

IMEX Lagrangian Methods

2015 Coupled Problems

May 20th, 2015

Eric C. Cyr
Center for Computing Research
Sandia National Laboratories

Collaborators:

John N. Shadid, T. Wildey, D. Hensinger, A. Robinson,
W.J. Rider, Sandia National Laboratories
G. Scovazzi, Duke University

Governing Equations

We have a Kinematics equation defining flow of the domain, and time evolution PDE of fields on that same domain

$$\dot{x} - \vec{v} = 0$$

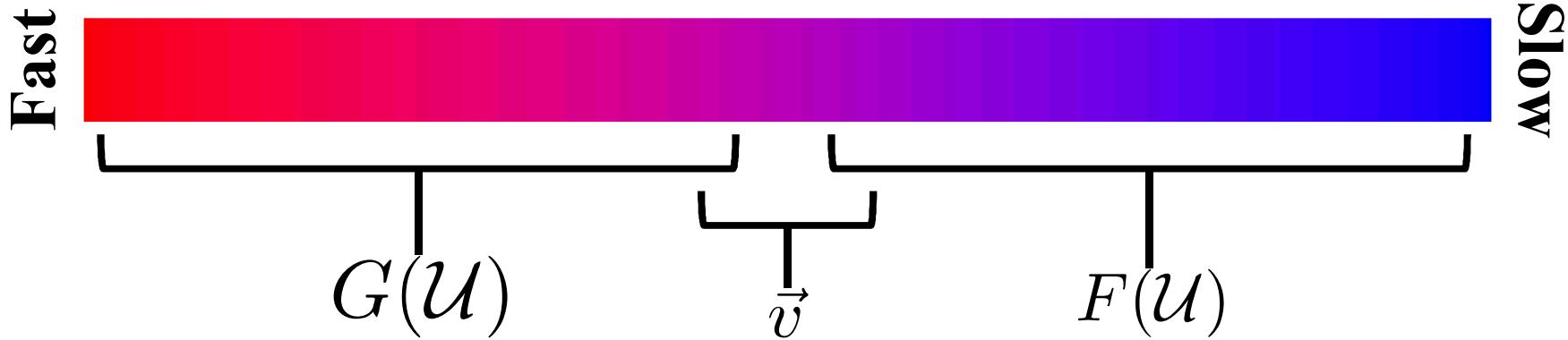
$$\left[\frac{\partial}{\partial t} + \vec{v} \cdot \nabla \right] \mathcal{U} + F(\mathcal{U}) + G(\mathcal{U}) = 0$$

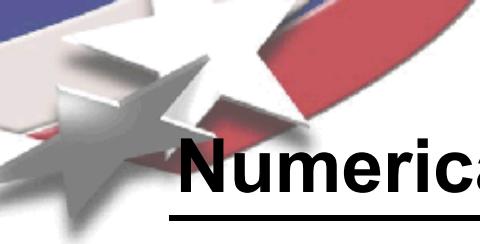
Time scales for the model

This set of equations can be governed by a number of timescales. *Fast* and *slow* are relative terms:

$$\dot{x} - \vec{v} = 0$$

$$\left[\frac{\partial}{\partial t} + \vec{v} \cdot \nabla \right] \mathcal{U} + F(\mathcal{U}) + G(\mathcal{U}) = 0$$

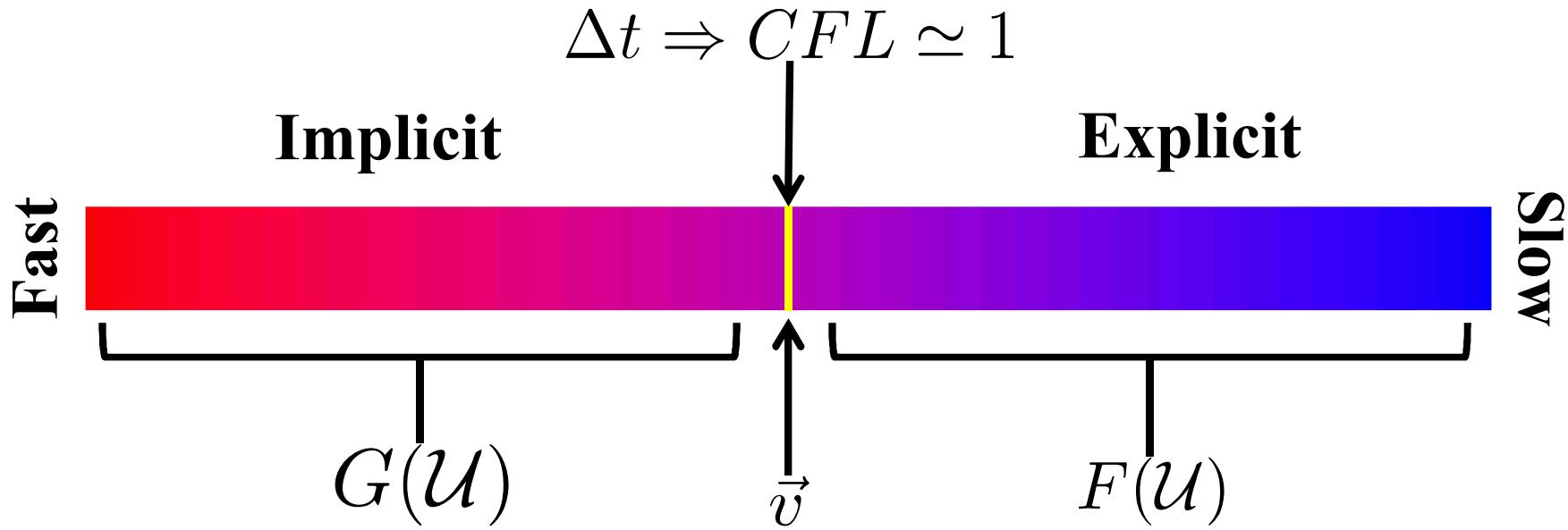




Numerical Time Integration and Time Scales

What time scales are “stiff”?

