SAND2015-3741C

Implementing “Pliris-C/R” Resiliency Features Into the EIGER Application

Mike Davis William Tucker
Customer Service Los Alamos, NM
Cray, Inc. wwtucker@gmail.com

Albuquerque, NM
u3186(@cray.com

Abstract— EIGER is a frequency-domain electromagnetics
simulation code based on the boundary element method. This
results in a linear equation whose matrix is complex valued
and dense. To solve this equation the Pliris direct solver
package from the Trilinos library is used to factor and solve
this matrix. This code has been used on the Cielo XE6 platform
to solve matrix equations of order 2 million requiring 5000
nodes for 24 hours.

This paper describes recent work to implement “Pliris-C/R”, a
set of checkpoint/restart and other resilience features for Pliris.
These include: targeting multiple file systems in parallel;
striping controls; checkpoint period controls; turnstiling;
open-file-descriptor sharing across processes; checkpointing on
imminent job termination; application relaunch within the job;
and scripts to monitor application progress. Timing data for
runs using Pliris-C/R will also be presented.

Keywords-linear algebra, dense matrix, checkpoint, I/O

1. INTRODUCTION

The U.S. National Nuclear Security Administration
(NNSA) has tasked its Advanced Simulation and
Computing (ASC) program with providing high-
performance simulation capabilities “to analyze and predict
the performance, safety, and reliability of the nation’s
nuclear weapons” [1]. To fulfill this mission more
effectively, two of NNSA’s laboratories, Los Alamos and
Sandia, formed the New Mexico Alliance for Computing at
Extreme Scale (ACES) to design, procure, and deploy the
Cielo supercomputer [2]. Cielo is a Cray XE6 system with
9216 nodes, rated at 1.38 Petaflops of peak performance [3].
Cielo is designated as an advanced-technology system [4],
and as such it is tasked with handling workloads in which
the typical compute job consumes a large fraction of the
system’s available resources [5] and runs for multiple days.
Since 2012, one of the applications making up this workload
has been the EIGER code.

EIGER is a frequency-domain electromagnetics
simulation code based on the boundary element method
[6]. This results in a linear equation whose matrix is
complex-valued and dense. To solve this equation, the
Pliris direct solver package [7, 8] from the Trilinos library
[9] is used to factor and solve the matrix. EIGER is used on
Cielo to solve matrix equations of order 2 million, requiring
5000 nodes for 24 hours or more per run. EIGER uses an

Joseph D. Kotulski

Electromagnetic Theory
Sandia National Laboratories
Albuquerque, NM
jdkotul@sandia.gov

MPI-everywhere method of parallelism; thus, the 5000
nodes host 80000 MPI processes.

This paper describes work undertaken in late 2013 to
implement “Pliris-C/R”, a set of checkpoint/restart and other
resilience features in the Pliris solver package and the
EIGER job stream for use on Cielo. Section 2 provides a
high-level view of the Pliris design. Section 3 describes the
high-level design of Pliris-C/R, and describes the approach
taken to insert the C/R logic into the code, with a focus on
how it exploits the I/O and file-system architectures of Cielo
to achieve balance, regularity, and minimal contention.
Section 4 details the user controls available to tune the
behavior of Pliris-C/R, and discusses the considerations that
go into choosing settings for some of the tuning parameters.
Section 5 describes some of the lower-level design features
of Pliris-C/R. Section 6 outlines the other resilience
features implemented in the EIGER job stream. Section 7
shows some timing results from recent runs of EIGER on
Cielo since the implementation of Pliris-C/R. Section 8
discusses potential areas of future work.

II. PLIRIS DESIGN

A brief description of Pliris is given in [7]. Pliris is
capable of solving systems in either of two modes,
depending on whether the right-hand-side vectors are
available before or after factorization;, for the EIGER
calculations described here, only the “before” mode is used.
The library distributes the augmented matrix in 2D blocks
across the processes so that the blocks are as close to the
same size as possible. To achieve good load balance, the
factorization procedure operates on the matrix elements in
block-cyclic fashion as if they were distributed in a torus-
wrap mapping, as described in [10]; as a result, the factored
matrix takes on a block-cyclic triangular form, such that each
block’s elements are updated and eliminated in a fashion
much like that seen on a serial factorization of a monolithic
matrix. Then, after the solve operation is completed, a
permutation (shuffle) operation is performed on the result
vector(s) to undo the torus-wrap mapping.

III. PLIRIS-C/R DESIGN

The four principal design factors of C/R are: where,
when and how to checkpoint; where and how to restart;
what partial results to transfer; and what kind of I/O to

mailto:jdkotul@sandia.gov
mailto:u3186@cray.com
mailto:wwtucker@gmail.com

perform. This section discusses all of these factors except
when to checkpoint, which will be covered in Section 4.

A. Where to Checkpoint

The typical Pliris matrix solve operation spends the vast
majority (over 90%) of its time in the factor () function.
This function executes a loop that steps through the columns
of the global operand matrix (augmented with one or more
operand right-hand-side vectors) to perform the pivoting,
scaling, interchange and row elimination operations. All of
the code to implement the C/R capability is contained
within this function; thus, no other parts of matrix
processing (such as matrix fill, back substitution or
permutation) are covered.

The checkpoint operation occurs at the bottom of the
loop over the columns of the matrix, prior to the loop exit
test, when an appropriate checkpoint period has elapsed. On
alternating checkpoint events, the write operation is directed
to one of a pair of alternate checkpoint sets (called “pink”
and “blue”). At the end of every successful checkpoint
operation, a control file named intact is written. This file
contains four data items. The first two are integers that
represent the size of the run. The third is an integer that
represents the current value of the column loop index. The
fourth is a character string that refers to the checkpoint set
just written (pink or blue).

