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A Novel Data-Driven Method for Nonstationarity
Detection in Radar Target Detection
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Abstract—Most existing radar algorithms are developed under
the assumption that the environment (clutter) is stationary.
However, in practice, the characteristics of the clutter can vary
enormously depending on the radar operational scenarios. If
unaccounted for, these nonstationary variabilities may drastically
hinder the radar performance. Therefore, to overcome such
shortcomings, we develop a data-driven method for target de-
tection in nonstationary environments. In this method, theradar
dynamically detects changes in the environment, and adaptsto
these changes by learning the new statistical characteristics of the
environment and by intelligibly updating its statistical detection
algorithm. Specifically, we employ drift detection algorithms to
detect changes in the environment; and incremental learning,
particularly learning under concept drift algorithms, to l earn the
new statistical characteristics of the environment from the new
radar data that become available in batches over a period of
time. The newly learned environment characteristics are then
integrated in the detection algorithm. We use Monte Carlo
simulations to demonstrate that the developed method provides a
significant improvement in the detection performance compared
with detection techniques that are not aware of the environmental
changes.

Keywords—Data-driven adaptive radar, cognitive radar, nonsta-
tionary environment, incremental learning, active drift learning

I. I NTRODUCTION

Increasing the accuracy of target detection and tracking is
of great importance in military and coastal security operations,
navigation, and maritime rescue operations. To guarantee the
accuracy of both detection and estimation, clutter, interference,
and noise must be suppressed to make the target signal dis-
tinguished. However, in practical scenarios, the characteristics
of clutter backscattering can vary enormously depending on
the region where the radar focuses its beam at a particular
instant (or, maybe during a few successive instants). Even
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when the radar operation is restricted to a particular region,
the change in weather conditions (temperature, wind speed,
humidity, etc.) can drastically change the clutter statistics in
maritime environments. Additionally, a highly-dynamic target,
for example, moving through an urban canyon, can show high
nonstationarity due to frequent appearance and disappearance
in the radar coverage area.

A considerable amount of research work has been done in
order to design radar systems that improve the performance of
target detection and tracking in the presence of these various
forms of nonstationarity. Particularly, in recent years, the desire
for a radar system that can effectivelysenseits scenario,learn
from its experience, andadapt to the changes in environment
has been emphasized, and a conceptual framework for a cogni-
tive fully adaptive radar that includes these three components
has been laid out [1]-[3]. To implement this cognitive radar
framework, several intelligent methods have been developed
(mostly considering each component separately):
• Practical methods to identify the distribution of the radar

measurements using a pre-learned dictionary of possible
probability density functions representing the clutter
characteristics [4]-[6], and to develop auto-regressive
modeling of clutter distribution with a knowledge-aided
Bayesian covariance estimation [7]-[10] for target detec-
tion;

• Adaptive weighted sum of clutter covariance estimates
with exponentially decaying weights and predetermined
delay constants [11], [12], waveform design that depends
on the clutter characteristics [13], and nonhomogeneity
detector in training data [14] for spatio-temporal adap-
tive processing applications,

• Target-state-dependent radar measurement models inte-
grated in a fully adaptive cognitive radar framework [1],
[15], [16] for target tracking.

These existing methods address important practical issues
in the realization of the cognitive radar framework. However,
these methods suffer from three shortcomings: (1) they have
been developed under the assumption of parametric distri-
bution for the clutter and noise processes; (2) a dictionary
of possible probability density functions is assumed to exist;
and (3) the problem of estimating the time instant when the
statistical characteristics of the data changes is not answered.
To overcome these shortcomings, in this paper, we develop
machine learning based target detection algorithms that enable
us to take a holistic approach to fully realize the cognitiveradar
framework. Our proposed radar system provides a unifying
approach by autonomously learning and estimating the change-
point in the statistical characteristics of the scenario, and by
accordingly adapting to the environment with the incorporation
of newly learned environment statistics into the target detection
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algorithm.
Specifically, we utilizeincremental learninganddrift detec-

tion algorithms for building a detection method that incremen-
tally learns the environment and updates the system parameters
on the fly. This becomes possible as the radar always provides
labels or labeled data (e.g., labels for target presence or ab-
sence, etc.) along with different confidence measures from the
received measurements in a sequential manner. Thus, we also
bypass the requirement of obtaining training data for infinitely
many representations of the nonstationary characteristics to
devise an efficient supervised learning algorithm.

