

SAND2015-3730C

Sampling and Preconditioning Strategies for ℓ_1 -minimization

John D. Jakeman

Senior Member of Technical Staff
Optimization and Uncertainty Quantification Department
Sandia National Laboratories
Albuquerque, NM USA

Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Polynomial Chaos Expansions (PCE)

Multidimensional approximation of $f(\xi)$ with finite variance

$$f(\xi) \approx f_{\Lambda}(\xi) = \sum_{\lambda \in \Lambda} \alpha_{\lambda} \phi_{\lambda}(\xi), \quad \lambda = (\lambda_1, \dots, \lambda_d)$$

Orthonormal basis

$$(\phi_i(\xi), \phi_j(\xi)) = \int_{I_{\xi}} \phi_i(\xi) \phi_j(\xi) \rho(\xi) = \delta_{ij}$$

Assume ordering $n = 1, \dots, N$ assigned to elements of Λ

Askey scheme

Normal	Hermite $He_n(x)$	$e^{\frac{-x^2}{2}}$	$[-\infty, \infty]$
Uniform	Legendre $P_n(x)$	$\frac{1}{2}$	$[-1, 1]$

What does compressed sensing do?

Compressed sensing attempts to find a sparse solution that is a “good” approximation of the observational data

A sparse solution

$$s = \#\{\lambda : |\alpha_\lambda| > 0\}$$

Typical “Good” approximation

$$\|f(\xi_m) - f_\Lambda(\xi_m)\|_2 \leq \varepsilon$$

Compressed Sensing

Generate M model runs

$$\Xi_M = \{\xi_1, \dots, \xi_M\}, \quad \mathbf{f} = (f(\xi_1), \dots, f(\xi_M))^T$$

We want 'good' solution to

$$\begin{bmatrix} f(\xi_1) \\ f(\xi_2) \\ \vdots \\ f(\xi_M) \end{bmatrix} = \begin{bmatrix} \phi_1(\xi_1) & \phi_2(\xi_1) & \dots & \phi_N(\xi_1) \\ \phi_1(\xi_2) & \phi_2(\xi_2) & \dots & \phi_N(\xi_2) \\ \vdots & \vdots & & \vdots \\ \phi_1(\xi_M) & \phi_2(\xi_M) & \dots & \phi_N(\xi_M) \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_N \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_M \end{bmatrix}$$

How does one find a “good” sparse solution?

ℓ_0 -minimization (NP HARD)

$$\arg \min_{\alpha} \|\alpha\|_0 \text{ s.t. } \|f(\Xi_M) - f_\Lambda(\Xi_M)\|_2 \leq \varepsilon$$

ℓ_1 -minimization

$$\arg \min_{\alpha} \|\alpha\|_1 \text{ s.t. } \|f(\Xi_M) - f_\Lambda(\Xi_M)\|_2 \leq \varepsilon$$

Requirements for finding a sparse solution

Small mutual coherence μ

$$\mu(\Phi) = \max_{1 < j < k \leq P} \frac{|\tilde{\phi}_j^T \tilde{\phi}_k|}{\|\tilde{\phi}_j\|_2 \|\tilde{\phi}_k\|_2}$$

Small RIP constant δ_s

$$(1 - \delta_s) \|\alpha_s\|_2^2 \leq \|\Phi \alpha_s\|_2^2 \leq (1 + \delta_s) \|\alpha_s\|_2^2$$

Theorem: RIP bound for Orthonormal Systems [Rahut and Ward 2010]

Consider the orthonormal system $\{\phi_j, j \in [N]\}$ with

$$\sup_{\xi \in D, j \in [N]} \|\phi_j\|_\infty \leq K$$

and the matrix $\Phi \in \mathbb{R}^{M \times N}$ with entries formed by i.i.d. samples drawn from w . If

$$M \geq C\delta^{-2}K^2s \log^3(s) \log(N), \quad (1)$$

then with probability at least $1 - N^{-\gamma \log^3(s)}$ the restricted isometry constant δ_s of $\frac{1}{\sqrt{M}}\Phi$ satisfies $\delta_s \leq \delta$ for universal constants $C, \gamma > 0$

Motivation for the equilibrium measure

ℓ_1 -minimization

Allows one to bound weighted polynomials.

Regression

Ensures that the stability of the condition number can be achieved using only log-linear, i.e. $M = N \log N$.