The restart operation occurs prior to entry into the
column loop. Here, the C/R code checks for the presence of
the intact file; its presence indicates that the run is a restart
run, whereas its absence indicates an ab initio run. If the
file is present, its contents are read. The size-of-run values
are used to verify that the parameters for the current run
match those from the prior run that generated the
checkpoint. The checkpoint sets are then read, and the
calculation proceeds at the appropriate column index (as
specified by the third item in the file).

B. What to Checkpoint

The partial results to be transferred by each MPI process
in a C/R operation (collectively referred to as a checkpoint
image) include the local operand matrix, some local work
vectors, some pointers, and some loop-carried scalars. Only
those items that have a read-then-write reference pattern
within the scope of the loop are included. The operand
matrix is by far the largest piece of the checkpoint image;
however, the fraction of the matrix that must be saved
decreases as the factorization proceeds. Pliris-C/R is
designed to perform ‘“decrementing checkpoints,” saving
only the relevant fraction of the matrix at checkpoint events.
Details of this design are discussed later in this section.

C. How to Checkpoint

The Pliris-C/R operations perform parallel unbuffered
POSIX 1/0. The I/O calls used (preadv and pwritev) allow
for the specification of an offset/position at which to write
and a vector of I/O requests to perform. For Pliris-C/R, the
scalar and pointer members of the checkpoint set are packed

into a single I/O vector element to minimize the I/O vector
length.

On Cielo, the POSIX I/O used by Pliris-C/R is handled
by Lustre 1.8 file system software [11]. Cielo has three
Lustre parallel file systems, represented in the diagram of
Fig. 1. Their mount points are named /Iscratch2, /Iscratch3,
and /lscratch4. The /Iscratch2 and /lscratch4 file systems
are each comprised of 24 object storage servers (OSSs) and
1 active metadata server (MDS). The /Iscratch3 file system
is comprised of 48 OSSs and 1 active MDS. Each OSS is
comprised of 6 object storage targets (OSTs), which are
directly addressable by user software. Each of these file
systems is made up of identical hardware components with
identical theoretical performance characteristics at the OST
level. The default stripe size setting is also consistent across
the three file systems.

4 eslogin 102 XE6 LNET Routers 40 FTA

B 7900 12 7900

B 7900 24 7900

Figure 1: Cielo Lustre Architecture

Results from benchmarks of Lustre performance on Cielo
[12] show bandwidths achieved from performing I/O on
/Iscratch3 (288 OSTs) from the I/O benchmark “fs test”.
Fig. 3 of [12] shows N-N effective write bandwidth, and
Fig. 4 shows N-N raw write bandwidth on a scaled set of
MPI rank counts. These bandwidths are reproduced in
Table 1 below. (The referenced source expresses the
bandwidths as MB/s, as it is reported by fs test, but the
actual units are MiB/s.) Note how the performance
decreases as N grows past 2048 MPI ranks; this tends to
argue for an optimal load of 2048/288 = ~7 concurrent
writers per OST. Note that in the raw case, the ratio of
bandwidth at 2048 ranks to bandwidth at 65536 ranks is
1.29. This 29% overhead penalty is presumably due to
overheads on the OST associated with having to service I/O
requests on 65536/288 = ~227 files concurrently. In the
effective case, the ratio is 1.78. The difference in these
ratios is presumably attributable to the cost of metadata

B 7900 12 7900

operations, which imposes a significant limit on I/O
efficiency at scale for the N-N regime.

Table 1 shows effective bandwidth of 57600 MiB/s with
32768 MPI ranks and 43600 MiB/s with 65536 MPI ranks.
If we were interested in how this benchmark might perform
on 40000 MPI ranks, we could interpolate linearly between
these two points, and produce an estimate of 54500 MiB/s.
Then, if we were interested in how it might perform on
80000 MPI ranks writing across all three file systems
concurrently (using 500 OSTs), we could scale this figure
by 500/288 to arrive at 94600 MiB/s. Granted, this estimate
is favorably biased, since the ratio of writers to OSTs
increases (80000/500 = 160 versus 40000/288 = ~138); but
it is also unfavorably biased, since the number of metadata
servers increases by a factor of three rather than two. We
will assume that these biases cancel each other out, and will
use this performance figure later, to compare with Pliris-C/R
I/O bandwidth achieved in EIGER runs.

Table 1: Cielo Lustre /Iscratch3 1/0 Bandwidths (MiB/sec)

Processes | Eff. BW | Raw BW
1024 73900 74400
2048 77400 78500
4096 76200 75500
8192 72000 75900
16384 64000 72000

32768 57600 69400
65536 43600 60900

To mitigate the performance problems associated with
large N-N I/O, Pliris-C/R uses a subsetting strategy called
turnstiling [13], also called baton-passing. The idea behind
turnstiling is that the benefits of presenting a more
contiguous 1/O load to the OST will overcome the cost of
imposing some serialization on the I/O requests. Turnstiling
also offers the benefit of potentially appending multiple
checkpoint images to a single file, thus reducing the overall
file count in a checkpoint set. This technique is used in
other codes that run on Cielo [14]. Fig. 2 below illustrates a
simple turnstiling arrangement consisting of two Lustre
OSTs, each hosting three files. The processes colored red
are proceeding through their respective turnstiles and doing
I/O concurrently, while those in blue are waiting in line for
their turn. The figure suggests that the complete 1/O
operation will consist of four turns.