- Anything “faster than the current time step” must be handled implicitly for stability



An Example Scalar Case

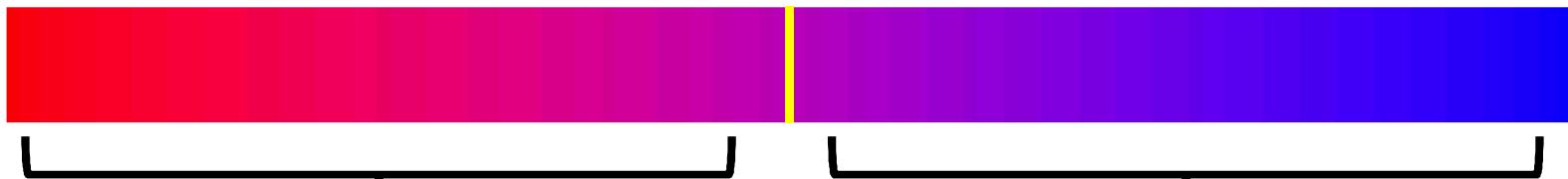
Assuming that we are following the convected time scale (i.e. $\|\vec{v}\|\Delta t/\Delta x \simeq 1$)

$$\dot{x} - \vec{v} = 0$$

$$\left[\frac{\partial}{\partial t} + \vec{v} \cdot \nabla \right] u + u \nabla \cdot \vec{v} - \nu \nabla \cdot \nabla u = 0$$

Implicit

Fast



Explicit

Slow

$$-\nu \nabla \cdot \nabla u$$

$$\vec{v} \cdot \nabla u + u \nabla \cdot \vec{v}$$

Implicit-Explicit Runge Kutta Methods

Define an ODE where “F” is slow and “G” is fast:

$$\dot{\mathcal{U}} + F(\mathcal{U}) + G(\mathcal{U}) = 0$$

- Implicit-Explicit (IMEX) methods evolve “F” explicitly and “G” implicitly
- There are multi-step (BDF) and multi-stage (RK) versions of these methods
- Our focus is on IMEX-Runge Kutta (IMEX-RK) methods

IMEX-RK Methods

We start with an ODE:

$$\dot{\mathcal{U}} + F(\mathcal{U}) + G(\mathcal{U}) = 0$$

- Two Butcher tableau's are used:

$$\begin{array}{c|c} c & A \\ \hline & b^t \end{array} \text{ is for implicit terms, } \begin{array}{c|c} \hat{c} & \hat{A} \\ \hline & \hat{b}^t \end{array} \text{ is for explicit terms}$$

- An s -stage IMEX-RK method satisfies ('c' defines time node)

$$\mathcal{U}^{(i)} = \mathcal{U}^n - \Delta t \sum_{j=1}^{i-1} \hat{A}_{ij} F(\mathcal{U}^{(j)}) - \Delta t \sum_{j=1}^i A_{ij} G(\mathcal{U}^{(j)}) \quad \text{for } i = 1 \dots s,$$

$$\mathcal{U}^{n+1} = \mathcal{U}^n - \Delta t \sum_{i=1}^s \hat{b}_i F(\mathcal{U}^{(i)}) - \Delta t \sum_{i=1}^s b_i G(\mathcal{U}^{(i)})$$

IMEX-RK Methods

Written as an algorithm, the previous expressions result in:

for $i = 1 \dots s$ **do**

$$\tilde{\mathcal{U}} \leftarrow \mathcal{U}^n - \Delta t \sum_{j=1}^{i-1} \hat{A}_{ij} f_j - \Delta t \sum_{j=1}^{i-1} A_{ij} g_i$$

$$\text{Solve } \mathcal{U}^{(i)} - \tilde{\mathcal{U}} + \Delta t A_{ii} G(\mathcal{U}^{(i)}) = 0 \text{ for } \mathcal{U}^{(i)}$$

$$f_i \leftarrow F(\mathcal{U}^{(i)})$$

$$g_i \leftarrow (\tilde{\mathcal{U}} - \mathcal{U}^{(i)}) \frac{1}{A_{ii} \Delta t}$$