While incrementally learning in a nonstationary environ-
ment, one major problem that the proposed intelligent radar
system encounters isconcept drift. Concept drift refers to
changes in the distributions of the measured data (correspond-
ingly the environment model) that are used for incremental
learning [17]-[30]. Therefore, in order to learn in the presence
of a concept drift, the radar system needs to employ incremen-
tal learning together with the active drift detection algorithms
for detecting the nonstationarities in the environment. This
can be implemented in two different ways: (1) active and (2)
passive concept drift learning [22], [23].

We consider anactive drift learningsetup in this paper.
This implies that the radar system first estimates the time
when a change occurs in the environment distribution from
which the measurement data are drawn, and then modifies its
detection algorithm with the new distribution to continue the
sequential learning. Consequently, thisdata-drivenapproach
complements the existing techniques as it is not limited to
any specific clutter/environment type and to any parametric
modeling approach.
Mathematical Notations:In the rest of the paper, we assume
that Cc for c ∈ {0, 1} denote the two classes that represent
the absence and presence of the target, respectively. In other
words,C0 andC1 are equivalent toH0 andH1 of radar target
detection hypotheses, respectively. For everyc ∈ {0, 1}, Hc

0
andHc

1 are the hypotheses corresponding to ‘no-change’ and
‘change’ in the distribution of data corresponding to class
Cc. We denote the calibration data set collected for both
classes asY0 = {yt, rt} for t = 1, . . . , T0, with yt as the
radar measurement,T0 as the number of measurements in the
calibration data, andrt = 0 if yt ∈ C0 andrt = 1 if yt ∈ C1.

II. PROPOSEDDETECTION METHOD

In order to analyze the nonstationarity in the environment
returns, we assume that some initial distribution models have
already been estimated from the pre-collected data. In this
paper, we refer to the pre-collected data ascalibration data.
We mention here that the calibration data is more general
than the well-known radar secondary data; this is because the
calibration data include measurements of both the target and
non-target components, whereas the conventional secondary
data represents only the non-target (clutter) data.

After modeling the initial distributions, our next task is
to develop learning algorithms that can effectively model the
nonstationarities caused by the changes in the environment. An
important step in that endeavor is to detect whether or not there

is any change in the statistical properties of the environmental
measurements. Assuming the change point to be deterministic
but unknown, we calculate it by minimizing the supremum of
the average detection delay conditioned on the observed radar
measurements with a constraint on the mean time between
false alarms.

Mathematically, this means that using the batches of radar
data observed up until the measurement timen, Yc

0 , . . . , Yc
n,

c ∈ {0, 1}, we estimate the time when the change in the
statistical characteristics of the data from classc is occurring
by employing the following constrained optimization problem
[31], [32]
argminτ supn≥1 ess sup En

[

(τ − n)+|Yc
0 , . . . , Yc

n−1

]

such that E∞[τ ] ≥ α (1)
where τ is the stopping time such that when it takes a
value k (it means that there is a change point at or prior to
time k); sup stands for supremum; ess sup is the essential
supremum of a set of random variables that we define below
in more detail;x+ = max(0, x) for any variablex; En[·]
is the expectation taken with respect to a distributionpcn
(such that underpcn, {Yc

0 , . . . , Yc
n−1} are independent and

identically distributed (i.i.d.) with a fixed marginal distribution
for c ∈ {0, 1}); E∞[τ ] represents the mean time between
false alarms assuming that change never happens in the data
stream; andα is a predefined threshold. Essential supremum
of a set of random variablesX is a random variableZ with the
following properties: (i)P (Z ≥ X) = 1 ∀X ∈ X ; and (ii)
{P (Y ≥ X) = 1, ∀X ∈ X} → P (Y ≥ Z) = 1, ∀X ∈ X ,
where P (·) represents the probability [31]. In light of the
definitions above, the solution to the constraint optimization
problem in (1) minimizes the supremum of the average delay
conditioned on the worst case realization of{Yc

