
IMEX Lagrangian Methods

2015 Coupled Problems

May 20th, 2015

Eric C. Cyr
Center for Computing Research

Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a 
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National 

Nuclear Security Administration under contract DE-AC04-94AL85000.

Collaborators:
John N. Shadid, T. Wildey, D. Hensinger, A. Robinson, 

W.J. Rider, Sandia National Laboratories
G. Scovazzi, Duke University

SAND2015-3745C



Governing Equations

We have a Kinematics equation defining flow of the 

domain, and time evolution PDE of fields on that 

same domain



Time scales for the model

This set of equations can be governed by a number 

of timescales. Fast and slow are relative terms:
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Numerical Time Integration and Time Scales

What time scales are “stiff”? 

• Anything “faster than the current time step” 

must be handled implicitly for stability
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An Example Scalar Case
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Implicit Explicit

Assuming that we are following the convected time 

scale (i.e.                           )



Implicit-Explicit Runge Kutta Methods

Define an ODE where “F” is slow and “G” is fast:

• Implicit-Explicit (IMEX) methods evolve “F” 

explicitly and “G” implicitly

• There are multi-step (BDF) and multi-stage (RK) 

versions of these methods

• Our focus is on IMEX-Runge Kutta (IMEX-RK) 

methods



IMEX-RK Methods

We start with on ODE:

• Two Butcher tableau’s are used:

• An s-stage IMEX-RK method satisfies (‘c’ defines time 
node)

is for implicit terms, is for explicit terms



IMEX-RK Methods

(Note: For i=1, Ũ=Un)

Written as an algorithm, the previous expressions 
result in:



An Eulerian IMEX Example: Stokes 2nd

Problem

Convergence in time for 

Stokes 2nd Problem

• Low-mach CFD

• Run at fixed CFL

• Explicit advection

• Implicit diffusion and 

sound speed

Take Home: IMEX methods in Eulerian frame achieve expected 
order of accuracy



2D Tearing Mode: Low Mach (M~10-4) 
compressible MHD

Approx. Computational Time Scales:
• Divergence Constraint (            ):1/      = 0
• Fast Magnetosonic Wave (cf):     10-4 to 10-2

• Alfven Wave (ca):                         10-4 to  10-2

• Slow Magnetosonic Wave (cs):    10-2 to 10-1

• Sound Wave (c):  10-2  

• Advection(cv): to 101

• Diffusion: 10-4 to 10-2

• Macroscopic Tearing Mode:      102

IMEX SSP3 (3,2,2) 2nd order 
Max CFLs:        

CFLdiv = 
CFLcf ~ 104 to 103

CFLcA ~ 104 to 103

CFLcs ~ 102 to 101

CFLc ~ 102 to 101

CFLcv ~ 0.33

Wave speeds

Take Home: IMEX can handle multiple 
timescales



Lagrangian Formulation

Implicit

F
a

st
S

lo
w

Explicit

We assume that kinematics will be treated explicitly 

(there may be a faster mode to resolve explicitly):



Lagrangian Formulation: Semi-Discrete Form

Replacing material time derivative with total time derivative 

in Lagrangian frame and discretizing in space gives:

Writing this in an ODE form appropriate for applying IMEX-

RK gives:



IMEX Formulation

Implicit
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IMEX Formulation: Algorithm

Coordinates are evolved explicitly in time, remaining terms 

are evolved implicitly. This is a partitioned IMEX scheme. 

Only one mass inversion per stage is required.



Name Order Implicit Tab. Explicit Tab.

First Order 1st

SSP2 2nd

ARS 2-3-3 3rd

IMEX-RK Tableaus



Example transient convection-diffusion-reaction 
multiphysics problems with exact solutions.

Traveling wave: Translating constant velocity of

Convection-diffusion-reaction equation and 
solution:

Example: Thermal Wave Problem



Thermal Wave Results

Using a 1D finite difference on a domain of [-5,5] for 0.5s:

• Model parameters: U=1.0, λ=0.1, δ=0.2

• Run with fixed CFL (Δt/Δx=1)…best convergence rate is O(Δt2)

• Coordinate value is “exact” (constant advection)



Example convection-diffusion-reaction equation with a  

compression velocity:

Equation and solution:

Nonlinear Source term:

Example: Compression



Compression Results

Using a 1D finite difference on a domain of [-5,5] for 0.5s:

• Model parameters: U=1.0, λ=10-4, δ=0.1, τ=1.0

• Run with fixed mesh (Δx=10.0/1021)
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Summary

Discussed IMEX methods in Eulerian frame

• Provides a well structured mechanism for separation of time 

scales into slow (explicit) and fast (implicit)

• IMEX Runge-Kutta methods have 2 Butcher tableaus

• Showed convergence of for CFD example and multiple timescale 

capabilities for MHD tearing mode problem

Developed IMEX Lagrangian formulation

• Required handling of mass matrix and using a partitioned IMEX-

RK scheme for explicit kinematics

• Showed convergence results of up to 3rd order for example finite 

difference problems