end for

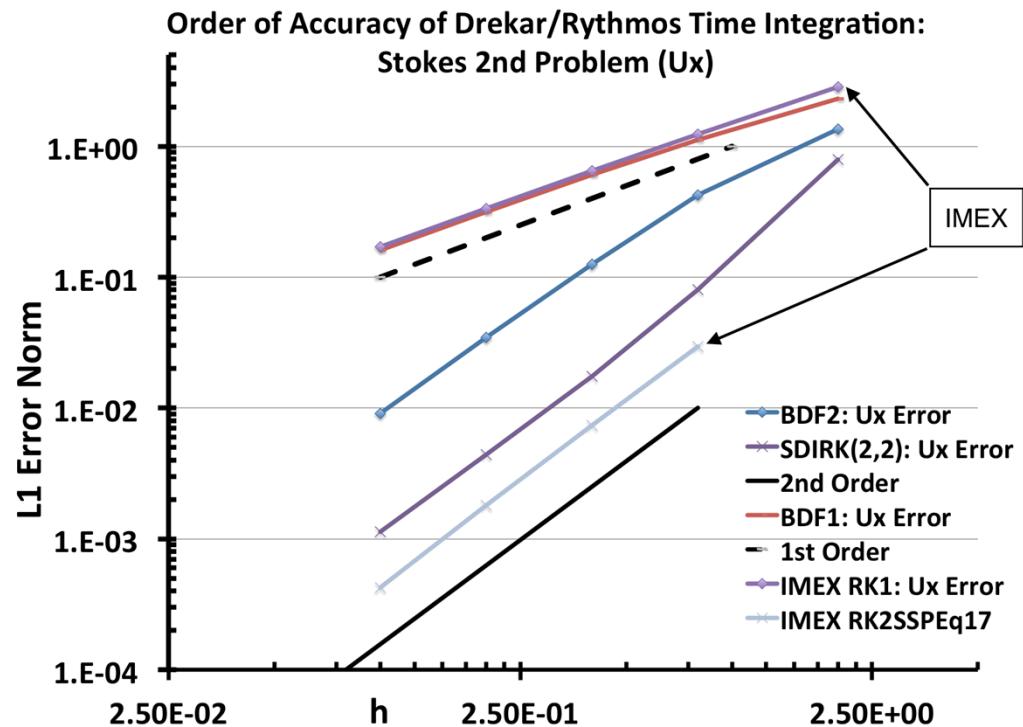
$$\mathcal{U}^{n+1} \leftarrow \mathcal{U}^n - \Delta t \sum_{i=1}^s \hat{b}_i f_i - \Delta t \sum_{i=1}^s b_i g_i$$

(Note: For $i=1$, $\tilde{\mathcal{U}}=\mathcal{U}^n$)

An Eulerian IMEX Example: Stokes 2nd Problem

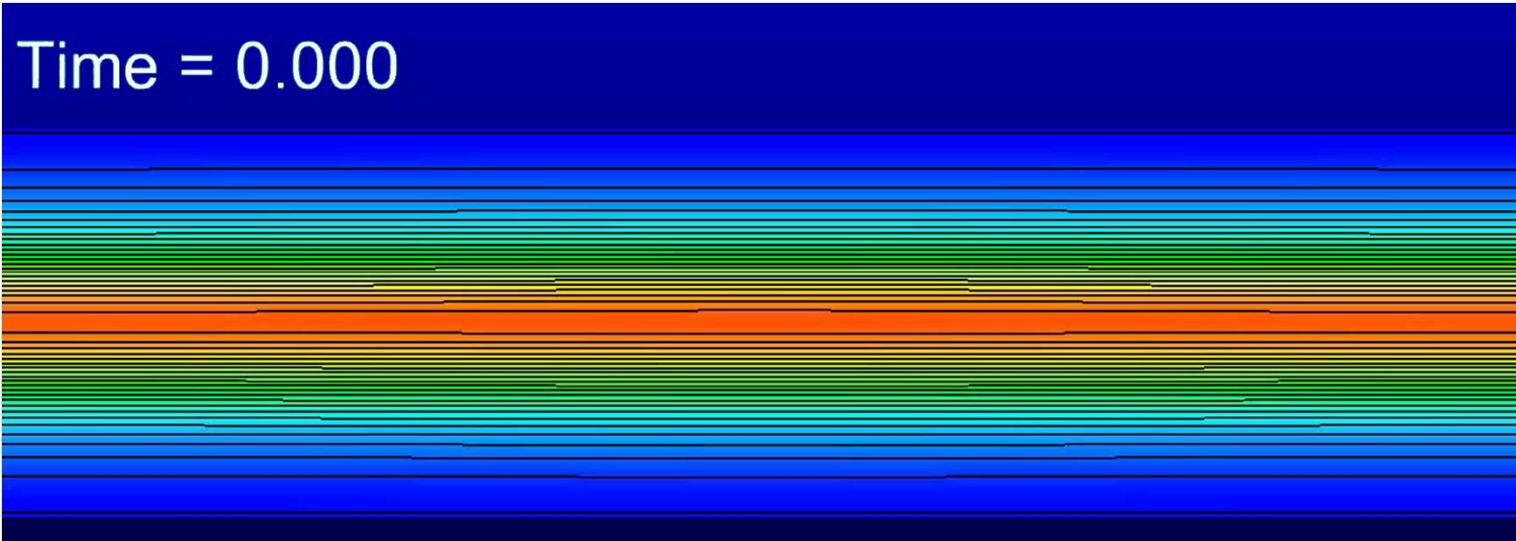
Convergence in time for Stokes 2nd Problem

- Low-mach CFD
- Run at fixed CFL
- Explicit advection
- Implicit diffusion and sound speed



Take Home: IMEX methods in Eulerian frame achieve expected order of accuracy

2D Tearing Mode: Low Mach ($M \sim 10^{-4}$) compressible MHD



Approx. Computational Time Scales:

- Divergence Constraint ($\nabla \cdot \mathbf{B} = 0$): $1/\infty = 0$
- Fast Magnetosonic Wave (c_f): 10^{-4} to 10^{-2}
- Alfvén Wave (c_a): 10^{-4} to 10^{-2}
- Slow Magnetosonic Wave (c_s): 10^{-2} to 10^{-1}
- Sound Wave (c): 10^{-2}

Wave speeds

$$\|\mathbf{u}\|, \|\mathbf{u}\| \pm c_s, \|\mathbf{u}\| \pm c_a, \|\mathbf{u}\| \pm c_f, \pm c_h$$

