[ T
%y
o0
- SAND2015- 37,,459Research

IMEX Lagrangian Methods

2015 Coupled Problems
May 20" 2015

Eric C. Cyr
Center for Computing Research
Sandia National Laboratories

Collaborators:
John N. Shadid, T. Wildey, D. Hensinger, A. Robinson,
W.J. Rider, Sandia National Laboratories
G. Scovazzi, Duke University

wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National National

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a Sandia
Nuclear Security Administration under contract DE-AC04-94AL85000. Laboratories




p Governing Equations

We have a Kinematics equation defining flow of the

domain, and time evolution PDE of fields on that

same domain
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p Time scales for the model

This set of equations can be governed by a number

of timescales. Fast and slow are relative terms:
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r—v=0

U+ FU)+GU) =0




A
%merical Time Integration and Time Scales

What time scales are “stift”?
* Anything “faster than the current time step”
must be handled implicitly for stability

At = CFL ~1
Implicit Explicit
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p An Example Scalar Case

Assuming that we are following the convected time
scale (i.e. |t]|At/Ax ~ 1)
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%mplicit-Explicit Runge Kutta Methods

Detine an ODE where “F” 1s slow and “G” 1s fast:

U+FU)+GU) =0

* Implicit-Explicit (IMEX) methods evolve “F”
explicitly and “G” implicitly

* There are multi-step (BDF) and multi-stage (RK)
versions of these methods

* Our focus 1s on IMEX-Runge Kutta (IMEX-RK)

methods
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}" IMEX-RK Methods

We start with on ODE:

U

F(U)

Two Butcher tableau’s are used:

C‘A

‘ X 1s for implicit terms,

1s for explicit terms

GU)=0
cl A
[;t

An s-stage IMEX-RK method satisfies (‘c’ defines time

node)

U =um — Aty A FuY

J=1

UM =Um = At B FUD) - ALY biGUY)

1=1

=1

=1

) — ALY A ;GUY)  fori=1...s,
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}" IMEX-RK Methods

Written as an algorithm, the previous expressions
result 1n:

for:=1...sdo
U — U — At 1Ayt — ALY Aijgs
Solve U —U + AtAiiG(Z/{“)) = 0 for Y
f — F(UW)
(Z/{ U(Z)) AzzAt

end for

Yntl . yn — AtZz 1 Atzz 1 Zgz

(Note: For i=1, U=Un)




ulerian IMEX Example: Stokes 2"
Problem

Convergence 1n time for
Stokes 2" Problem
* Low-mach CFD 1.6-01
e Run at fixed CFL

* Explicit advection

1.E+00

L1 Error Norm
(=Y
m
o
N

Order of Accuracy of Drekar/Rythmos Time Integration:
Stokes 2nd Problem (Ux)

IMEX

==BDF2: Ux Error
==SDIRK(2,2): Ux Error
—2nd Order

—BDF1: Ux Error

* Implicit diffusion and 1.E-03 ~ 1st Order
==IMEX RK1: Ux Error
Sound Speed Ceon IMEX RK2SSPEql17
2.50E-02 h 2.50E-01 2.50E+00

Take Home: IMEX methods in Eulerian frame achieve expected

order of accuracy



Tearing Mode: Low Mach (M~10-4)
compressible MHD

Time = 0.000

Approx. Computational Time Scales:

- Divergence Constraint (V-B =0):1/co =0 * Advection(c,): oo to 10
« Fast Magnetosonic Wave (c;): 10 to 102  « Diffusion: 104 to 10-2
* Alfven Wave (c,): 10%to 10 . Macroscopic Tearing Mode: 102
« Slow Magnetosonic Wave (c,): 102 to 10"
« Sound Wave (c): 102 IMEX SSP3 (3,2,2) 27 order
Max CFLs:
Wave speeds CFLy, = 00
|all, ||u]| £ ¢s. ||ul| £ cq, U]l £ cf, £ep CFL, ~10%to 10
CFL,, ~10%to 10°
Take Home: IMEX can handle multiple CFL,, ~107t0 10
. CFL, ~10%to 10!
timescales CFL,, ~ 0.33
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} Lagrangian Formulation

We assume that kinematics will be treated explicitly

(there may be a faster mode to resolve explicitly):
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Implicit

T—T=0
U+ FU)+GU) =0

Explicit
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%a'grangian Formulation: Semi-Discrete Form

Replacing material time derivative with total time derivative

in Lagrangian frame and discretizing in space gives:

T —d(x,U) =0
did
M(ZE)E + Fp(z,U) + Gp(x,U) =0
Writing this in an ODE form appropriate for applying IMEX-
RK gives:
T —v(x,U) =0
did

g T M@ T B U) + M ()7 G U) = 0
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IMEX Formulation
Implicit Explicit
N 0 p
7)) p—
IS 0 E
| ‘ ] | ‘ |

G(U) T — v

VU + F(U)
2B — gm _AtZA ) YO fori=1...s,
U® =y — AtzziAijM_l(x(j))Fh(x(j),u(j)) - Ati: A MY NG, (2D, UD) fori=1...s,

"t =" — At Z b 7(x @, ™)

=1

Urtt =y — Aty bM N (@W)Fy (2, u®) Ath M=z Gy (2D, UD)

=1
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IMEX Formulation: Algorithm

Coordinates are evolved explicitly in time, remaining terms
are evolved implicitly. This 1s a partitioned IMEX scheme.

