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Polynomial Chaos Expansions (PCE)

Multidimensional approximation of f (ξ) with finite variance

f (ξ) ≈ fΛ(ξ) =
∑
λ∈Λ

αλφλ(ξ), λ = (λ1, . . . , λd)

Orthonormal basis

(φi (ξ), φj(ξ)) =

∫
Iξ

φi (ξ)φj(ξ)ρ(ξ) = δij

Assume ordering n = 1, . . . ,N assigned to elements of Λ

Askey scheme

Normal Hermite Hen(x) e
−x2

2 [−∞,∞]
Uniform Legendre Pn(x) 1

2 [−1, 1]



What does compressed sensing do?

Compressed sensing attempts to find a
sparse solution that is a “good’

approximation of the observational data

A sparse solution

s = #{λ : |αλ| > 0}

Typical “Good” approximation

‖f (ξm)− fΛ(ξm)‖2 ≤ ε



Compressed Sensing

Generate M model runs

ΞM = {ξ1, . . . , ξM}, f = (f (ξ1), . . . , f (ξM))T

We want ‘good’ solution to
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How does one find a “good” sparse
solution?

`0-minimization (NP HARD)

arg minα ‖α‖0 s.t. ‖f (ΞM)− fΛ(ΞM)‖2 ≤ ε

`1-minimization

arg minα ‖α‖1 s.t. ‖f (ΞM)− fΛ(ΞM)‖2 ≤ ε



Requirements for finding a sparse
solution

Small mutual coherence µ

µ(Φ) = max
1<j<k≤P

˛̨̨
φ̃T

j φ̃k

˛̨̨
‚‚‚φ̃j

‚‚‚
2

‚‚‚φ̃k

‚‚‚
2

Small RIP constant δs

(1− δs) ‖αs‖2
2 ≤ ‖Φαs‖2

2 ≤ (1 + δs) ‖αs‖2
2



Theorem: RIP bound for Orthonormal Systems
[Rahut and Ward 2010]

Consider the orthonormal system {φj , j ∈ [N]} with

sup
ξ∈D,j∈[N]

‖φj‖∞ ≤ K

and the matrix Φ ∈ RM×N with entries formed by i.i.d. samples drawn
from w . If

M ≥ Cδ−2K 2s log3(s) log(N), (1)

then with probability at least 1−N−γ log3(s) the restricted isometry constant

δs of 1√
M

Φ satisfies δs ≤ δ for universal constants C , γ > 0



Motivation for the equilibrium
measure

`1-minimization

Allows one to bound weighted polynomials.

Regression

Ensures that the stability of the condition number can be
achieved using only log-linear, i.e. M = N log N.

Interpolation

It is necessary to sample from the equilibrium measure to
obtain a ‘good’ Levesque constant.



The equilibrium measure

Given D and w , we will be concerned with µIξ,w

I µIξ,w is a unique probability measure

I µIξ,w has compact support (even if D does not)

I With d = 1, µIξ,w coincides with the weighted
potential-theoretic equilibrium measure (e.g.,
“Chebyshev-like” on 1D intervals)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

ξ

µ
D

,w

w = 1 on [−1, 1]

0 1 2 3 4 5
0

1

2

3

ξ

µ
D

,w

w = exp(−ξ) on [0,∞)

−2 0 2
0

0.2

0.4

0.6

0.8

ξ

µ
D

,w

w = exp(−ξ2) on (−∞,∞)



Equilibrium sampling: Normal

Let zi ∼ N(0, 1) and u ∼ U[0, 1]

y =
x

‖x‖2

u, ξ = y2
√

p

Equilibrium sampling: Gamma

Let zi ∼ Gamma(1/2, 1) and u ∼ U[0, 1]

y =
x

‖x‖2

u, ξ = y4p

×2
√

p

p = 2

×2
√

p

p = 3

×2
√

p

p = 4



The Christoffel function

WΛ(ξ) =
N∑

n=1

φ2
n(ξ)

When applied to Gauss quadrature points the Christoffel
function returns the Gauss quadrature weights



Theorem [Nevai et. al. 1994]

max
ξ∈[−1,1]

Nφ2
N(ξ)PN

k=0 φ
2
k(ξ)

≤
4N(2 +

p
α2 + β2)

2N + α + β + 2
= K

[Levin and Lubinsky 1994]

Similar more complicated bounds are known for unbounded variables
with weight functions of the form

w(x) = exp(− |ξ|α), α > 1



Theorem: [Jakeman et al.]