Take Home: IMEX can handle multiple timescales

- Advection(c_v): ∞ to 10^1
- Diffusion: 10^{-4} to 10^{-2}
- Macroscopic Tearing Mode: 10^2

IMEX SSP3 (3,2,2) 2nd order
Max CFLs:

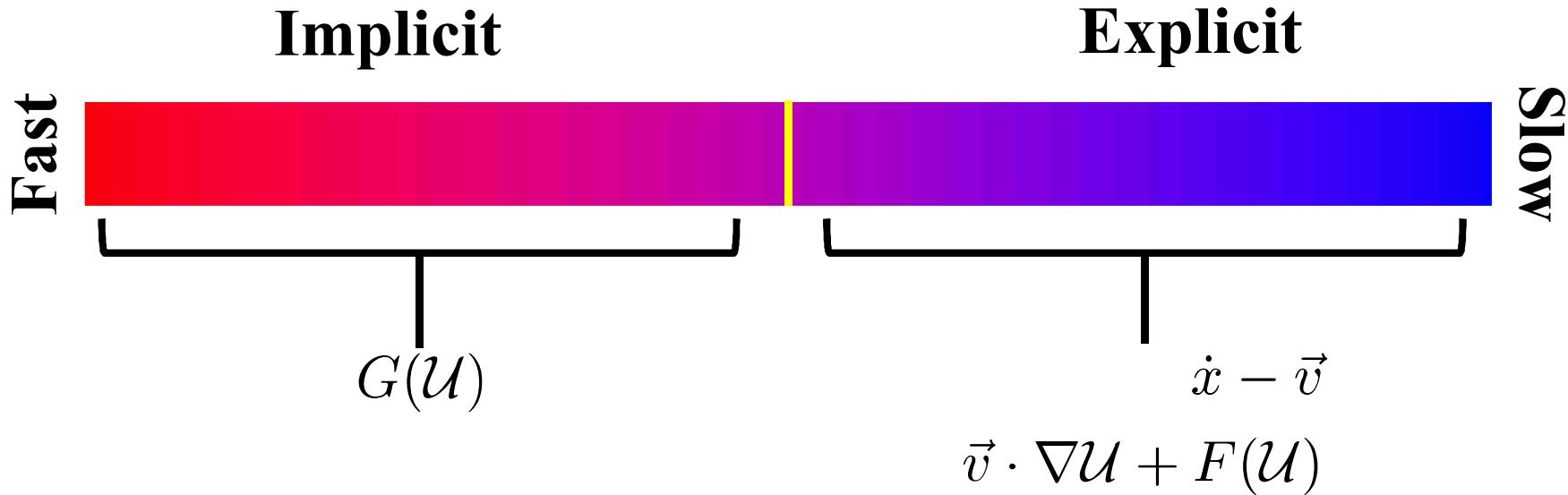
$$\begin{aligned} \text{CFL}_{\text{div}} &= \infty \\ \text{CFL}_{\text{cf}} &\sim 10^4 \text{ to } 10^3 \\ \text{CFL}_{\text{cA}} &\sim 10^4 \text{ to } 10^3 \\ \text{CFL}_{\text{cs}} &\sim 10^2 \text{ to } 10^1 \\ \text{CFL}_{\text{c}} &\sim 10^2 \text{ to } 10^1 \\ \text{CFL}_{\text{cv}} &\sim 0.33 \end{aligned}$$

Lagrangian Formulation

We assume that kinematics will be treated explicitly
(there may be a faster mode to resolve explicitly):

$$\dot{x} - \vec{v} = 0$$

$$\left[\frac{\partial}{\partial t} + \vec{v} \cdot \nabla \right] \mathcal{U} + F(\mathcal{U}) + G(\mathcal{U}) = 0$$



Lagrangian Formulation: Semi-Discrete Form

Replacing material time derivative with total time derivative in Lagrangian frame and discretizing in space gives:

$$\dot{x} - \vec{v}(x, \mathcal{U}) = 0$$

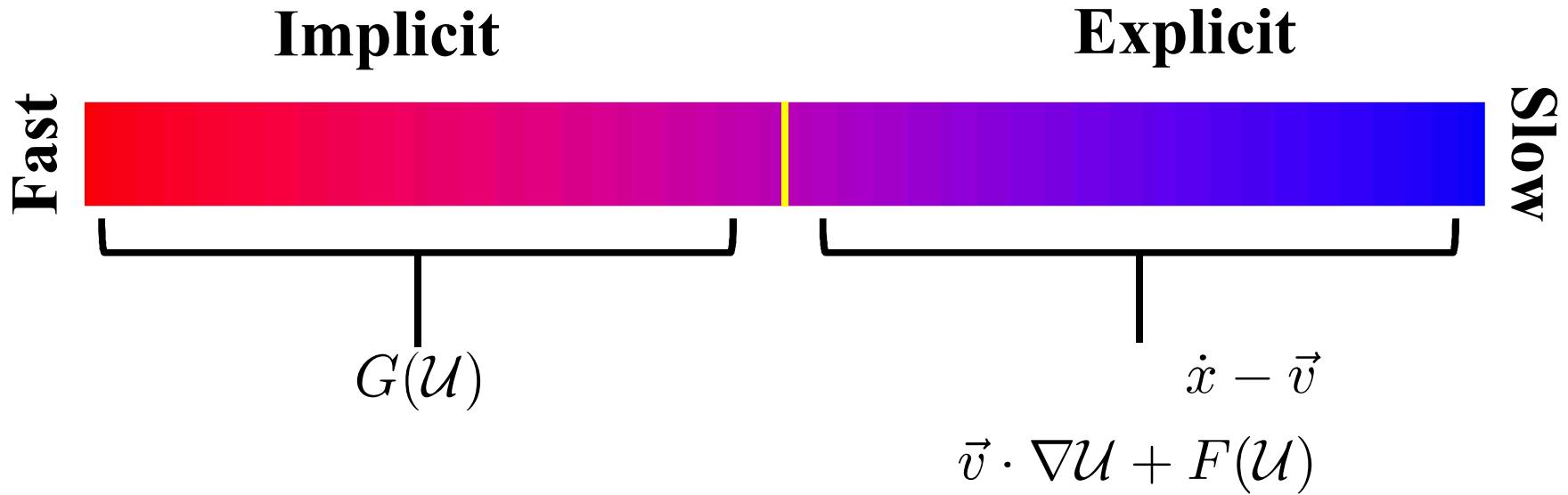
$$M(x) \frac{d\mathcal{U}}{dt} + F_h(x, \mathcal{U}) + G_h(x, \mathcal{U}) = 0$$

