A Novel Data-Driven Method for Nonstationarity
Detection in Radar Target Detection

Murat AkcakayaMember, IEEE Satyabrata Ser§enior Member, IEEEand Arye Nehoraifellow, IEEE

Abstract—Most existing radar algorithms are developed under
the assumption that the environment (clutter) is stationay.
However, in practice, the characteristics of the clutter ca vary
enormously depending on the radar operational scenarios.fl
unaccounted for, these nonstationary variabilities may dastically
hinder the radar performance. Therefore, to overcome such
shortcomings, we develop a data-driven method for target de
tection in nonstationary environments. In this method, theradar
dynamically detects changes in the environment, and adapt®
these changes by learning the new statistical characteriss of the
environment and by intelligibly updating its statistical detection
algorithm. Specifically, we employ drift detection algorithms to
detect changes in the environment; and incremental learnig,
particularly learning under concept drift algorithms, to | earn the
new statistical characteristics of the environment from thke new
radar data that become available in batches over a period of
time. The newly learned environment characteristics are ten
integrated in the detection algorithm. We use Monte Carlo
simulations to demonstrate that the developed method prodes a
significant improvement in the detection performance compeed
with detection techniques that are not aware of the environrental
changes.

Keywords—Data-driven adaptive radar, cognitive radar, nonsta-
tionary environment, incremental learning, active drift learning

I. INTRODUCTION

Increasing the accuracy of target detection and tracking is ®

of great importance in military and coastal security opers,

navigation, and maritime rescue operations. To guaranhtee t

accuracy of both detection and estimation, clutter, ieterfice,

and noise must be suppressed to make the target signal dis-

tinguished. However, in practical scenarios, the charisties

of clutter backscattering can vary enormously depending on ®
the region where the radar focuses its beam at a particular
instant (or, maybe during a few successive instants). Even
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when the radar operation is restricted to a particular regio
the change in weather conditions (temperature, wind speed,
humidity, etc.) can drastically change the clutter stiasin
maritime environments. Additionally, a highly-dynamicgat,

for example, moving through an urban canyon, can show high
nonstationarity due to frequent appearance and disapp=ara
in the radar coverage area.

A considerable amount of research work has been done in
order to design radar systems that improve the performaice o
target detection and tracking in the presence of these uario
forms of nonstationarity. Particularly, in recent yeahg tlesire
for a radar system that can effectivelgnsdts scenariolearn
from its experience, anddaptto the changes in environment
has been emphasized, and a conceptual framework for a cogni-
tive fully adaptive radar that includes these three comptme
has been laid out [1]-[3]. To implement this cognitive radar
framework, several intelligent methods have been develope
(mostly considering each component separately):

e Practical methods to identify the distribution of the radar
measurements using a pre-learned dictionary of possible
probability density functions representing the clutter
characteristics [4]-[6], and to develop auto-regressive
modeling of clutter distribution with a knowledge-aided
Bayesian covariance estimation [7]-[10] for target detec-
tion;

Adaptive weighted sum of clutter covariance estimates
with exponentially decaying weights and predetermined
delay constants [11], [12], waveform design that depends
on the clutter characteristics [13], and nonhomogeneity
detector in training data [14] for spatio-temporal adap-
tive processing applications,

Target-state-dependent radar measurement models inte-
grated in a fully adaptive cognitive radar framework [1],
[15], [16] for target tracking.

These existing methods address important practical issues
in the realization of the cognitive radar framework. Howeve
these methods suffer from three shortcomings: (1) they have
been developed under the assumption of parametric distri-
bution for the clutter and noise processes; (2) a dictionary
of possible probability density functions is assumed tcsexi
and (3) the problem of estimating the time instant when the
statistical characteristics of the data changes is not arely
To overcome these shortcomings, in this paper, we develop
machine learning based target detection algorithms thettlen
us to take a holistic approach to fully realize the cognitagar
framework. Our proposed radar system provides a unifying
approach by autonomously learning and estimating the ahkang
point in the statistical characteristics of the scenariad ay
accordingly adapting to the environment with the incorpiora
of newly learned environment statistics into the targeecién