Let M,N, s ∈ N be given such that

M ≥ Cs log3(s) log(N).

Suppose that M sampling points ξm ∼ i.i.d ρIξ,w and consider Φ ∈ RM×N

and the W with non-zero entries

Wii = N−1
NX

j=1

φ2
j (ξi )

Then with probability exceeding 1 − N−γ log3(s) the following holds for all
polynomials pN(x). Suppose that noisy sample values f = Φα + η are
observed, and ‖Wη‖∞ ≤ ε. Then α is recoverable to within a factor of
its best s-term approximation `p-error σs(z)p and to a factor of the noise
level ε by solving the inequality-constrained `1-minimization problem

α? = arg min
α

‖α‖1 such that ‖WΦα−Wf‖2 ≤ ε

Precisely,

‖α−α?‖2 ≤
C1σs(c)1√

s
+ C2ε, ‖α−α?‖1 ≤ D1σs(c)1 + D2

√
sε



Standard `1-minimization Christoffel Sparse Approximation (CSA)

Sample iid ξm ∼ w Sample iid ξm ∼
dµIξ,w

dξ

Assemble Φm,n = φn(ξm)

fm = f(ξm)

Assemble Φm,n = φn(ξm)

fm = f(ξm), w2
m = N/

∑
n φ

2
n(ξm)

Precondition Φ← diag(w)Φ

f ← diag(w)f

Solve

arg minα ‖α‖1 s.t. ‖Φα− f‖2 ≤ ε

Solve

arg minα ‖α‖1 s.t. ‖Φα− f‖2 ≤ ε



Manufactured solutions

I Generate s-sparse vectors α
I Index of each non-zero entries chosen i ∼ U(1,N)

without replacement
I Value of each non-zero entry αi ∼ N(0, 1)

I Use Basis Pursuit to recover coefficients α? from
noiseless data f (ξm) =

∑N
n=1 αnφn(ξ)

I Generate samples from w and ρIξ,w

I Recovery successful if ‖α−α?‖2 / ‖α‖2 ≤ 0.01

I Measure probability of recovery using 100 trials



Alternative pre-conditioning schemes

Uniform

Let zi ∼ U(0, 1)

ξ = cos(πz), wm,m =
dY

i=1

(1− ξ2
i )1/4

Gaussian

Let zi ∼ N(0, 1) and u ∼ U[0, 1]

y =
x

‖x‖2

u1/d , ξ = y
√

2
p

2p + 1

wm,m = exp(−‖ξ‖2
2/4)

I Asymptotic sampling: y are uniformly sampled in the unit ball.

I Equilibrium sampling: y are concentrated towards the center of the
unit ball.

Special mention: coherence optimal sampling based upon MCMC for uniform and Gaussian variables.



Uniform Variables



Gaussian Variables



Exponential Variables



Approximating an Eliptic PDE

We want to approximate q(ξ) = u(1/2, ξ) where

− d

dx

»
a(x , ξ)

du

dx
(x , ξ)

–
= 1 (x , ξ) ∈ (0, 1)× Iξ

u(0, ξ) = u(1, ξ) = 0

with diffusivity log(a(x , ξ)) = ā + σa

Pd
k=1

√
λkϕk(x)ξk , where

{λk}dk=1 and {ϕk(x)}dk=1 are determined by Ca(x1, x2) = exp
h
− (x1−x2)2

l2c

i
Measure accuracy in PCE approximation q̂ by computing

M
−1/2
test ‖q − q̂‖`2(w) using Mtest = 10000 samples from w(ξ).



101 102 103

10−10

10−8

10−6

10−4

10−2

100

number of samples M

` 2
e
rr

o
r

Diffusion equation: uniform d = 2

SCM

MC

cheby

102 102.2 102.4 102.6 102.8 103
10−8

10−7

10−6

10−5

10−4

10−3

number of samples M
` 2

e
rr

o
r

Diffusion equation: uniform d = 20

SCM

MC

cheby



101 102 103
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

number of samples M

` 2
e
rr

o
r

Diffusion equation: beta d = 5

SCM

MC

102 102.2 102.4 102.6 102.8 103
10−7

10−6

10−5

10−4

10−3

10−2

number of samples M
` 2

e
rr

o
r

Diffusion equation: beta d = 10

SCM

MC