Writing this in an ODE form appropriate for applying IMEX-RK gives:

$$\dot{x} - \vec{v}(x, \mathcal{U}) = 0$$

$$\frac{d\mathcal{U}}{dt} + M(x)^{-1} F_h(x, \mathcal{U}) + M(x)^{-1} G_h(x, \mathcal{U}) = 0$$

IMEX Formulation



$$x^{(i)} = x^n - \Delta t \sum_{j=1}^{i-1} \hat{A}_{ij} \vec{v}(x^{(j)}, \mathcal{U}^{(j)}) \quad \text{for } i = 1 \dots s,$$

$$\mathcal{U}^{(i)} = \mathcal{U}^n - \Delta t \sum_{j=1}^{i-1} \hat{A}_{ij} M^{-1}(x^{(j)}) F_h(x^{(j)}, \mathcal{U}^{(j)}) - \Delta t \sum_{j=1}^i A_{ij} M^{-1}(x^{(j)}) G_h(x^{(j)}, \mathcal{U}^{(j)}) \quad \text{for } i = 1 \dots s,$$

$$x^{n+1} = x^n - \Delta t \sum_{i=1}^s \hat{b}_i \vec{v}(x^{(i)}, \mathcal{U}^{(i)})$$

$$\mathcal{U}^{n+1} = \mathcal{U}^n - \Delta t \sum_{i=1}^s \hat{b}_i M^{-1}(x^{(i)}) F_h(x^{(i)}, \mathcal{U}^{(i)}) - \Delta t \sum_{i=1}^s b_i M^{-1}(x^{(i)}) G_h(x^{(i)}, \mathcal{U}^{(i)})$$

IMEX Formulation: Algorithm

Coordinates are evolved explicitly in time, remaining terms are evolved implicitly. This is a partitioned IMEX scheme. Only one mass inversion per stage is required.

for $i = 1 \dots s$ **do**

$$x^{(i)} \leftarrow x^n - \Delta t \sum_{j=1}^{i-1} \hat{A}_{ij} v_j$$

$$\tilde{\mathcal{U}} \leftarrow \mathcal{U}^n - \Delta t \sum_{j=1}^{i-1} \hat{A}_{ij} f_j - \Delta t \sum_{j=1}^{i-1} A_{ij} g_i$$

$$\text{Solve } M(x^{(i)}) \left(\mathcal{U}^{(i)} - \tilde{\mathcal{U}} \right) + \Delta t A_{ii}(x^{(i)}) G_h(x^{(i)}, \mathcal{U}^{(i)}) = 0 \text{ for } \mathcal{U}^{(i)}$$

$$v_i \leftarrow \vec{v}(x^{(i)}, \mathcal{U}^{(i)})$$

$$f_i \leftarrow M^{-1}(x^{(i)}) F_h(x^{(i)}, \mathcal{U}^{(i)})$$

$$g_i \leftarrow (\tilde{\mathcal{U}} - \mathcal{U}^{(i)}) \frac{1}{A_{ii} \Delta t}$$

end for

$$x^{n+1} \leftarrow x^n - \Delta t \sum_{i=1}^s \hat{b}_i v_i$$

$$\mathcal{U}^{n+1} \leftarrow \mathcal{U}^n - \Delta t \sum_{i=1}^s \hat{b}_i f_i - \Delta t \sum_{i=1}^s b_i g_i$$

IMEX-RK Tableaus

<i>Name</i>	<i>Order</i>	<i>Implicit Tab.</i>	<i>Explicit Tab.</i>
First Order	1 st	$\begin{array}{c cc} 0 & 0 & 0 \\ \hline 1 & 0 & 1 \\ \hline 0 & 1 \end{array}$	$\begin{array}{c cc} 0 & 0 & 0 \\ \hline 1 & 1 & 0 \\ \hline 1 & 0 \end{array}$
SSP2	2 nd	$\begin{array}{c cc} \gamma & \gamma & 0 \\ \hline 1-\gamma & 1-2\gamma & \gamma \\ \hline 1/2 & 1/2 & \end{array}$ $\gamma = 1 - 1/\sqrt{2}$	$\begin{array}{c cc} 0 & 0 & 0 \\ \hline 1 & 1 & 0 \\ \hline 1/2 & 1/2 & \end{array}$
ARS 2-3-3	3 rd	$\begin{array}{c ccc} 0 & 0 & 0 & 0 \\ \hline \gamma & 0 & \gamma & 0 \\ \hline 1-\gamma & 0 & 1-2\gamma & \gamma \\ \hline 0 & 1/2 & 1/2 & \end{array}$ $\gamma = (3 + \sqrt{3})/6$	$\begin{array}{c cccc} 0 & 0 & 0 & 0 \\ \hline \gamma & \gamma & 0 & 0 \\ \hline 1-\gamma & \gamma-1 & 2-2\gamma & 0 \\ \hline 0 & 1/2 & 1/2 & 1/2 \end{array}$ $\gamma = (3 + \sqrt{3})/6$