In Pliris-C/R, each MPI process is assigned a specific
file within the checkpoint set on which it will perform its
I/O, a specific offset within the file, and a “turn” during
which it will be allowed to proceed with its I/O. In general,
many processes will be assigned the same file. There is one
turnstile for every file in the checkpoint set. Each file
resides wholly within a single Lustre OST. Processes
assigned the same turn are not synchronized, but each is
allowed to proceed independently, acting on its assigned file
as its turn comes up and its turnstile becomes available.

Processes assigned the same file proceed in turn, and in
order according to their offset. Note that processes do not
necessarily arrive in the turnstile queue in order according to
their offset; thus, processes may be forced to wait even
though the turnstile is available.

The initialization code for C/R calculates the amount of
storage to be allotted to a process’s checkpoint image in its
assigned C/R file, and rounds this value up to the next
multiple of the default Lustre stripe size; this image size is
identical across processes and is used for all C/R I/O
operations during the course of the run. The invariance of
this value allows for regularities in file size and growth, as
well as file offset assignment across processes.

The choice of turnstiling as an I/O strategy provides
opportunities for other optimizations as well. Pliris-C/R
assigns files and turns to the MPI processes by rank in
round-robin fashion, with turns varying faster. It does this
for two reasons: first, it helps keep 1/O traffic on the compute
node from hitting the node’s network injection bandwidth
limit (since ranks within a node are sequential by default);
and second, it allows processes within a node to share open
file descriptors across turns, which reduces Lustre metadata
load and some of the overhead associated with serializing
I/O requests. (This second optimization will be discussed in
more detail in Section 5.)

0000

0osT

Figure 2: Turnstiling 1I/O

IV. PLIRIS-C/R USER CONTROLS

Pliris-C/R provides several user controls to tune the I/O
behavior to serve the size of the application and the
architecture of the Cray XE file system(s). These controls
are available as environment variables with the prefix
PLIRIS CR. Table 2 summarizes the variables and their
meanings.

Table 2: Pliris-C/R User Controls

Table 3: Pliris-C/R Tuning Parameters

Variable Description Term | Derivation Meaning
PLIRIS CR NFS Number of file systems across P The number of MPI processes in the
which to spread the checkpoint set application
PLIRIS CR DIR List of directories (one per file PPN The number of MPI processes on a
system) to contain checkpoint sets compute node
PLIRIS CR NS List of OST counts (one per file N P/PPN The number of compute nodes in
system) across which to spread the application
the checkpoint set S The sum of the components of
PLIRIS CR NF Number of files that comprise the PLIRIS CR NS
checkpoint set F The value of PLIRIS CR_NF, also
PLIRIS CR COUNT | Number of checkpoint operations the number of turnstiles
to perform during factor loop T P/F the number of turns, also the
PLIRIS CR SIGNUM | Signal indicating imminent job maximum number of processes
termination (default 23) operating on the same file,
also the maximum number of
The PLIRIS CR NFS wvariable is used to specify the checkpoint images in a file
number of file systems across which the checkpoint set is | O F/S the maximum number of concurrent
(to be) spread. As discussed in Section 3, the Cielo system I/O operations active per OST,
has three Lustre parallel file systems. By setting also the maximum number of files
PLIRIS CR NFS=3, the user can specify that checkpoint hosted by each OST
I/O be performed across all three file systems in parallel. ION | MAX(F/N,1) | The maximum number of
The PLIRIS CR _DIR variable is used to specify the list concurrent I/O operations active on
of directories, one per file system and space-delimited, in a Cielo compute node
which checkpoint files (will) reside. (The intact file, D GCF(PPN,T) | A measure of the efficiency of
described in Section 3, also resides in the first component of sharing open file descriptors

PLIRIS CR_DIR.) Taking the Cielo system as an example,
one might set PLIRIS CR DIR="/Iscratch2/$ {USER}
/Iscratch3/${USER} /Iscratch4/${USER}” to specify three
user directories, one within each of the three file system
mount points.

The PLIRIS CR_NS variable is used to specify the list
of OST counts, one per file system and space-delimited,
across which the checkpoint set is (to be) spread. The C/R
code uses these values to set the stripe origin characteristic
for each of the files in the checkpoint set. Again taking the
Cielo system as an example, one could set
PLIRIS CR_NS=“144 288 144” to specify spreading across
all of the available stripes of each of the three file systems.

The PLIRIS CR NF wvariable is used to specify the
number of files that (will) make up a checkpoint set. The
stripe count for each file is fixed at 1. The stripe size for
each file is set to the default stripe size for the file system.
Considerations for choosing a good value for this variable
can be expressed as a set of tuning targets. To express these
targets, first we define some terms in Table 3. Note that for
the Cielo system, PPN=16, and for the EIGER runs
described earlier, P=80000 and N=5000.

Given the definitions specified in Table 3, the tuning
targets can be set out as shown in Table 4. The EIGER runs
on Cielo are configured with S=500 and F=2500, which
yields T=32, O=5, ION=1, and D=16.

Table 4: Pliris-C/R Tuning Targets

Target

Explanation

4<=0<=8

This has been established experimentally as
a good /O load for an OST on Cielo.

S|F

This spreads the file load (and turnstiles)
evenly across the OSTs.

If this target cannot be met, then it is best if
mod (F, S) is as close to S as possible.

F|P

This assures that all turns use the full
bandwidth of all OSTs, and helps minimize
the number of turns.

If this target cannot be met, then it is best if
mod (P, F) is as close to F as possible.

ION <4

This assures that the I/O load on a compute
node does not oversubscribe the node’s
network injection bandwidth.

D>>1

Since file descriptor sharing is limited to the
processes within a single OS image
(compute node), it is optimal if

PLIRIS CR_NF is chosen so that PPN and
T have a greatest common factor as large as
possible.