algorithm. is any change in the statistical properties of the enviramtaie
Specifically, we utilizeéncremental learninganddrift detec-  measurements. Assuming the change point to be deterrainisti
tion algorithms for building a detection method that incremen-but unknown, we calculate it by minimizing the supremum of
tally learns the environment and updates the system pagasnet the average detection delay conditioned on the observed rad
on the fly. This becomes possible as the radar always provideseasurements with a constraint on the mean time between
labels or labeled data (e.g., labels for target presenceb-or afalse alarms.
sence, etc.) along with different confidence measures fremt  Mathematically, this means that using the batches of radar
received measurements in a sequential manner. Thus, we aldata observed up until the measurement tim@’§, ..., Vs,
bypass the requirement of obtaining training data for itdlgi ¢ € {0,1}, we estimate the time when the change in the
many representations of the nonstationary charactesistic statistical characteristics of the data from clads occurring

devise an efficient supervised learning algorithm. by employing the following constrained optimization preiol
While incrementally learning in a nonstationary environ-[31], [32]

ment, one major problem that the proposed intelligent radagrgminT sup, > ess sup B, [(T—n)*| V5, ..., Vo]

system encounters isoncept drift Concept drift refers to " such that Eulr] > a )

changes in the distributions of the measured data (cornespo . ) i )
ingly the environment model) that are used for incrementalVNere 7 is the stopping time such that when it takes a
learning [17]-[30]. Therefore, in order to learn in the mree  V&lUe k (it means that there is a change point at or prior to
of a concept drift, the radar system needs to employ incremedime £); sup stands for supremum; ess sup is the essential
tal learning together with the active drift detection algons ~ SuPremum of a set of random variables that we define below
for detecting the nonstationarities in the environmentisTh IN more detail;z™ = max(0,x) for any variablex; E,[]

can be implemented in two different ways: (1) active and (2))S the expectation taken with respect to a distributigp
passive concept drift learning [22], [23]. (such that undep?, {J§, ..., Y;_,} are independent and

We consider aractive drift learningsetup in this paper. identically distributed (i.i.d.) with a fixed marginal digtution
This implies that the radar system first estimates the timréOr ¢ € {0,1}); Ex[r] represents the mean time between
when a change occurs in the environment distribution fronj@/S€ alarms assuming that change never happens in the data
which the measurement data are drawn, and then modifies i&'€am; and is a predefined threshold. Essential supremum
detection algorithm with the new distribution to continiet ©f @ Sét of random variable¥ is a random variabl& with the
sequential learning. Consequently, tiiata-drivenapproach ~ following properties: ()P(Z > X) = 1 vX € ; and (i)
complements the existing techniques as it is not limited Py 2 X)=1,vX c X} = PY > 7) = 1,vX € &,

any specific clutter/environment type and to any parametri?vnere P°(-) represents the probability [31]. In light of the
modeling approach. definitions above, the solution to the constraint optimdrat

Mathematical Notationsin the rest of the paper, we assume Problém in (1) minimizes the supremum of the average delay

that C, for ¢ € {0,1} denote the two classes that represenonditioned on the worst case realization{of;, ..., Vi,
the absence and presence of the target, respectively. & othoVer allpn, n > 1[31], [32]. o .
words,C, andC; are equivalent td{, and, of radar target ~_Now, depending on the characterization;g, the solution
detection hypotheses, respectively. For every {0,1}, ¢ of the problem |n_(1) can be further_sub-cz?\teg.onzed into two
andH¢ are the hypotheses corresponding to ‘no-change’ andifferent cases: (i) known parametric distribution g, i.e.,
‘change’ in the distribution of data corresponding to clasgvhen we have prior knowledge on the calibration data suah tha