Example: Thermal Wave Problem

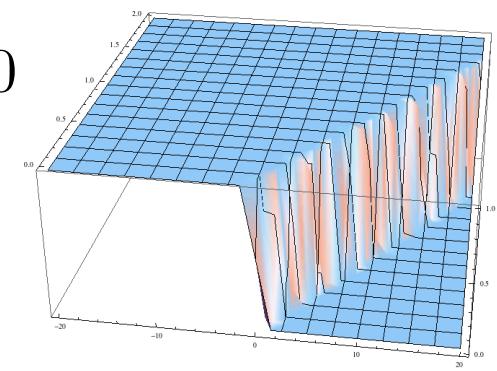
Example transient convection-diffusion-reaction multiphysics problems with exact solutions.

Traveling wave: Translating constant velocity of $\frac{U}{\delta}$

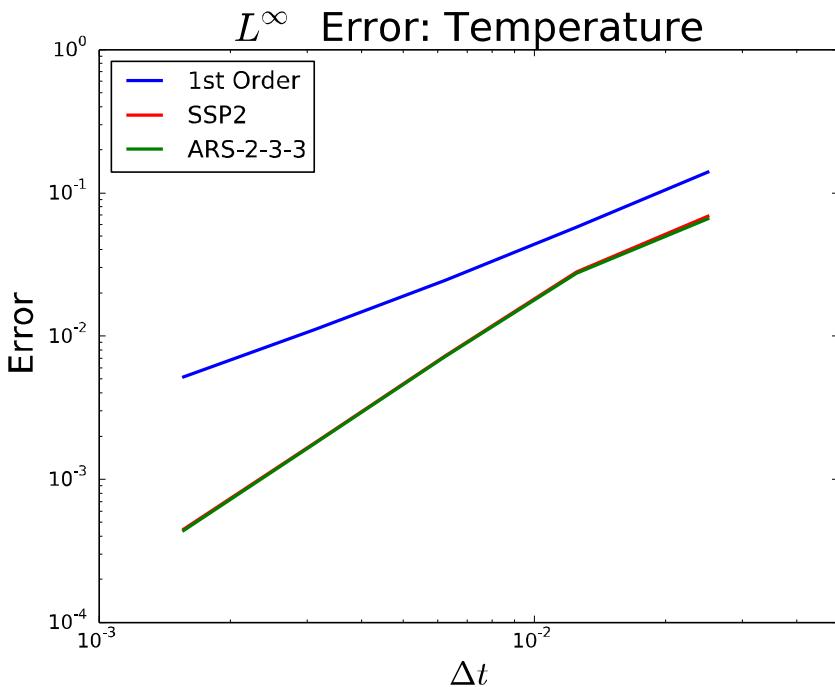
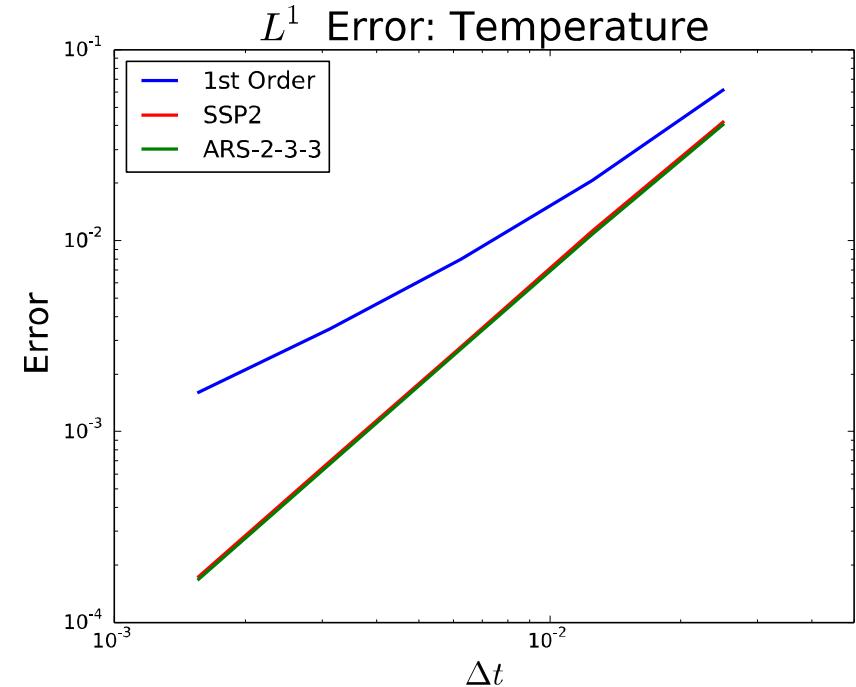
Convection-diffusion-reaction equation and solution:

$$\frac{\partial T}{\partial t} + \frac{\partial}{\partial x} \left(\frac{U}{\delta} T - \lambda \frac{\partial T}{\partial x} \right) - \frac{8\lambda}{\delta^2} T^2 (1 - T) = 0$$

$$T(x, t) = \frac{1}{2} \left(1.0 - \tanh \left[\frac{x - (2\lambda + U)t/\delta}{\delta} \right] \right)$$