0 , . . . , Yc
n−1}

over all pn, n ≥ 1 [31], [32].
Now, depending on the characterization ofpcn, the solution

of the problem in (1) can be further sub-categorized into two
different cases: (i) known parametric distribution ofpcn, i.e.,
when we have prior knowledge on the calibration data such that
the radar scattering from the environment follows a specific
parametric distribution family; and (ii) unknown distribution
of pcn, i.e., when we have no prior knowledge about the family
of the distribution of the radar data. We consider the first case
in this paper.

We obtain an optimal solution of (1) under the assumption
that{Yc

0 , . . . , Yc
n} for c ∈ {0, 1} are i.i.d. samples which are

drawn from a parametric distribution with probability density
function (pdf)pΘ(y) [33]-[37]. When there is a change in the
statistical characteristics of the new batch of radar data,we
assume that the pdf model of the family does not change, but
the change is modeled as a transition from one parameterθc0
(the null hypothesis for classCc, Hc

0) to anotherθc1 (alternative
hypothesis for classCc, Hc

1). Recall that for a specific classCc,
c ∈ {0, 1} represents the absence or presence of target in the
area covered by the radar, andHc

0 andHc
1 are two hypotheses

corresponding to ‘no-change’ and ‘change’ in the distribution
of the radar data obtained for classCc.

The optimum stopping timeτ for the problem in (1) is found
using CUmulative SUM (CUSUM) method which is calculated
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as follows [33]-[37]:

τ = inf

{

n ≥ 1 :

(

g(Yc
0 , . . . , Yc

n) = Rn − min
1≤k≤n

Rk

)

≥ b

}

,

(2)
wheren is the batch index as defined before;b is a predefined

threshold; andRk =
∑k

t=1 ln
pθc

1
(Yc

t )

pθc

0
(Yc

t )
[31]-[33]. Before a

change point, the accumulated log-likelihood sum,Rn, moves
towards−∞; whereas after the change point, if the change
happened in the favor ofθc1, Rn starts to move towards∞.
Therefore, the condition(Rn −min1≤k≤n Rk) ≥ b optimally
estimates if and when the change in the behavior ofRn occurs
within 1 ≤ k ≤ n.

Calculatingτ from (2) requires the knowledge of the pa-
rametersθc0, θc1, and threshold valueb. We use the calibration
data Yc

0 for every classc ∈ {0, 1}, and the knowledge of
the parametric distribution underlying the data to find an
estimate ofθc0. We then compute the confidence intervals for
the estimation of the parametersθc0, and assign the confidence
interval extremas toθc1. Once we have the parameter sets
θc0 and θc1, we compute (2) using the calibration data and
assignb = max1≤t≤T0

g(Yc
0) recalling thatYc

0 = yt|rt = c
for t = 1, . . . , T0 [33]. Following the approach described
above, when there is a change in the statistical characteristics
of the environment from one known parametric distribution to
another known parametric distribution, we illustrate the per-
formance of CUSUM on change point detection and the effect
of adapting the detection algorithm to the new environment
model on a target detection problem in Section III.

Note that when there is no prior knowledge about the family
of the distribution of the radar data inYc

0 for c ∈ {0, 1}, we
can employ an extended version of the CUSUM method [33].
In this approach, we divide the setYc

0 = {yt|rt = c} for
t = 1, . . . , T0 into subsets with cardinalityK and compute

zk =
1

K

kK
∑

ν=(k−1)K+1

yν , k = 1, . . . , T0/K (3)

to form Zc
0 = {zk|rk = c} for k = 1, . . . , T0/K. For a

sufficiently largeK, zk can be approximated as a Gaussian
distributed random variable with an unknown parameter set
θc0, denoted aspθc