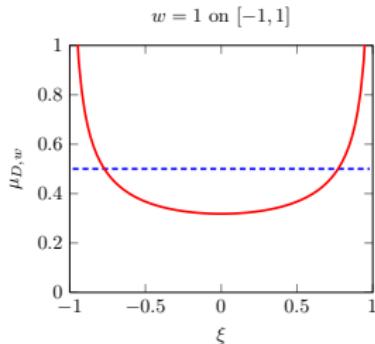
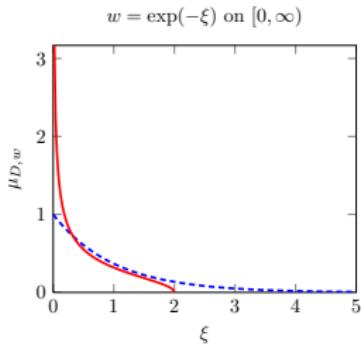
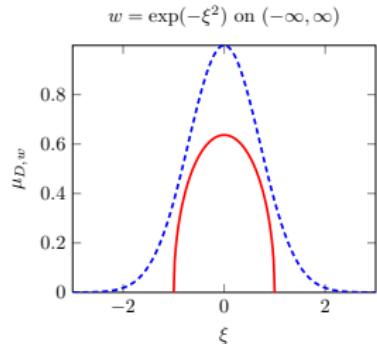
Interpolation

It is necessary to sample from the equilibrium measure to obtain a 'good' Lebesgue constant.

The equilibrium measure

Given D and w , we will be concerned with $\mu_{I_\xi, w}$

- ▶ $\mu_{I_\xi, w}$ is a unique probability measure
- ▶ $\mu_{I_\xi, w}$ has compact support (even if D does not)
- ▶ With $d = 1$, $\mu_{I_\xi, w}$ coincides with the weighted potential-theoretic equilibrium measure (e.g., “Chebyshev-like” on 1D intervals)



Equilibrium sampling: Normal

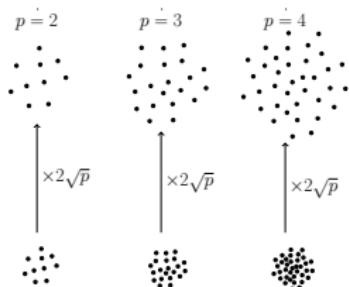
Let $z_i \sim N(0, 1)$ and $u \sim U[0, 1]$

$$\mathbf{y} = \frac{\mathbf{x}}{\|\mathbf{x}\|_2} u, \quad \xi = \mathbf{y} 2\sqrt{p}$$

Equilibrium sampling: Gamma

Let $z_i \sim \text{Gamma}(1/2, 1)$ and $u \sim U[0, 1]$

$$\mathbf{y} = \frac{\mathbf{x}}{\|\mathbf{x}\|_2} u, \quad \xi = \mathbf{y} 4p$$



The Christoffel function

$$W_\Lambda(\xi) = \sum_{n=1}^N \phi_n^2(\xi)$$

When applied to Gauss quadrature points the Christoffel function returns the Gauss quadrature weights

Theorem [Nevai et. al. 1994]

$$\max_{\xi \in [-1, 1]} \frac{N\phi_N^2(\xi)}{\sum_{k=0}^N \phi_k^2(\xi)} \leq \frac{4N(2 + \sqrt{\alpha^2 + \beta^2})}{2N + \alpha + \beta + 2} = K$$

[Levin and Lubinsky 1994]

Similar more complicated bounds are known for unbounded variables with weight functions of the form

$$w(x) = \exp(-|\xi|^\alpha), \quad \alpha > 1$$

Theorem: [Jakeman et al.]

Let $M, N, s \in \mathbb{N}$ be given such that

$$M \geq Cs \log^3(s) \log(N).$$

Suppose that M sampling points $\xi_m \sim \text{i.i.d } \rho_{I_{\xi}, W}$ and consider $\Phi \in \mathbb{R}^{M \times N}$ and the W with non-zero entries

$$W_{ii} = N^{-1} \sum_{j=1}^N \phi_j^2(\xi_i)$$

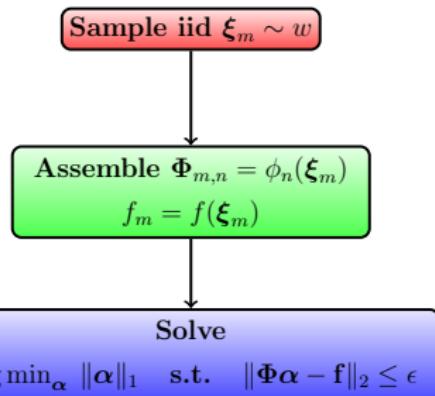
Then with probability exceeding $1 - N^{-\gamma \log^3(s)}$ the following holds for all polynomials $p_N(x)$. Suppose that noisy sample values $\mathbf{f} = \Phi\alpha + \eta$ are observed, and $\|W\eta\|_\infty \leq \varepsilon$. Then α is recoverable to within a factor of its best s -term approximation ℓ_p -error $\sigma_s(z)_p$ and to a factor of the noise level ε by solving the inequality-constrained ℓ_1 -minimization problem

$$\alpha^* = \arg \min_{\alpha} \|\alpha\|_1 \quad \text{such that} \quad \|W\Phi\alpha - W\mathbf{f}\|_2 \leq \varepsilon$$

