminate the effects of stoch. system variability by
examining output/response variability in repeated tests at the ~same input conditions.

Input conditions often cannot be exactly repeated in replicate tests, but instead are
controlled to within small changes.

E.g, in the following we try to control the input condition to a value x_target, but in two
tests we obtain slightly different values x1 and x2; x1 =x2 = x_target

System output Determlnlstlc Model (Sim. — Exper.)
response predicted response output difference
trend
A A
Stochastic system
true response/output
N °
. Experimentally inferred trend if A2 °
. sparse data (2 replicate samples) from A2 Al
Experimental .
Stochastic stochastic system used—data should 0 ' ' >
Perturbations not be used for trend information x2 xi Input, x
from mean / 2 . Input,;x because the small x-differences here _3nd more samples at random new x
response trend X affect results on order not >> values won’t help provide a reliable

stochastic response variations regression trend.



Stochastic Systems and Replicate Experiments

Sandia
— Aleatory Experimental Uncertainty @ Lobuatores

Nonetheless, the model results and experimental data can be used to characterize mis-
prediction of the deterministic model vs. experimental stochastic system response.

Deterministic Model
predicted response (Sim. — Exper.)
trend output diff.

System output
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Stochastic system 4 Samples of prediction error
response/output of deterministic model
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Distribution of Differences:
samples of prediction error can
be said to come from a parent
population (PDF) of model
prediction bias at the ~target
input conditions
X_target=x1=x2

in the validation assessment.
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Stochastic Systems and Replicate Experiments
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Thus, one can consider the samples of prediction bias, Al and A2, to be from the ~same
PDF of prediction bias at input values x in the vicinity of x_target = x1 = x2

Can go further and pick a convenient x value to consolidate the prediction bias
information, realizations Al and A2, for any further validation or calibration analysis

E.g., choose input level x1 and consolidate prediction-bias information there in order
to carry out any furthey'val. or cal. analysis

“Difference Space”
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Advantage of Real Space Consolidation of Sendi
Replicate Results to Single Input Value @P‘?&L‘i‘é?éﬁes

Calibration
- allows calibration of model at one set of input conditions
instead of many perturbed sets, while addressing the same
full set of bias information

« calibrations traditionally formulated in terms of cal. params.
iterated so real-space response values are matched, not cal.
parameter deltas calibrated to match output response deltas

Validation
« allows propagation of model input uncertainties and val.
assessment for one set of experimentgl ARl CONdItioNS,  peterministic Model
instead of multiple perturbations response predicted response

y trend

Stochastic system
response/output

“Real Space”
4 bias presentation

»

X2 X1 Input, x




Consolidated Bias Presentation originally arrived Soncia
at from different perspective: Real Space Validat’n. @{“:g:’,“,gta;ﬂes

The development to this point reconciles the Difference Approach
with prior results arrived at from a different perspective—the Real
Space model validation approach.

RS model validation methodology arrives at completely consistent
results, but from a different direction and w/ a different interpretation

» use the model to “normalize” or consolidate replicate data to
the same reference input condition

Deterministic Model
predicted response
trend

Stochastic system
response/output

: System output
« The consolidated data response

(green dots) are viewed as 1
sample realizations of response
variability in the replicate tests

of the stochastic system

_ _ _ _ “Real Space”
Duality Relationship: consolidated samples . bi:sapr::::tation

of prediction bias, Al and A2 at x1, are ; >
consistent with the RS view that the green A
dots are samples of the stochastic response at x1




ASME VV10 Supplement’s Starting Point o
for Response Samples of Stochastic Systems @Naﬂonal
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VV10 starts from a condition of consolidated response samples when
stochastic systems and replicate tests are involved

Doesn’t show how to deal with experimental inputs that cannot be exactly
repeated in replicate tests —the reality in many/most val. & cal. experiments.

Having shown how to transform to the starting point for VV10, we go on to
compare from this starting point

System output Model prediction of
VV10 Area Metric response stochastic response

A

* CDF of replicate experimental results
Is formed, as is a CDF of predicted

stochastic res(M
« area between simulated and >

_ _ X0 Input,rx
experimental CDFs is a measure of
mismatch between sim. and exper. stochastic response

Stochastic system
response/output




Handling Sparse Experimental Data

@ Sandia
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VV10 does not present an approach for dealing with the large epistemic
uncertainty in CDFs built from few samples.

Real Space method does, see ASME V&V 2015 Symposium presentation
“Approximate Probability Boxes and Other Shortcuts...,” V. Romero.

* Sparse-Data CDFs are not
“anchored” in any way

* Adding more data not only adds
more stair-steps to the CDF, but also
shifts the CDF and alters it’s variance

/ \

* Highly uncertaht_—/(:“

val. metric value
from sparse data

is not accounted for
in VV10 approach.