0
(·). If there is a change in the statistical

properties of the radar data, the change is from a Gaussian
random variable with parameter setθc0 to another Gaussian
random variable with parameter setθc1, denoted aspθc

1
(·). This

type of change fits in the framework of CUSUM. Therefore,
for extended CUSUM, we can utilize a method similar to (2)
to estimate the change point

τ = inf

{

n ≥ 1 :

(

g(Zc
0 , . . . , Zc

n) = Rn − min
1≤k≤n

Rk

)

≥ b

}

(4)

where Rk =
∑k

t=1 ln
pθc

1
(Zc

t )

pθc

0
(Zc

t )
; and Zc

t is calculated from

Yc
t using the method in (3). Similar to the CUSUM method

described earlier, to estimate the change point using (4), we
estimateθc0 using the training dataZc

0 and estimateθc1 using the
confidence interval extremas ofθ̂c0 estimator. We also compute
b = max1≤k≤T0/K g(Zc

0) recalling thatZc
0 = zk|rk = c for

k = 1, . . . , T0/K [33].

III. N UMERICAL EXAMPLES

In this section, we present simulation results of target
detection in the presence of nonstationary interference. We
show improved performance by using a detector that applies
the CUSUM method to detect and estimate the change in the
clutter distribution.

To setup the problem, we assume that the radar is collecting
measurements from multiple range cells (indexed byj) over a
sequence of coherent processing intervals (indexed byk). In
each interval, it receives and processesN temporal samples.
Without loss of generality, the target is assumed to be present
in the j = 1 range cell, and it remains in that cell during
the entire processing ofk = 1, 2, . . . ,K coherent intervals.
Further, the target response is considered to be known and
constant, which we denote asa. Then, the detection problem
of thejth range cell at thek coherent interval can be expressed
as

{

H0 : y
(j)
k = n

(j)
k

H1 : y
(j)
k = a1+ n

(j)
k

, (5)

for k = 1, 2, . . . ,K, andj = 0, 1, 2, . . ., where each vector is
of dimensionN×1. We model the nonstationarity in the clutter
returns,n(j)

k , by representing a change of distribution from
Gaussian to compound-Gaussian at the processing intervalk =

k0. Therefore, fork = 1, 2, . . . , k0, we haven(j)
k ∼ N (0, σ2I)

with a knownσ2. However, fork = k0+1, . . . ,K, the clutter
distribution modifies ton(j)

k ∼ N (0, (1/
√
vk)σ

2I), where
(1/vk) follows a gamma distribution with unit mean and a
known shape parameterν > 0.

To deal with such a nonstationary clutter characteristics,our
proposed machine learning based radar first checks for any
change in the clutter distribution by employing the CUSUM
test, and then modifies the detection algorithm in accordance
with the changed (if any) distribution.

We detect the change point of the clutter distribution by
testing for the confidence intervals for the sample mean and
sample variance. Specifically, we assume the availability of a
batch ofNt training measurements{Yc

0 , . . . , Yc
Nt

}, where
c ∈ {0, 1} denote the two classes that represent the absence
and presence of the target, respectively; andYc

n = {yc
n, r

c
n}

with r0n = 0 when y0
n belongs to the target-absent class

N (0, σ2I), andr1n = 1 wheny1
n belongs to the target-present

classN (a1, σ2I). Then, for each classc ∈ {0, 1}, we compute
the sample mean and sample variances as

µ̂0 =
1

NtN

Nt
∑

n=1

1
Ty0

n

µ̂1 =
1

NtN

Nt
∑

n=1

1
Ty1

n

s2
0

=
1

NtN − 1

Nt
∑

n=1

(y0
n − µ̂0

1)T (y0
n − µ̂0

1)

s2
1

=
1

NtN − 1

Nt
∑

n=1

(y1
n − µ̂1

1)T (y1
n − µ̂1

1) . (6)
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Subsequently, noting that the sample mean and variance
follow Gaussian distribution and chi-square distributionwith
NtN−1 degrees of freedom, respectively, the lower and upper
limits on the95% confidence intervals of mean and variance
underH1 are calculated as

all = µ̂1 − 1.96
σ√
NtN

, aul = µ̂1 + 1.96
σ√
NtN

, (7)