A. When to Checkpoint: Coordination of Checkpoints

As discussed in Section 3, one of the principal design
factors of a C/R scheme is when to checkpoint. The
PLIRIS CR COUNT variable is used to specify the number
of checkpoint operations to perform during execution of the
loop over global matrix columns in the factor () function.
The loop over columns, however, does not contain equal
amounts of work across iterations. In addition, there is no
explicit global synchronization event within the loop over
columns that can be used to coordinate the checkpoint
operation. Fortunately, there is no requirement that the
processes coordinate their checkpointing on the basis of
simulation time or wall-clock time. The only requirement is
that the processes coordinate their checkpointing on the
basis of agreed-upon progress points in the factorization,
and column index is the most reasonable measure of these
progress points.

The Pliris-C/R initialization code computes the set of
column indexes at which to perform checkpoint operations
so that the amount of factorization work performed between
checkpoints is constant. A mathematical derivation of this
algorithm starts with the observation that the amount of
work W; needed to perform the factorization on an
individual column J (dominated by the outer product update
step) is of the order (N-J)?, where N is the size of the matrix.

Let V; = J* and note that V; is a reflection of W, across the
midpoint Jy; = N/2 of the domain [0: N].

Let ag, a;, ay, ..., a1 € {0, 1, ..., N} be the bounds of k+1
equal subareas under the curve of V; with ag =0 and a;,; =N
such that

e yedr = (2)(%) 1)
k+1 3/
Evaluating for the case of i = 0, and solving for a;:
-
For the general case of i:
eS|
Let by, by, by, ..., by € {0, 1, ..., N} be the bounds of

k+1 equal subareas under the curve of W; with by = 0 and
b1 = N. Since Wj is just a reflection of Vj across the
midpoint Jy; = N/2 of the domain [0: N], the values b; must
be reflections of a; across the domain:

bl=N—3\/k+1—i[)

N
Tl

Thus by, b, ..., by are the column index values at which k
equally-timed checkpoint sets should be written.

B. Decrementing Checkpoint of Matrix

As mentioned earlier in this section, Pliris-C/R is
designed to save only the active portions of the operand
matrix on checkpoint events. As factorization proceeds, the
position within a process’s block of the matrix that marks
the active portion advances as shown in equation (5), where
p’ is the number of MPI processes used in the factorization.

Nbi—,

E, =
4 pz

©)

Fig. 3 shows a graphical representation of a process’s
block of the matrix after factorization, as seen by factor (), a
C function. The colored pieces indicate portions of each
matrix block that are written as the matrix is factored.
When the index of the loop over columns (j) equals the
value at which the first checkpoint is written (b,), Pliris-C/R
directs each process to write out its entire block of the
matrix (starting at E;) to the pink checkpoint set. When j
equals b,, processes write only the portion of the matrix
starting at E, to the blue checkpoint set, since the elements
above were either updated (above the diagonal) or
eliminated (below the diagonal) before the pink checkpoint
set was written and have not changed. Similarly, when j
equals b;, processes write the portion starting at E; to the
pink checkpoint set. Thus, the pink and blue sets will
contain alternating portions of the factored matrix. On the
occasion of a restart, then, generally both sets must be read
to reconstruct the operand matrix out of its constituent saved
portions. Note that with this scheme, there are still static
portions of the matrix (eliminated elements under the
diagonal) being saved, but the cost to omit them would be
prohibitive due to the excessive fragmentation of the I/O
requests. (The values of E are shown here on row
boundaries of the matrix, purely for convenience of
illustration.)

N2/p?

Figure 3: Decrementing Checkpoint of Process Block of Matrix

C. Choosing the Optimal Checkpoint Count

In discussing the considerations for choosing a good
value for the PLIRIS CR_COUNT variable, we start with
the work of Daly [15]. Following the notation of this work,
we define M to be the mean time between unscheduled
interrupts that cause the application to terminate, & to be the
time to dump (write) a checkpoint set, N to be the number of
dump-delimited compute segments making up the
factorization, T to be the time to execute a compute segment,
R to be the restart time, and Tg to be the time required to
compute the factorization. We use equation (20) from [15]
to derive total work time:

Tw(T) = M x eR/M « (eC+O/M — 1) % Tg/T (6)

In the Pliris-C/R implementation, t is not an independent
variable; rather, it is determined by t = Ts / N, where N is
determined by PLIRIS CR_COUNT. The restart time R is
comprised principally of matrix fill time F and checkpoint
read time p. Thus we refine the work time equation:

Ty (N) = M x eF+PI/M o (oTs/N+O/M _ 1)« N (7)

The next refinement will account for the fact that checkpoint
write time O is not constant, but rather decreases as the run
progresses, due to the decrementing checkpoint of the
matrix. We define the function 8(i) to be the time to write
the checkpoint set associated with column index b; and note
that p is the time to read (potentially) both checkpoint sets
and assemble the operand matrix. We set 3(N) to 0 since no
checkpoint is written for the last segment. The work time
equation then becomes:

Ty (N) = M % eFHR/M Zlivzl(e(TS/Nw(i))/M _ 1). (8)

We derive M as follows. From [16] we use the
component MTBF of 25 hours and system MTTI of 200
hours to obtain A; = (25*3600)" = 90000 and A, =
(200%*3600)" = 720000, Since we are interested in running
on only 5000 of the 8944 nodes [3], the risk of experiencing
a component failure is lower than if we ran on the full
system, so we will adjust A, accordingly, to A, =
(90000*8944/5000)" = 160992"'. This yields M = (A;+1,)"
= 131572. Note that scheduled interrupts are not included
in this derivation, since the recovery cost is mitigated by the
fact that Pliris-C/R is coded to checkpoint on these events.