C.. We denote the calibration data set collected for botHhe radar scattering from the environment follows a specific
classes a8y = {y,,r} fort = 1, ..., Ty, with y, as the parametric distribution family; and (i) unknown distriten

radar measuremerif} as the number of measurements in theOf 7y, i-€., when we have no prior knowledge about the family
calibration data, and, = 0 if y, € Co andr, = 1 if y, € C}. of the distribution of the radar data. We consider the firseca
in this paper.
We obtain an optimal solution of (1) under the assumption
Il. PROPOSEDDETECTIONMETHOD that{)§, ..., Y} for c € {0, 1} are i.i.d. samples which are
In order to analyze the nonstationarity in the environmentirawn from a parametric distribution with probability déps
returns, we assume that some initial distribution modelsha function (pdf)pe (y) [33]-[37]. When there is a change in the
already been estimated from the pre-collected data. In thistatistical characteristics of the new batch of radar dat,
paper, we refer to the pre-collected datacadibration data  assume that the pdf model of the family does not change, but
We mention here that the calibration data is more generahe change is modeled as a transition from one paramgter
than the well-known radar secondary data; this is becaiese tH{the null hypothesis for class,, ) to anothed{ (alternative
calibration data include measurements of both the targett anhypothesis for clas§., #5). Recall that for a specific clags.,
non-target components, whereas the conventional segondar € {0, 1} represents the absence or presence of target in the
data represents only the non-target (clutter) data. area covered by the radar, ak§ and7{{ are two hypotheses
After modeling the initial distributions, our next task is corresponding to ‘no-change’ and ‘change’ in the distiitnut
to develop learning algorithms that can effectively model t of the radar data obtained for cla€s.
nonstationarities caused by the changes in the environent The optimum stopping time for the problemin (1) is found
important step in that endeavor is to detect whether or reweth using CUmulative SUM (CUSUM) method which is calculated



as follows [33]-[37]: k=1, ..., To/K [33].

7 = inf {n >1: <g(yg, e YY) =R, — 1r<n]33 Rk) >by, I11. NUMERICAL EXAMPLES
= @2 In this section, we present simulation results of target

wheren is the batch index as defined befobds a predefined detection in the presence of nonstationary interference. W

& poc (V5 show improved performance by using a detector that applies
threshold; andR;, = 3, In— e [31]-[33]. Before a  the CUSUM method to detect and estimate the change in the

: Al lutter distribution.

change point, the accumulated log-likelihood surp, moves clu . .
towar%sgoo; whereas after the cghange point, if the change 1© Setup the problem, we assume that the radar is collecting
happened in the favor of¢, R, starts to move towardso. measurements from multiple range cells (indexed bgver a
Therefore, the conditio\R,, — minj<x<, Ry) > b optimally

sequence of coherent processing intervals (indexed)byn
estimates if and when the change in the behaviokpbccurs each interval, it receives and processésemporal samples.
within 1 < k < n.

Without loss of generality, the target is assumed to be ptese
Calculatingr from (2) requires the knowledge of the pa-

in the ; = 1 range cell, and it remains in that cell during
rameters)§, 61, and threshold valué. We use the calibration

the entire processing of = 1,2,..., K coherent intervals.
data V¢ for every classc € {0,1}, and the knowledge of Further, the target response is considered to be known and
the parametric distribution underlying the data to find an

constant, which we denote as Then, the detection problem
estimate off5. We then compute the confidence intervals for

of the jth range cell at thé coherent interval can be expressed
the estimation of the parametet§ and assign the confidence as {

c

interval extremas to¥{. Once we have the parameter sets Ho : y,(j) = n,(j) 5)

95 and 6§, we compute (2) using the calibration data and Hy - y;” = a1+n§g> ’
assignb = maxi<i<1, 9(35) recalling thatyy = y,/re =c¢  for p =1,2,..., K, andj = 0,1,2, ..., where each vector is
for ¢ =1, ..., Ty [33]. Following the approach described of dimensionV x 1. We model the nonstationarity in the clutter
above, when there is a change in the statistical charaitsris returns. n? by representing a change of distribution from
of the environment from one known parametric distribution t Gaussiénkto’compound-Gaussian at the processing inferval
another known parametric distribution, we illustrate the-p () 9
formance of CUSUM on change point detection and the effect?: Therefore, fgo'k =1,2,..., ko, we haven;;” ~ N(0, o°I)
of adapting the detection algorithm to the new environmeni"'_Ith a kpowno— ._HoweveE,j)fork =hko+1,.. "K’2 the clutter
model on a target detection problem in Section IIl. distribution modifies ton;” ~ N(0,(1/,/vx)o*I), where
Note that when there is no prior knowledge about the family(/vx) follows a gamma distribution with unit mean and a
of the distribution of the radar data Ji¢ for c € {0,1}, we Known shape parameter> 0.