System output
response

4

Model prediction of
stochastic response

>
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Non-Unigueness of Area Metric

of CDF Mismatch
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response

value  EXp.vs. Sim. aleatory
Consider two uncertainties, 2 cases
cases where relative sim. experim.

uncertainties in / Y/
experiment and =) Az
simulation results ) \

are very different

* non-uniqueness of Area Metric can
hide prediction risk and undermine
metric use for extrapolation (next
slide)

Area Metric

e same area value both
cases; risk-indifferent

area = A% in both cases and for
oo other‘CDFs that could be
: compared

A

Real Space method

* like-percentiles of CDFs are
compared

« Unigque and more granular
guantification of how CDFs
differ

 reveals different prediction
risks in these two cases




Area Metric Non-Uniqueness can |
also obscure the Trend of Model Error @ﬁgﬂﬂﬁm
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Real Space method Area Metric
response o reveals differing « same areas for diff.
valuey sim. & exper. trends model trend errors
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Handling Epistemic Uncertainty @Sandia

Validation and Calibration often involve significant aleatory and epistemic

uncertainties in the experiments and simulations. . simulations
AN
: . : L S
« = epistemically uncertain CDFs of the aleatory 4e” 5;2,;%?: o

variability in the experiments and predictions experiments

* VV10 does not present an approach for dealing with epistemically uncertain

experimental and/or predicted CDFs, but “Probability Box” extensions exist
in the literature for doing so (e.g. Oberkampf, Ferson, Roy)

» These extensions do not appropriately handle “traveling” epistemic
uncertainties that are an intrinsic part of the model being validated, e.g.
uncertainty parameterized into the model to account for model-form error

Traveling — model quantities and uncertainties proposed to “travel” consist-
ently from the validation space to intended application space.
These define the (traveling) ‘model’ in model validation.

Non-Traveling — quantities and uncertainties that are exclusive to the
validation space. These are outside the control volume or
boundary that contains and defines the traveling model.



Handling Epistemic Uncertainty @Sandia
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ASME VV20 Standard for V&V in Computational Fluid Dynamics and
Heat Transfer

e treats non-traveling epistemic uncertainties appropriately

» does not appropriately treat traveling epistemic uncertainties

 VV20 and Real Space approaches for handling epistemic
uncertainties are procedurally different

« But the results can be shown to be equivalent for the non-traveling
subset of epistemic uncertainties

 Different but Equivalent:

« analogous to the duality relationship presented earlier between
variance of prediction bias vs. experimental variance



VV20 Uncertainty Treatment improperly treats
Model Predictions of Stochastic Response @ﬁgﬁﬂﬁm
(Traveling Aleatory Uncertainty in the Model)
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- VV20’s Subtractive Difference operation Er P <
does not appropriately extend to model
predictions of stochastic response
—see example on next slide

* VV20 may have to move to Probability Boxes
or other uncertainty representation and accounting
approach to appropriately handle validation involving
stochastic systems and models.

* Furthermore, neither VV20 nor VV10 currently explicitly account
for randomly varying measurement errors in multiple replicate
experiments. Real Space does.

— Especially important when only a few replicates are involved.



VV20 Uncertainty Treatment is
Improper when Model Predictions of @%,._dia
Stochastic Aleatory Uncertainty are involved laborai
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E.g.. let simulated e, gxpe_rband Slnlf_\- « Conditions: no measurement errors in

stochastic variability o ot the experiments; and “large™ # of tests
top of each other « Observed response variability is due to

of system exactly _ _ ) o
equal variability of unit-to-unit stochastic variability of the

real system tested mEp tested systems
many times
Real Space approach ASME V&V20 Sub- VV 10 Area Metric
v _ . .
\évrc;(r)lis}hgiocanlﬂtggel Atract_lve Diff. apprpach v works: no model
| | * attributes u_ncertalnty error indicated
when like percentiles as model bias
compared

{Diff} ={Sim} — {Exper}

- PDF should have zero width for exact
experim. / sim. variability match above




Real Space approach can be viewed as an
extended hybrid of published ASME frameworks @Sa,,dia
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—contains and extends beyond their capabilities

— ASME V&V20 2009 Standard for V&V in CFD and Heat Transfer
 geared for validation of deterministic (non-stochastic) systems
* no aleatory-epistemic differentiation

 equivalent to Real Space for probabilistic uncertainty and non-
traveling epistemic uncertainty

— ASME V&V10 2012 Supplement for V&V in Computational Solid
Mechanics

« puilt for validation of stochastic systems
« segregates aleatory and epistemic uncertainties (Prob. boxes)
* uses Ferson & Oberkampf “area” validation metric (CDF matching)

 does not show how to incorporate important types of experimental

epistemic uncertainty that ASME VV20 and Real Space do 18
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* The Real Space validation methodology is versatile and

practical, geared for:
— expensive computational models (minimal # of simulations)
— stochastic phenomena and models
— multiple replicate experiments with random and systematic uncers.
— few replicates (sparse data)

— rollup of various types, sources, and representations of uncertainty
+ aleatory and epistemic
 probabilistic, interval, and discrete variables and functions

* Real Space Validation results are:
— relatively straightforward to interpret
— especially relevant for assessing models/quantities to be used in the
analysis of performance and safety margins (QMU)



Closing () i
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The Real Space validation approach will be featured in
Joint Army/Navy/NASA/Air Force (JANNAF) document:

“Advances in Model V&V, UQ, and Simulation Credibility for
Propulsion and Energetics”

due out in Sept. 2015.