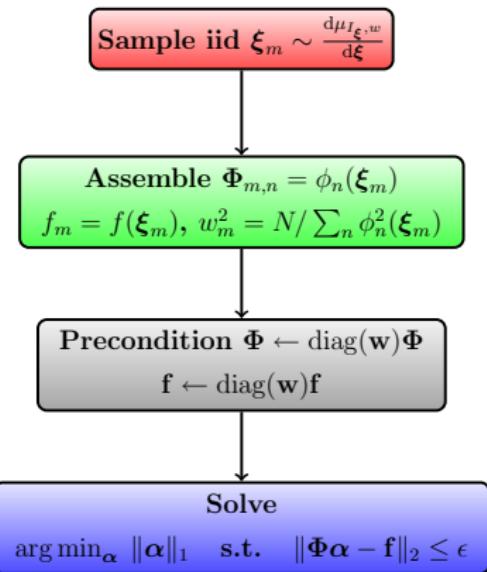
Precisely,

$$\|\alpha - \alpha^*\|_2 \leq \frac{C_1 \sigma_s(c)_1}{\sqrt{s}} + C_2 \varepsilon, \quad \|\alpha - \alpha^*\|_1 \leq D_1 \sigma_s(c)_1 + D_2 \sqrt{s} \varepsilon$$

Standard ℓ_1 -minimization



Christoffel Sparse Approximation (CSA)



Manufactured solutions

- ▶ Generate s -sparse vectors α
 - ▶ Index of each non-zero entries chosen $i \sim U(1, N)$ without replacement
 - ▶ Value of each non-zero entry $\alpha_i \sim N(0, 1)$
- ▶ Use Basis Pursuit to recover coefficients α^* from noiseless data $f(\xi_m) = \sum_{n=1}^N \alpha_n \phi_n(\xi)$
 - ▶ Generate samples from w and $\rho_{I_\xi, w}$
- ▶ Recovery successful if $\|\alpha - \alpha^*\|_2 / \|\alpha\|_2 \leq 0.01$
- ▶ Measure probability of recovery using 100 trials

Alternative pre-conditioning schemes

Uniform

Let $z_i \sim U(0, 1)$

$$\xi = \cos(\pi z), \quad w_{m,m} = \prod_{i=1}^d (1 - \xi_i^2)^{1/4}$$

Gaussian

Let $z_i \sim N(0, 1)$ and $u \sim U[0, 1]$

$$\mathbf{y} = \frac{\mathbf{x}}{\|\mathbf{x}\|_2} u^{1/d}, \quad \xi = \mathbf{y} \sqrt{2} \sqrt{2p+1}$$

$$w_{m,m} = \exp(-\|\xi\|_2^2/4)$$

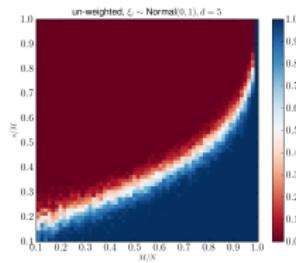
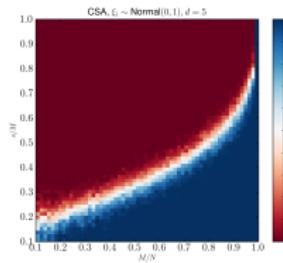
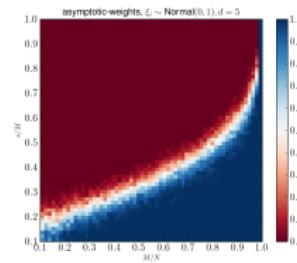
- ▶ Asymptotic sampling: \mathbf{y} are uniformly sampled in the unit ball.
- ▶ Equilibrium sampling: \mathbf{y} are concentrated towards the center of the unit ball.

Special mention: coherence optimal sampling based upon MCMC for uniform and Gaussian variables.