Experience in running Pliris-C/R on 5000-node EIGER
applications indicates that the matrix fill time F is 900
seconds, the checkpoint read time p is 1440 seconds, the
factorization time Tg is 81573 seconds, and the time to write
checkpoint i , where i ¢ {1, 2, ..., N-1}, is as shown in
equation (9).

(i) = 960 * 3/”*}3“. ©)
Table 5 shows the values of Ty for the given values of the
work equation parameters and various values of N. The
optimal value for N is 6, thus the proper value for
PLIRIS CR COUNT is 5. Note that the true optimum lies
just off of N=6, but the current implementation does not
allow the user to achieve it. This is a potential area of future
work.

Table 5: Work times (sec) as a Function of Checkpoint Count

N Tw

1 116858
2 99744
3 95334
4 93631
5 92946
6 92572
7 92832

The job’s wall clock time limit is not a factor in
determining the best value for PLIRIS CR_COUNT. For
example, if the problem’s expected time spent doing
factorization were 45 hours, the job’s wall clock time limit
were 24 hours, and the optimal checkpoint count were set at
9, then the resulting checkpoint period would be 5 hours,
and at most 5 checkpoints before the ab initio job terminates
(including the one triggered by PLIRIS CR SIGNAL).

The “checkpoint period” is the period of time spent
calculating between the completion of the last checkpoint
and the start of the next checkpoint; that is, the time spent
writing the checkpoint set is not included in the checkpoint
period. Thus, to continue the example, if the time to write a
checkpoint set is 15 minutes, then the checkpoints will
occur 5 hours and 15 minutes apart.

For the hypothetical job described above, the checkpoint
set would allow the follow-on job to restart from a point 24
hours into the 45-hour calculation, thus the follow-on job
will complete the factorization in only 21 hours. However,
the checkpoint period for the follow-on job will remain the
same as that for the ab initio run, namely 5 hours. This is a
limitation of the algorithm used to calculate the checkpoint
events in the current implementation.

V. PLIRIS-C/R FEATURES

A. File Descriptor Sharing

As mentioned in Section 3, once the decision has been
made to adopt the turnstiling strategy, the opportunity for
other optimizations arises. One of the optimizations
implemented in Pliris-C/R is the use of sharing file
descriptors among processes that share the same OS image
(i.e., the same compute node) and share the same turnstile.
The technique of sharing open file descriptors among

processes is documented in [17]. Use of this technique
results in fewer file open and close operations, thus reducing
load on the file system’s metadata server(s). In addition,
since processes queueing at a turnstile must communicate
somehow in order to serialize their operations, the passing
of the open file descriptor serves this function as well.

The Pliris-C/R initialization code forms the processes
into MPI groups according to their turnstile index values,
then assigns each process a rank within the group using a
combination of the process’s host node ID and MPI rank
within the node. MPI rank within this group then becomes
the process’s assigned offset within the checkpoint file, and
also its turn index. Each process also determines if its rank
within the group is the lowest or highest on its node, as this
indicates that it has special duties. The lowest-ranked
process is an “opener”; that is, it will open the file itself,
rather than relying on the open file descriptor from another
process. The highest-ranked process is a “closer”; that is, it
will close the file and refrain from sharing the file descriptor
with any other process.

During a checkpoint operation, each process with group
rank 0 opens the file for its group and goes first through its
turnstile, while the other processes wait their turn. When a
process receives an MPI “go on turnstile” message from its
predecessor (by turn index), it either receives the file
descriptor from its predecessor, or opens the file if it is an
“opener”; then it proceeds through the turnstile. After a
process finishes its I/O, it either sends a copy of its open file
descriptor to its successor (by turn index), or closes the file
if it is a “closer”; then it sends an MPI “go on turnstile”
message to its successor.

Testing of the effectiveness of turnstiling and file-
descriptor sharing was performed [18] on Cielo. The tests
were run using 160 MPI processes, with 16 ranks on each of
10 compute nodes. The tests were sized to present the same
I/O load to one OST of Cielo as the EIGER application
presents to 500 OSTs spread across the three file systems.
Each test was run in five modes. In the first mode (NXN),
each process writes to its own file. In the second mode
(NX1), all processes write to a single shared file, and each
process is assigned a distinct offset within the file. In the
third mode (NX5), processes are split into five groups of 32
each, and each group writes to its own file, and each process
is assigned a distinct offset within its group’s file. The
fourth mode (TURNS) is just like the third, except that the
processes in each group write in turnstile fashion, each in
sequence according to its assigned offset. The fifth mode
(TURNS_SFD) is just like the fourth, except that the
processes within a group (or turnstile) share the file
descriptor associated with their assigned file. In all modes,
the /O demand presumably exceeds the node’s injection
bandwidth limit. The test guides each process through a
write loop that iterates eight cycles, and each process writes
a checkpoint image of size 1.879¢9 bytes every cycle; thus,
the total amount of data moved in each test is 2.405¢12
bytes. The write operation is timed every cycle using

gettimeofday (), with the start time collected by the first
process to visit the write call, and the end time collected by
the last process to complete the write call. Write times are
accumulated and reported at the end of the test. Table 6
shows the timings for the five different modes; these
timings are averaged over eight separate runs of the test.