can employ an extended version of the CUSUM method [33], 10 deal with such a nonstationary clutter characteristios,
In thi h, divide th _ _ f proposeq machine Ieamm_g pased radar f|r§t checks for any
n this approach, we divide the sgf) {y|r: c} for change in the clutter distribution by employing the CUSUM

t=1, ..., Ty into subsets with cardinalitf and compute = X : .
f LK x . test, and then modifies the detection algorithm in accorglanc
_ _ with the changed (if any) distribution.
k= Z Yoo k=L B/E Q) We detect the change point of the clutter distribution by
o e testing for the confidence intervals for the sample mean and
to form 25 = {zx[ry. = ¢} for k = 1, ..., To/K. For a = gample variance. Specifically, we assume the availabifitg o
sufficiently largeK, z; can be approximated as a Gaussianpaich of N, training measurement&)s, ..., V< }, where

distributed random variable with an unknown parameter sef ¢ (( 1} denote the two classes that represent the absence
05, denoted agy (). If there is a change in the statistical 5,4 presence of the target, respectively; aifd= {y¢,r¢}
properties of the radar data, the change is from a Gaussiapity, ,© — ( when y° belongs to the target-absg’ntnclass
random variable with parameter sg§ to another Gaussian N(070%I), andr! =1 7\;vheny}l belongs to the target-present

random variable with parameter $&{ denoted agy:(-). ThiS  jagsA/(al, 021). Then, for each classe {0, 1}, we compute
type of change fits in the framework of CUSUM. Therefore, o sample mean and sample variances as

for extended CUSUM, we can utilize a method similar to (2)

Ni
to estimate the change point N 1 T, 0
fi v 2T
T=infin>1:(g(Z5, ..., Z5)=R,— min Ry | >b n=1
1<k<n 1 N
(29) " S PR
where R, = Y In pel’(ZtC); and Z¢ is calculated from T n=1
Poc + N
V¢ using the method in’(3). Similar to the CUSUM method 20 — _ Z(yo — %17 (3% — i°1)
described earlier, to estimate the change point using (&), w NN =1 e~ " "
estimated§ using the training dat&§ and estimaté{ using the . N,
confidence interval extremas éf estimator. We also compute 2 - - yl — ' DT (y! — a1 6
. n— 1) (Y, —p1) . (6)
b = maxi<p<7,/x 9(Z§) recalling thatZ§ = z|r, = c for NN —1 7;( A )



Subsequently, noting that the sample mean and varianc Estimation Delay Cumulative Distribution Function

follow Gaussian distribution and chi-square distributieith ir
N, N —1 degrees of freedom, respectively, the lower and uppe
limits on the95% confidence intervals of mean and variance 0995
under#; are calculated as
il 1.96—2 au = i + 1.96—— @ W
ay = — 1.90 ——, = Y0 ——,
n =M NN ul = b NN :,QO toss
, (NN —1)s2 . (NN —1)s2 N
oy = 2727 o = ﬁ ) (8) 2  0.98r
XNtN(O‘/ ) XNtN( —a/2) s
1 o
1 L
wherea = 0.05. Next, we evaluateR;, = Zi:l In Pelgy?i 097
Por Yy,
andg,, = R, —min; <<, Rk, and use the CUSUM method of 0.97¢
(2) to determine the change in the distribution with pararset 0.965 ‘ ‘ ‘ ‘
from 6} = [a,c?] to eitherd} = [an, o}], or 0] = [an, 02, 0 5 10 15 20 25
or i = [au,0f], or 0} = [aw,c?]. The change in the Estimation delay