Only one mass 1nversion per stage 1s required.

for:=1...s do

33(Z> — "™ — At Z;;ll Aij'Uj

U U = ALY Ay fy — ALY Ao

Solve M (x®) (U — 1) + At Ay (¢) G (0, UD) = 0 for U

v; — v(x®, YW)

fi e M) (@), U)

gi (U —=UM)
end for A
et — ALY, bAf,;’Ui
UM U™ — At bifi — ALY 50 bigs

1
A At
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}" IMEX-RK Tableaus

Name |Order| implicit Tab. Explicit Tab.
0/0 0 0]0 0
First Order 1st 110 1 1|1 0
0 1 1 0
g g 0
1—y|1-2y =~ o0p 0 0
SSP2 ond 73 1/ 1|1 o
1/2 1/2
7:1—1/\/5 / /
0 [0 0 0 0 0 0 0
v |0 Y 0 Y gl 0 0
ARS 2-3-3 3rd 1l—v]10 1-2v ~ l—vy]~v—=—1 2-29 0
0 1/2 1/2 0 /2 1/2
= (34+3)/6 v = (34 V3)/6
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} Example: Thermal Wave Problem

Example transient convection-diffusion-reaction
multiphysics problems with exact solutions.

Traveling wave: Translating constant velocity of =

Convection-diffusion-reaction equation and

solution:
or 9 (U T\ 8\, ., B .
§+8x(5T_)\%>_§T(1_T)_ it

AIREs

=}

T(x,t) = % (1.0 — tanh [5’3 ~ (QA; U)t/(SD



p Thermal Wave Results

L>* Error: Temperature L' Error: Temperature

10!

10°

— 1st Order — 1st Order
— SSP2 — SSP2
— ARS-2-3-3 — ARS-2-3-3
10t}
102 |
| - | -
o o
= 10 =
L Ll
103 b
107 |
10* ‘ 10 s
103 102 103 107
At At

Using a 1D finite difference on a domain of [-5,5] for 0.5s:
* Model parameters: U=1.0, A=0.1, 0=0.2
* Run with fixed CFL (At/Ax=1)...best convergence rate is O(At?)

* Coordinate value 1s “exact” (constant advection)
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} Example: Compression

Example convection-diffusion-reaction equation with a

compression velocity: « = —U tank [%}

Equation and solution:

Oe 0, Oe
E—F% (ue—)\ax> ‘|‘Se—0
e = (1.0+e£vp<t/7) sech [(1.0%(;752):13])

Nonlinear Source term:
fi=46 7 U(1.0— (u/U)z)
fo=—(1O0+t)* X7+~ f1
((1.O+t2)x]

f3=T5(2t:1:+(1.0—|—t2)u)tanh[ ;
[fl + (1.0 —¢) * (f2 + 2 A 7(1L.0+t2)? [exp(—t/7)]*(1.0 — €)? — fg)}

Se =

02 1
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p Compression Results

Lot L> Error: Temperature Lot L' Error: Temperature
— 1st Order — 1st Order
— SSP2 — SSP2

10° | —  ARS-2-3-3 ; 10 || — ARS-2-3-3 |
1071 ] 1 /

10t b

1072

Error
Error

102 b
102 b

103 b
107 b

10° : : 10* : :
107 10 107 10

At At

Using a 1D finite difference on a domain of [-5,5] for 0.5s:
* Model parameters: U=1.0, A=10-4, 6=0.1, t=1.0
* Run with fixed mesh (Ax=10.0/1021)



A 4
p Compression Results

ot L*> Error: Coordinate - L' Error: Coordinate
— 1st Order — 1st Order
— SSP2 02 || — SSP2 |
10° | — ARS-2-3-3 ] — V
103 | |
103 | .
[ v 10*
S 1o =
LLl L 10°°
10
10°®
10° 10"’
10 16'2 16'1 1o 16'2 10"1
At At

Using a 1D finite difference on a domain of [-5,5] for 0.5s:
* Model parameters: U=1.0, A=10-4, 6=0.1, t=1.0
* Run with fixed mesh (Ax=10.0/1021)
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} Summary

Discussed IMEX methods in Eulerian frame

* Provides a well structured mechanism for separation of time
scales 1nto slow (explicit) and fast (implicit)

 IMEX Runge-Kutta methods have 2 Butcher tableaus

* Showed convergence of for CFD example and multiple timescale
capabilities for MHD tearing mode problem

Developed IMEX Lagrangian formulation
* Required handling of mass matrix and using a partitioned IMEX-
RK scheme for explicit kinematics

« Showed convergence results of up to 3™ order for example finite
difference problems