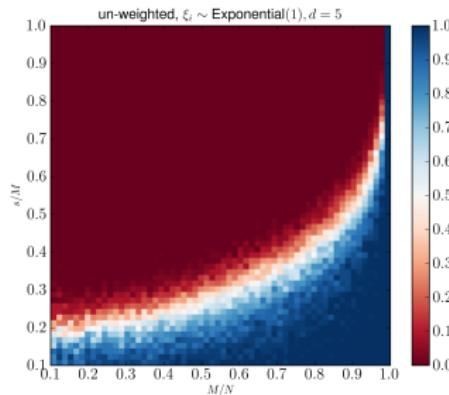
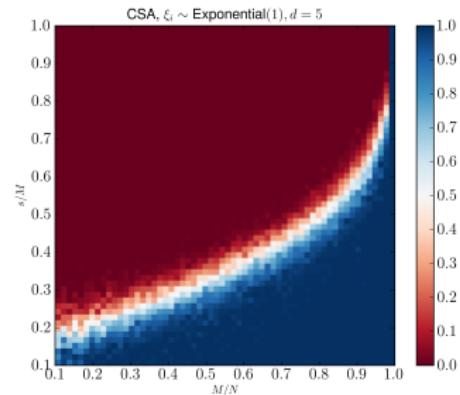
Uniform Variables



Gaussian Variables



Exponential Variables



Approximating an Elliptic PDE

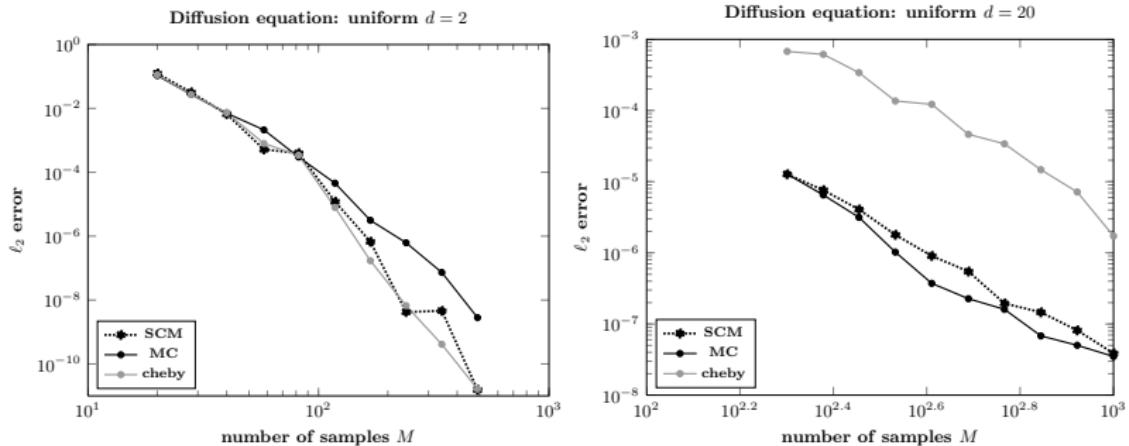
We want to approximate $q(\xi) = u(1/2, \xi)$ where

$$\begin{aligned} -\frac{d}{dx} \left[a(x, \xi) \frac{du}{dx}(x, \xi) \right] &= 1 \quad (x, \xi) \in (0, 1) \times I_\xi \\ u(0, \xi) &= u(1, \xi) = 0 \end{aligned}$$

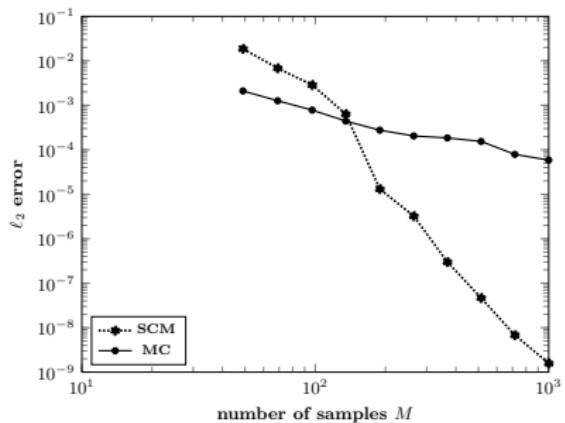
with diffusivity $\log(a(x, \xi)) = \bar{a} + \sigma_a \sum_{k=1}^d \sqrt{\lambda_k} \varphi_k(x) \xi_k$, where

$\{\lambda_k\}_{k=1}^d$ and $\{\varphi_k(x)\}_{k=1}^d$ are determined by $C_a(x_1, x_2) = \exp \left[-\frac{(x_1 - x_2)^2}{l_c^2} \right]$

Measure accuracy in PCE approximation \hat{q} by computing
 $M_{\text{test}}^{-1/2} \|q - \hat{q}\|_{\ell_2(w)}$ using $M_{\text{test}} = 10000$ samples from $w(\xi)$.



Diffusion equation: beta $d = 5$



Diffusion equation: beta $d = 10$