Table 6: Checkpoint Times (sec) on Single OST,
as a Function of 1/0 Strategy

Test Avg | Std Dev
NXN 11640 367
NX1 7697 721
NX5 7747 697
TURNS 6918 800
TURNS SFD | 6718 665

Note that the TURNS case shows a marked reduction in
time spent writing compared to NX5, confirming the
hypothesis that the benefit of presenting contiguous requests
to the OST overcomes the cost of serializing the writes.
There is also a small reduction in time spent writing for the
TURNS_SFD case compared to TURNS. In addition, the
variation in timings is smaller. The typical EIGER run
involves 80000 processes running across 5000 compute
nodes, writing to 2500 files spread across 500 OSTs, with
the two smaller file systems each hosting 625 files on 125
OSTs and one MDS, and the larger file system hosting 1250
files on 250 OSTs and one MDS. In a TURNS mode, the
three metadata servers will service 20000, 20000, and 40000
opens per checkpoint operation, whereas in a TURNS_SFD
mode they will service 1250, 1250, and 2500 opens. This
results in a tradeoff of small but predictable cost in on-node
communication to share file descriptors versus moderate but
potentially variable cost in metadata operations associated
with file opens.

B. Determining First-In and Last-Out of Code Regions

Another feature in Pliris-C/R, more of an optimization
than a resiliency feature, involves the use of shmem calls to
determine the first rank into, and last rank out of, certain
regions of code. These calls are used in regions where time
stamps are collected at the start and end of checkpoint
operations, to support the reporting of timing information at
the end of factorization. They are also used in the region of
code that writes the intact file. The implementation relies
on the declaration of a shared-memory atomic counter
variable on MPI rank 0. On entering a first-in region, each
rank atomically queries and increments the variable
(shmem_int finc ()), and the rank to see a zero value takes
on the duties of the first-in rank (e.g., collecting the “start”
timing data). On exiting a last-out region, each rank
atomically queries and decrements the variable, and the rank
to see a value of 1 takes on the duties of the last-out rank
(e.g., collecting the “end” timing data, creating the intact
file). Typically, only ranks at the front or the end of a

turnstile queue perform the shmem calls; thus, the overheads
of accessing the shared variable are much lower than if all
ranks were to participate. Since the factorization operation
contains no regular global synchronizations, the shmem
implementation is deemed low-impact compared with one
that would rely on MPI barriers.

Testing was performed on Cielo [19] to compare the
costs of reporting first-in and last-out events using shmem-
based versus barrier-based methods. In this test, a synthetic
application is executed on 80000 MPI processes running on
5000 nodes. The application is run in two modes. In the
first mode, a “storm” of simultaneous shmem int finc ()
calls is performed from 5000 processes on 5000 separate
nodes. Wall-clock times of microsecond resolution are
collected from each participating process using
gettimeofday (). The time to execute the “storm” is
computed as the difference of the minimum start time and
the maximum finish time. In the second mode, each of the
80000 processes is directed to execute a workload designed
to mimic that of the EIGER application (i.e., a set of local
matrix operations followed by a checkpoint operation). At
the end of the workload, 5000 processes on 5000 separate
nodes execute an MPI Barrier () call. Each mode is
repeated six times. Wall-clock times are collected from
each of the 5000 processes using the same method as in the
shmem-based mode. The timings for the shmem-based test
were on the order of 2.10e-1 +/- 1.0e-3 seconds, whereas the
barrier-based timings were on the order of 8.8el +/- 2.5¢l
seconds. The results indicate that, at large scale, a “storm”
of shmem updates on a single rank is more efficient than an
MPI barrier for determining first-rank-in and last-rank-out
of a code region.

VI. EIGER JOB STREAM RESILIENCY FEATURES

A. Recovery from Compute Node Failures

The MOAB job script in Fig. 4 illustrates how to set up
the EIGER batch job to detect and recover from a compute
node failure. This is the most common condition
encountered by a failing EIGER run. The script is annotated
with line numbers down the left column; these are not part
of the actual script file.

top of script
3 #MSUB -1 nodes=2308:ppn=16
4 #MSUB -1 walltime=24:00:00
5 #MSUB -l signal=23@10:00

... # middle of script
30 fortryin seq 4
31 do

32 aprun -n 36864 -N 16 ./a.out 2>&1 | tee out.$ {try}
33 grep "ec_node_failed" out.${try} >/dev/null || break
34 done

end of script

Figure 4: Job Script Resilient to Node Failures

Lines 3-5 specify the MOAB parameters for job
allocation size, job time limit, job name, and job output
disposition. Also included in these parameters is a
specification of which signal the job expects to receive
when its wall clock time limit is near, and how long before
the time limit the signal should be sent. As described in
Section 3, the user control variable PLIRIS CR SIGNUM
specifies the signal number that will be sent to signal
imminent job termination or scheduled system shutdown.
Lines 30-31 and 33-34 provide the logic to perform multiple
successive application launches within the job, each
potentially restarting from a checkpoint set generated from
the prior launch, in the event that a prior launch was
terminated due to a node failure. Note that the job allocates
2308 nodes, but the application launches on only 2304
nodes (36864 / 16), leaving four spare nodes available in the
event of node failure. This resilience technique allows a job
to re-launch the application up to four times within the same
allocation. Each successive launch writes its standard
output to a separate file, to aid in determining the exit status
of the launch.

The Pliris-C/R code performs a check from MPI rank 0
after every iteration of the loop over matrix columns in
factor () to see if the signal has been received, and if it has,
the code performs a checkpoint write. In line 5 of the script,
the signal 23 is specified.

This resiliency feature has also been used in other job
scripts on Cielo [20].