σ2
ll =

(NtN − 1)s2
1

χ2
NtN

(α/2)
, σ2

ul =
(NtN − 1)s2

1

χ2
NtN

(1− α/2)
, (8)

whereα = 0.05. Next, we evaluateRk =
∑k

n=1 ln
pθ1

1

(y1
n)

pθ1

0

(y1
n)

andgn = Rn−min1≤k≤n Rk, and use the CUSUM method of
(2) to determine the change in the distribution with parameters
from θ10 = [a, σ2] to eitherθ11 = [all, σ

2
ll], or θ11 = [all, σ

2
ul],

or θ11 = [aul, σ
2
ll], or θ11 = [aul, σ

2
ul]. The change in the

distribution is declared whengn ≥ b, whereb is chosen from
the training data asb = max1≤n≤Nt

gn. Similar training is
also done with the data obtained forH0. A change is declared
in the statistical conditions of environment when change is
detected in the distributions underH0 and/orH1.

The performance characteristic of the change point detection
and estimation is shown in Fig. 1 in terms of the cumulative
distribution function of the estimation delay. It clearly demon-
strates that for more than96.5% of the time the change in the
clutter distribution is detected by the proposed radar within
just one processing interval. In other words, this implies that
our method can detect and estimate a change in the clutter
characteristics almost as soon as it happens.

Once such a change in the clutter distribution is
detected at k = k0, the proposed radar accord-
ingly modifies the log-likelihood ratio computation from
ln[p(y

(j)
k |µ, σ2;H1)/p(y

(j)
k |σ2;H0)], for k = 1, 2, . . . , k0,

to ln[p(y
(j)
k |µ, ν, σ2;H1)/p(y

(j)
k |ν, σ2;H0)] for k = k0 +

1, . . . ,K. This corresponds to the modification of the test

statistic from{1Ty
(j)
k , k = 1, 2, . . . , k0} to {ln[y(j)

k

T
y
(j)
k +

σ2ν]− ln[(y
(j)
k −a1)T (y

(j)
k −a1)+σ2ν], k = k0+1, . . . ,K}

for every range cellj.
The detection performance of the proposed algorithm is

shown in Fig. 2 in terms of the receiver operating char-
acteristics (ROCs) at two different SNR values. This plot
additionally includes the ROCs of a conventional radar de-
tector that does not understand the change in the clut-
ter distribution and applies the standard log-likelihood ratio
ln[p(y

(j)
k |µ, σ2;H1)/p(y

(j)
k |σ2;H0)] for all the processing in-

tervalsk = 1, 2, . . . ,K. Comparing the blue with red curves,
particularly in lower probability of false alarm regions where
a radar system typically operates, a substantial improvement
in the detection performance of the proposed radar due to the
incorporation of the modified clutter characteristics is clearly
evident from these ROC plots.

IV. CONCLUSIONS

In this paper we developed a machine learning based
detection algorithm to detect a target in the presence of
nonstationary environment (clutter). It is not possible todevise
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Fig. 2. Improved detection performance using the proposed radar.

a supervised learning algorithm to model infinitely many
representations of the nonstationary characteristics. Therefore,
we employed the incremental learning and drift detection al-
gorithms for building a detection algorithm that incrementally
learns the environment and updates the system parameters
on the fly. In addition to incremental learning, we used an
active drift learning technique to detect and estimate any
change-point (if present) in the environment distribution. Our
numerical examples showed that the proposed method is
able to quickly detect a change in the underlying clutter
distribution, and as a consequence produced a substantially
improved detection performance compared to a conventional
algorithm that was not aware of any environmental change.
In our future work, we will extend our model to incorporate
a Bayesian formulation of the change point parameter. We
will also explore the active drift learning under noisy labels
and passive drift leaning methodologies. Additionally, wewill
validate the performance of our proposed technique with real
data.
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