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Polynomial Chaos Expansions (PCE)

Multidimensional approximation of (&) with finite variance

Askey scheme

Normal Hermite He,(x)

Uniform Legendre Pp(x)




What does compressed sensing do?

Compressed sensing attempts to find a
sparse solution that is a “good’
approximation of the observational data

A sparse solution l

Typical “Good" approximation

1£(&m) — fa(€m)ll2 < €




Compressed Sensing

Generate M model runs

#1(&1)
#1(&2)

csMéM)




How does one find a “good” sparse
solution?

lo-minimization (NP HARD)

argming, [|aljo s.t. [|[F(Bm) — A(BEm)]2 < e

¢1-minimization

arg ming, ||a|1 s.t. [|[F(Bum) — A(Em)|2 < e




Requirements for finding a sparse
solution

Small mutual coherence p

Small RIP constant 4.

(1 - 85) lewsll3 < [Bevs[3 < (1+ 65) ows]




Theorem: RIP bound for Orthonormal Systems
[Rahut and Ward 2010]

Consider the orthonormal system {¢;,j € [N]} with
sup )l < K
§€DJEN]
and the matrix ® € RV
from w. If

with entries formed by i.i.d. samples drawn

M > C6>K’slog’(s) log(N), (1)

then with probability at least 1—N~7'°6"() the restricted isometry constant

s of \%W(I) satisfies ds < & for universal constants C,v > 0




Motivation for the equilibrium
measure

/1-minimization

Allows one to bound weighted polynomials.

Regression

Ensures that the stability of the condition number can be
achieved using only log-linear, i.e. M = Nlog N.

Interpolation

It is necessary to sample from the equilibrium measure to

obtain a ‘good’ Levesque constant.




The equilibrium measure

Given D and w, we will be concerned with Pl w

> [ew is @ unique probability measure
> f1)..w has compact support (even if D does not)

» With d =1, ol w coincides with the weighted
potential-theoretic equilibrium measure (e.g.,
“Chebyshev-like” on 1D intervals)

N
w=1on[-1,1] w = exp(—€) on [0, 00) w = exp(—£2) on (=00, 00)




Equilibrium sampling: Normal

Let z ~ N(0,1) and u ~ U[0,1]

X

y=-———u, &=y2/p
[l

Equilibrium sampling: Gamma

Let zi ~ Gamma(1/2,1) and u ~ U0, 1]

X
Y=t §=ya4p

1]l




The Christoffel function

When applied to Gauss quadrature points the Christoffel
function returns the Gauss quadrature weights




Theorem [Nevai et. al. 1994]

Ny (§)  _ 4N+

maXx —_—
ee[-1,1] Zlkv:o $2(€) ~ 2N+a+p3+2

[Levin and Lubinsky 1994]

Similar more complicated bounds are known for unbounded variables
with weight functions of the form

w(x) =exp(— [£]%), a>1




Theorem: [Jakeman et al.]

Let M, N,s € N be given such that
M > Cslog>(s) log(N).

Suppose that M sampling points &m ~ i.i.d pj.,w and consider ® € RM*N
and the W with non-zero entries

N
Wi = N1 ¢i(&)
j=1

Then with probability exceeding 1 — N~7"°€') the following holds for all
polynomials py(x). Suppose that noisy sample values f = ®a + 7 are
observed, and |[Wn)||_, < e. Then a is recoverable to within a factor of
its best s-term approximation £,-error os(z), and to a factor of the noise
level € by solving the inequality-constrained ¢;1-minimization problem

a” =argmin |lalj1 such that |[W®a — WF|; <e

Precisely,
G US(C)I
NG

la—all, < +Ge, o —a’ll, < Dios(c) + Dav/se




Standard /;-minimization Christoffel Sparse Approximation (CSA)

Sample iid &, ~ w [Sample iid £, ~ "“;2'“‘]

Jm = f(£1n) fn = f(Em)’ 'LU?,L = ]v/ Zn d’i(&m)

‘ Assemble ®,,, = ¢,(&,,) ’ Assemble ®,,, = ¢,(&,,) ]

Precondition ® — diag(w)®
f — diag(w)f




Manufactured solutions

» Generate s-sparse vectors «

» Index of each non-zero entries chosen i ~ U(1, N)
without replacement
» Value of each non-zero entry o; ~ N(0,1)

» Use Basis Pursuit to recover coefficients a* from
noiseless data (&) = ZnN:1 an®n(€)

» Generate samples from w and pj,

> Recovery successful if ||a — ||, / ||ex]|, < 0.01

» Measure probability of recovery using 100 trials




Alternative pre-conditioning schemes

Uniform

Let zi ~ U(0,1)
d

& =cos(mz), Wmm= H(l - 51‘2)1/4

i=1

Gaussian
Let zi ~ N(0,1) and u ~ U[0,1]
N W“Ud, € =yv2y2p+1
2

2
Win,m = exp(—||€[l2/4)
» Asymptotic sampling: y are uniformly sampled in the unit ball.

y

» Equilibrium sampling: y are concentrated towards the center of the
unit ball.

Special mention: coherence optimal sampling based upon MCMC for uniform and Gaussian variables.




Uniform Variables




Gaussian Variables




Exponential Variables

un-weighted, & ~ Exponential (1), d = 5 & ~ Exponential(1).




Approximating an Eliptic PDE

We want to approximate (&) = u(1/2,&) where

:X[( 5)*( )Fl (x,€) € (0,1) x Ig

u(0,§) = u(1,§) =0

with diffusivity log(a(x, €)) = 3+ 02 3 1_, VAkpk(x)ék, where
{3 and {pk(x)}i_; are determined by C.(x1,X2) = exp [ M]

Measure accuracy in PCE approximation § by computing

M /2 llg — aHéz(W) using Miest = 10000 samples from w(§).




fon equation: Diffusion equation: uniform d

#- SCM
—— MC
cheby

number of samples M




Diffusion equatio beta d =5 Diffusion equation: beta d =10

104

number of ples ] number of