B. Managing Checkpoint Storage Areas

Pliris-C/R is coded to check for the existence of the
checkpoint files, and if necessary, create the files and assign
their stripe characteristics so that subsequent reads and
writes will be performed in an optimal fashion. As
mentioned in Section 3, the creation process can be costly
when the system is busy; this is especially true of stripe
assignment. As a result, the solver process can be delayed
while this creation process takes place. To mitigate this
delay, a standalone serial program called pliris_cr is
available to allow the user to prepare the checkpoint
directories with restart files before the application executes
its checkpoint code (i.e., while the job is waiting in the
queue, or while the application is factoring the first batch of
columns).

The pliris_cr program takes three command-line
arguments: the matrix size (known within the Pliris code as
ncols_matrix), the number of processes across which the
matrix is partitioned (npes per col), and the operation to
perform (setup, verify, or cleanup). The program also reads
the environment variables PLIRIS CR_NFS,
PLIRIS CR DIR, PLIRIS CR NS, PLIRIS CR NF, and
PLIRIS CR COUNT. From this information, the program
is able to form the names of the checkpoint files that the
solver application will write. The program then goes
through the list of files and, for the operation ‘setup’, creates
each one and sets its proper stripe characteristics. (The

‘cleanup’ operation removes the checkpoint files and
directories, and the ‘verify’ argument directs the program to
verify that all files are present on their assigned OSTs.)

Once the checkpoint files are all in place, Pliris-C/R in
the factor () function will sense their presence and choose
the more efficient code path for opening the files.

Fig. 5 shows the set of commands that could be executed
to prepare the checkpoint directories using pliris_cr.

#!/bin/bash

export PLIRIS JOBNAME=cr test
export PLIRIS CR_NFS=3

export PLIRIS CR _NFS=3
DIR=${PLIRIS JOBNAME}
DIR2=/Iscratch2/$ {USER}/$ {DIR}
DIR3=/Iscratch3/$ {USER}/$ {DIR}
DIR4=/Iscratch4/$ {USER}/$ {DIR}
PLIRIS CR DIR="${DIR2} ${DIR3} ${DIR4}"
10 export PLIRIS CR DIR

11 export PLIRIS CR NS="144 288 144"
12 export PLIRIS CR NF=4608

13 export PLIRIS CR_COUNT=6

14 /pliris_cr 1920000 192 setup

15 # All done

O 001N N~ W —

Figure 5: Sample pliris_cr Script

C. Detecting and Managing Job Hangs

Over the course of the past three years in which EIGER
has run on Cielo, there have been instances where the
application has experienced a hang condition, and consumed
several hours tying up nodes while making no progress. To
assist in monitoring the long-running EIGER applications
and detecting such conditions, the pliris_watch program
has been implemented. This program takes as input four
parameters: the batch job ID of the job running the
application; the expected time (in seconds) required to
perform the factorization; a grace period, in seconds; and an
action to perform (report-only or report-and-signal). The
program reads the environment table for the PLIRIS CR
variables (which should match those used in the job) and
computes the expected times when checkpoint sets should
appear on the system. It then watches for the
appearance/update of the intact file associated with the
checkpoint sets. If the file fails to appear/update at the
expected times (plus the specified grace period), then the
program performs the specified action. This program can be
run within the batch job, in the background alongside the
EIGER application itself, or from an interactive login
session.

VII. RESULTS FROM RECENT EIGER RUNS

The typical production EIGER run factors a matrix of
2474989 double-precision complex elements. A matrix of
this size implies a checkpoint set of size approximately
9.801e13 bytes. The best checkpoint times observed so far
were in job 1474501, run on 4/14/2014, where the range

across six checkpoint operations was 871 to 956 seconds,
writing to 500 OSTs spread across the three Lustre file
systems. This yields an effective bandwidth of 1.050e11
bytes/second, which compares favorably to the projected
effective N-N bandwidth of 94600 MiB/s on the fs_test
benchmark from Section 2 (i.e., 1.050e11/500 = 2.1e8
versus 94600%1048576/576 = 1.722¢8). The EIGER
bandwidth also compares favorably with the bandwidth
reported in [14], where 57 GB/s was observed when writing
to 288 OSTs of Cielo’s /lscratch3 file system from 65536
processes using turnstiling (i.e., 2.1e8 versus 5.7¢10/288 =
1.979¢8). The worst checkpoint times observed so far were
in job 1568851, run on 11/25/2014, where the range across
seven checkpoint operations was 2004 to 2826 seconds.
Investigations into the cause for the low performance in this
case are ongoing.

VIIL.

With the upcoming installation and deployment of the
Trinity XC system, with its DataWarp and DNE
technologies, we will be interested to see how useful or
necessary the Pliris-C/R optimizations will be on that
system. In the interest of reducing restart time, we will be
looking at ways to reduce or eliminate the matrix fill step
for runs that read from a checkpoint set. There may be ways
to overlap I/O on static portions of the matrix with
factorization of the active portion, and we will investigate
this possibility. We would also like to explore the value of
adding a first-come first-served scheme to the queueing of
processes at a turnstile. Finally, we will investigate
improvements that would allow the user to specify a
checkpoint interval that comes closer to achieving optimal
work time; this may become important on future systems,
where the reliability parameters (M/5) will likely become
even more of a factor in resiliency analysis.

FUTURE WORK

ACKNOWLEDGMENT

The authors thank the following people for their
assistance in this work. Courtenay Vaughn (Sandia) and
Brett Kettering (LANL) reviewed an early draft of this
paper and provided valuable comments. Dan Poznanovic
(Cray) reviewed a final draft and pointed out where some
key points could be clarified. Any errors that remain are the
responsibility of the authors.