Thermal Wave Results



Using a 1D finite difference on a domain of $[-5,5]$ for 0.5s:

- Model parameters: $U=1.0$, $\lambda=0.1$, $\delta=0.2$
- Run with fixed CFL ($\Delta t/\Delta x=1$)...best convergence rate is $O(\Delta t^2)$
- Coordinate value is “exact” (constant advection)

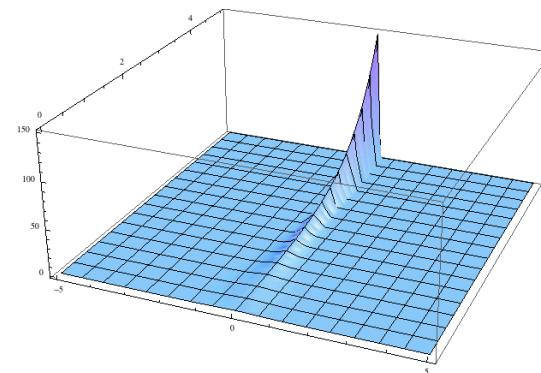
Example: Compression

Example convection-diffusion-reaction equation with a compression velocity: $u = -U \tanh \left[\frac{x}{\delta} \right]$

Equation and solution:

$$\frac{\partial e}{\partial t} + \frac{\partial}{\partial x} \left(ue - \lambda \frac{\partial e}{\partial x} \right) + S_e = 0$$

$$e = \left(1.0 + \exp(t/\tau) \operatorname{sech} \left[\frac{(1.0 + t^2)x}{\delta} \right] \right)$$



Nonlinear Source term:

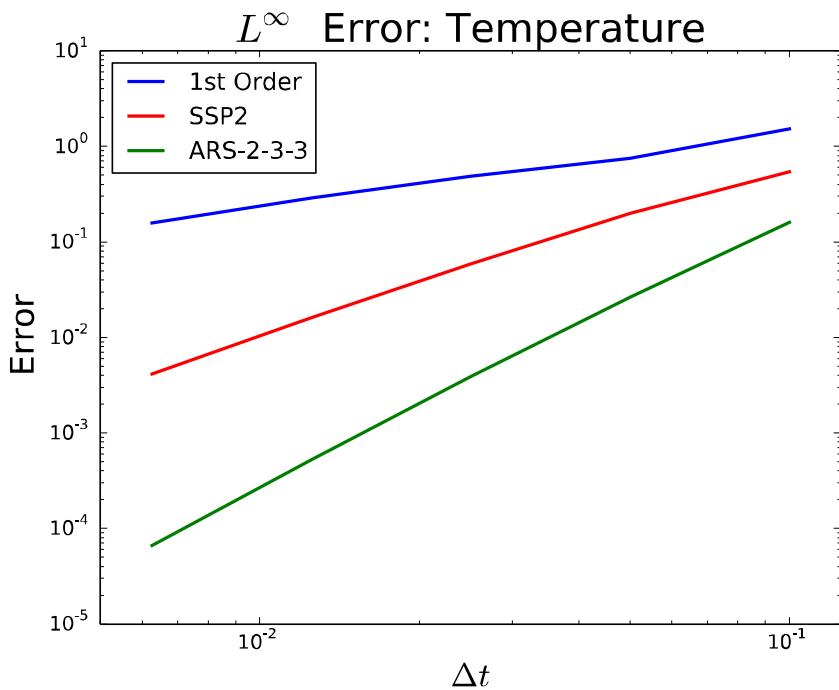
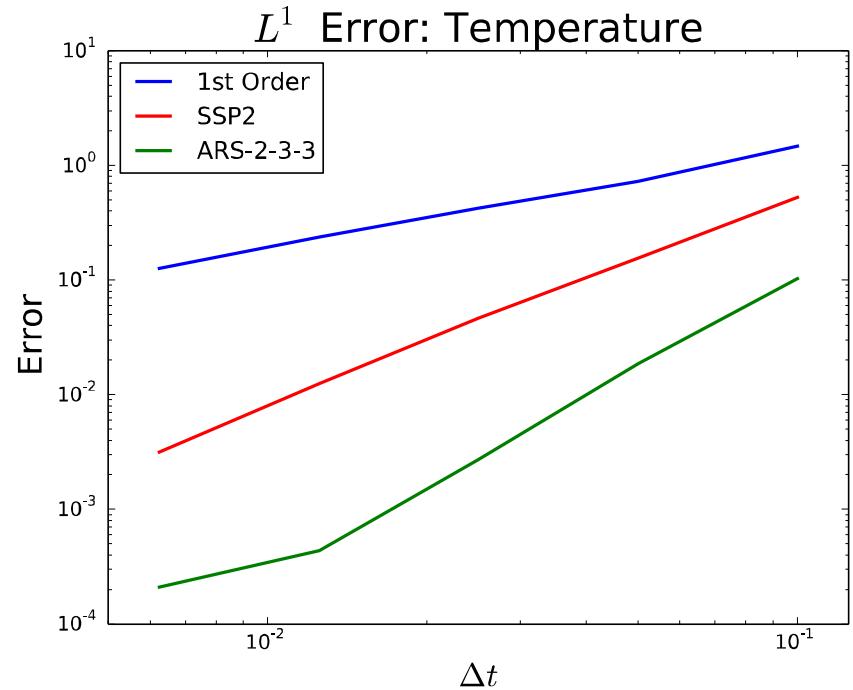
$$f_1 = \delta \tau U (1.0 - (u/U)^2)$$

$$f_2 = -(1.0 + t^2)^2 \lambda \tau + \delta^2 - f_1$$

$$f_3 = \tau \delta (2 t x + (1.0 + t^2) u) \tanh \left[\frac{((1.0 + t^2)x)}{\delta} \right]$$

$$S_e = \frac{[f_1 + (1.0 - e) * (f_2 + 2 \lambda \tau (1.0 + t^2)^2 [\exp(-t/\tau)]^2 (1.0 - e)^2 - f_3)]}{\delta^2 \tau}$$