distribution is declared when, > b, whereb is chosen from  Fig. 1.  Performance of the change point detection test imgeof the
the training data a$ = maxi<n<n, g». Similar training is cumulative distribution function of the estimation delay.
also done with the data obtained fH%. A change is declared

in the statistical conditions of environment when change is Receiver Operating Characteristics

detected in the distributions undgf, and/or#;. ol ——SNR=20dB ‘ ‘
The performance characteristic of the change point detecti 0.9F| == SNR = 10 dB

and estimation is shown in Fig. 1 in terms of the cumulative _ gl |~ SNR=20dB

distribution function of the estimation delay. It clearlgdon- o |12~ SNR = 10 dB

strates that for more tha#6.5% of the time the change in the
clutter distribution is detected by the proposed radar iwith
just one processing interval. In other words, this implieat t
our method can detect and estimate a change in the clutt

proposed
radar

Probability of detection (PD
o
[6;]

characteristics almost as soon as it happens. 04r

Once such a change in the clutter distribution is 0.3}
detected atk = ko, the proposed radar accord- o2l
ingly modifies the log-likelihood ratio computation from '
1n[p(y,(j)|éL_,)02;Hl)/p(yé7)|02(;_’7)'-[0)], for k = 1,2,...,ko, 01 i
to In[p(y,’ |1, v, o M) /p(yy |v, 02;7-10)]. for k = ko + 0 10 0" 51(;2 10 10°
1,..., K. This corresponds to the modification of the test Probability of false alarm (P,_,)

L . T .

statistic ffom{lTy;(g])7 k=12..., ko} to {ln[y,(j) y,(g]) + Fig. 2. Improved detection performance using the propoaedrr

o?v] —1n[(y,(j) —al)T(y,(g) —al)+o%v),k=ko+1,...,K}
for every range cell. . . . o

The detection performance of the proposed algorithm & Supervised learning algorithm to model infinitely many
shown in Fig. 2 in terms of the receiver operating char-representations of_the nonstationary character!stmeréfb_re,
acteristics (ROCs) at two different SNR values. This plot"e _employed the_mcrementa_l Iearnlng and dnﬂ detection al
additionally includes the ROCs of a conventional radar ded0rithms for building a detection algorithm that increnzeiyt
tector that does not understand the change in the cluf€@ms the environment and updates the system parameters
ter dis(t‘r)ibution and apE)])ies the standard log-likelihoadia g(r:lti\t/r;e (I:’)I/ft I{;;crjl(ijrlltglgort]ett:%r:?qcljgrrlgniiaeltleec?rgr?g’ e\,\,;?irrzjstzd ;nr;

J 2. J 2. I i

12&%’3’% |i’ i é?il)(%yéol;r;;ﬁ%)é f,[%reaglltjgev\ﬂ:ﬁcs'js'ggﬂlgs’ change-point (if present) in the environment distributiGur
particularly in lower probability of false alarm regions are numerical examples showed that the proposed method is

a radar system typically operates, a substantial improméme a?slt?ith?tic?rl]“C::\)Ij iitegtcgnggaﬂgﬁcén trrg)?juléggegyg:ﬁ)sdurggl
in the detection performance of the proposed radar due to th% ! q P ke

incorporation of the modified clutter characteristics isatly glnporﬁx]en(i ?he;te?/t/lgg ﬁgtrfg\r,vma";‘gcgf ?nmp;:\?i(:otr?maer?& Tvcehn;:?nsl
evident from these ROC plots. 9 y ge.

In our future work, we will extend our model to incorporate
a Bayesian formulation of the change point parameter. We
IV. . CONCLUSIONS will also explore the active drift learning under noisy l&be
In this paper we developed a machine learning basednd passive drift leaning methodologies. Additionally, wié
detection algorithm to detect a target in the presence ofalidate the performance of our proposed technique with rea
nonstationary environment (clutter). It is not possiblelévise  data.
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