REFERENCES

[1] http://www.nnsa.energy.gov/aboutus/ourprograms/
defenseprograms/futurescienceandtechnologyprograms/asc

[2] http://nnsa.energy.gov/aboutus/ourprograms/
defenseprograms/futurescienceandtechnologyprograms/
asc/supercomputers#cielo

[3] http://www.lanl.gov/projects/cielo/index.php

[4] http://nnsa.energy.gov/aboutus/ourprograms/

defenseprograms/futurescienceandtechnologyprograms/
asc/ascnewsletters-0 , p. 4.

http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/ascnewsletters-0
http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/ascnewsletters-0
http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/ascnewsletters-0
http://www.lanl.gov/projects/cielo/index.php
http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/supercomputers#cielo
http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/supercomputers#cielo
http://nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/supercomputers#cielo
http://www.nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc
http://www.nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc

(1]

[12]

[14]

[16]

http://www.nnsa.energy.gov/aboutus/ourprograms
/defenseprograms/futurescienceandtechnologyprograms/
asc/ascnewsletters/ascmarl3

W.A. Johnson et al., “EIGER™: an open-source frequency-
domain electromagnetics code,” Antennas and Propagation
Society International Symposium, 2007 IEEE, pp. 3328-3331,
doi: 10.1109/APS.2007.4396249.

http://trilinos.org/docs/dev/packages/pliris/doc/html/index.ht
ml

J. D. Kotulski, “Pliris: review and new capabilities,” Trilinos
User Group Meeting, November 2005, Albuquerque, NM.
http://trilinos.sandia.gov/events/trilinos_user_group_2005/pre
sentations/kotulski.pdf

http:/trilinos.org

B. A. Hendrickson and D.E. Womble, “The torus-wrap
mapping for dense matrix calculations on massively parallel
computers,” SIAM Journal of Scientific Computing, vol. 15,
no. 5, September 1994, pp. 1201-1226, doi:10.1137/0915074.

Lustre 1.8 Operations Manual. Sun Microsystems, Inc., Santa
Clara, CA, 2010.
https://docs.oracle.com/cd/E19495-01/821-0035-12/821-
0035-12.pdf.

B. M. Kettering, D. Bonnie, A. Torrez, and D. Shrader,
“Lustre and PLFS parallel I/O performance on a Cray XEG6,”
Cray User Group Conference, May 2014, Lugano,
Switzerland.
https://cug.org/proceedings/cug2014_proceedings/includes/fil
es/papl01.pdf

L. Crosby, ‘“Parallel I/O techniques and performance
optimization,” NICS Spring Training, National Institute for
Computational Sciences, March 2012.
http://www.nics.tennessee.edu/sites/www.nics.tennessee.edu/f
iles/pdf/Lonnie.pdf

S. Langer, A. Bhatele, and C. H. Still, “pF3D simulations of
laser-plasma interactions in National Ignition Facility
experiments,” Computing in Science and Engineering, vol.
99, August 2014, IEEE Computer Society, doi:
10.1109/MCSE.2014.79.
http://charm.cs.illinois.edu/~bhatele/pubs/pdf/2014/cise2014.
pdf

J.T. Daly, “A higher order estimate of the optimum
checkpoint interval for restart dumps,” Future Generation
Computer Systems, Vol. 22, Elsevier B.V., Amsterdam, 2006,
pp. 303-312.

J.A. Ang et al., “Alliance for Computing at Extreme Scale,”
Cray User Group Conference, May 2010, Edinburgh,
Scotland. https://cug.org/5-
publications/proceedings_attendee_lists/ CUG10CD/pages/1-
program/final program/CUG10_Proceedings/pages/authors/1
6-18Thursday/17A-Dosanjh-slidesACES-CUG.pdf

W.R. Stevens, Advanced Programming in the UNIX®
Environment. Addison-Wesley, Reading, MA, 1993, pp. 479-
489.

Cray Bug 805877. https://crayport.cray.com.

Cray Bug 824359. https://crayport.cray.com.

J.O. Stevenson et al., “Reliable Computation Using
Unpredictable Components, JOWOG-34 Spring 2012
Conference, May 2012, Los Alamos, NM.

https://crayport.cray.com/
https://crayport.cray.com/
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/16-18Thursday/17A-Dosanjh-slidesACES-CUG.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/16-18Thursday/17A-Dosanjh-slidesACES-CUG.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/16-18Thursday/17A-Dosanjh-slidesACES-CUG.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/16-18Thursday/17A-Dosanjh-slidesACES-CUG.pdf
http://charm.cs.illinois.edu/~bhatele/pubs/pdf/2014/cise2014.pdf
http://charm.cs.illinois.edu/~bhatele/pubs/pdf/2014/cise2014.pdf
http://www.nics.tennessee.edu/sites/www.nics.tennessee.edu/files/pdf/Lonnie.pdf
http://www.nics.tennessee.edu/sites/www.nics.tennessee.edu/files/pdf/Lonnie.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap101.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap101.pdf
https://docs.oracle.com/cd/E19495-01/821-0035-12/821-0035-12.pdf
https://docs.oracle.com/cd/E19495-01/821-0035-12/821-0035-12.pdf
http://trilinos.org/
http://trilinos.sandia.gov/events/trilinos_user_group_2005/presentations/kotulski.pdf
http://trilinos.sandia.gov/events/trilinos_user_group_2005/presentations/kotulski.pdf
http://trilinos.org/docs/dev/packages/pliris/doc/html/index.html
http://trilinos.org/docs/dev/packages/pliris/doc/html/index.html
http://www.nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/ascnewsletters/ascmar13
http://www.nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/ascnewsletters/ascmar13
http://www.nnsa.energy.gov/aboutus/ourprograms/defenseprograms/futurescienceandtechnologyprograms/asc/ascnewsletters/ascmar13