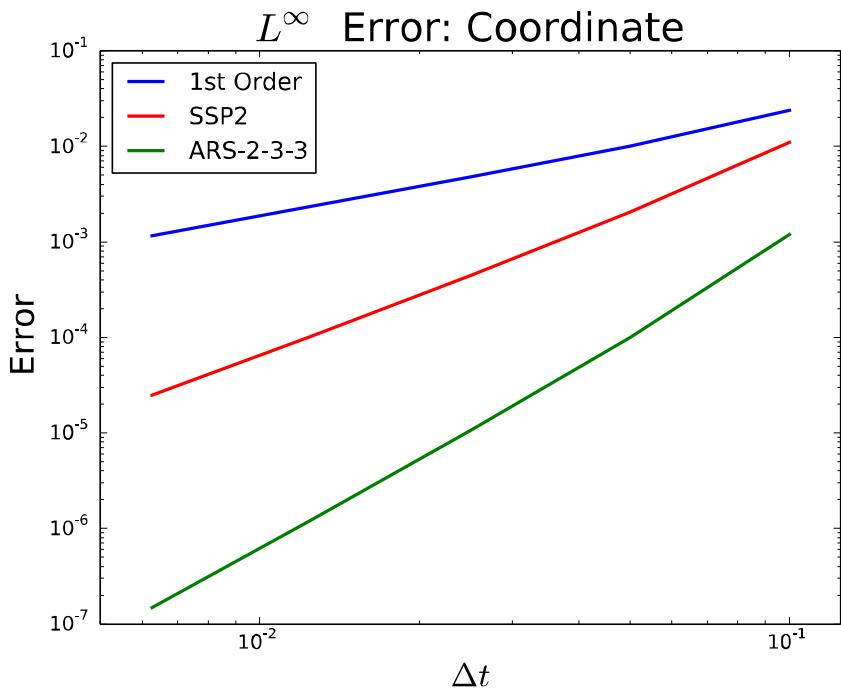
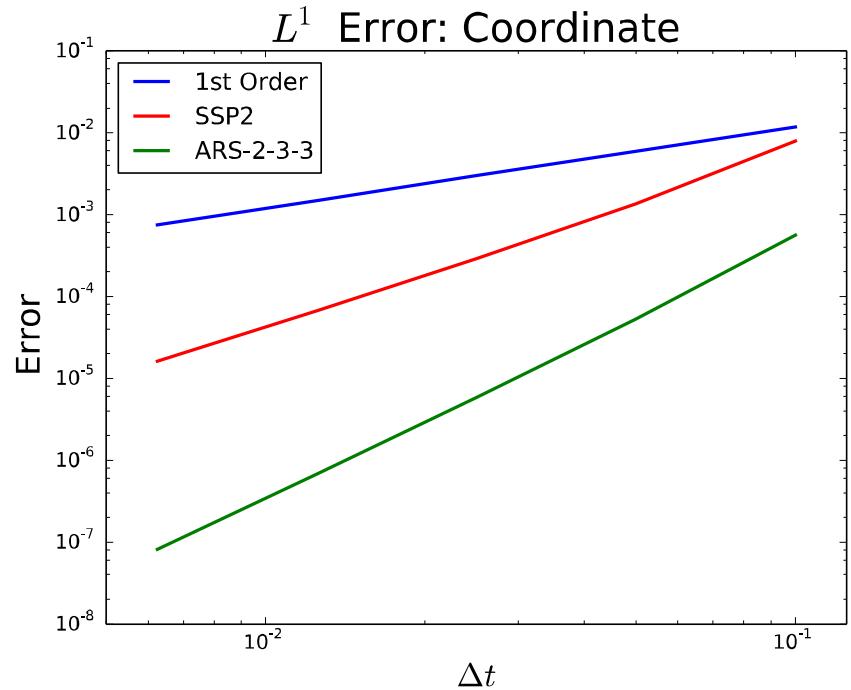
Compression Results



Using a 1D finite difference on a domain of $[-5, 5]$ for 0.5s:

- Model parameters: $U=1.0$, $\lambda=10^{-4}$, $\delta=0.1$, $\tau=1.0$
- Run with fixed mesh ($\Delta x=10.0/1021$)

Compression Results



Using a 1D finite difference on a domain of $[-5,5]$ for 0.5s:

- Model parameters: $U=1.0$, $\lambda=10^{-4}$, $\delta=0.1$, $\tau=1.0$
- Run with fixed mesh ($\Delta x=10.0/1021$)

Summary

Discussed IMEX methods in Eulerian frame

- Provides a well structured mechanism for separation of time scales into slow (explicit) and fast (implicit)
- IMEX Runge-Kutta methods have 2 Butcher tableaus
- Showed convergence of for CFD example and multiple timescale capabilities for MHD tearing mode problem

Developed IMEX Lagrangian formulation

- Required handling of mass matrix and using a partitioned IMEX-RK scheme for explicit kinematics
- Showed convergence results of up to 3rd order for example finite difference problems