

Finding the Hierarchy of Dense Subgraphs using Nucleus Decompositions

A. Erdem Sarıyüce*, C. Seshadhri[†], Ali Pınar[#], Ümit V. Çatalyürek*

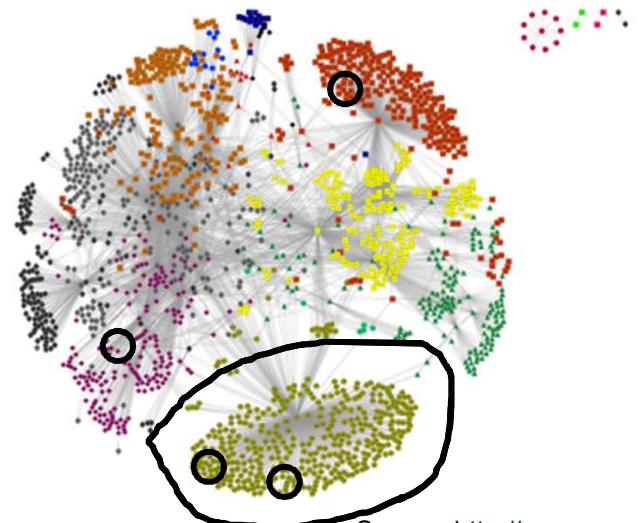
* The Ohio State University

[†] University of California, Santa Cruz

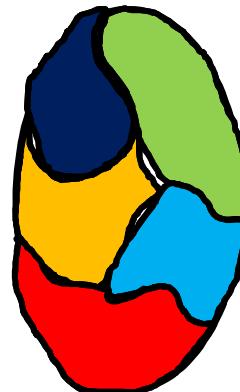
[#] Sandia National Labs, Livermore

Graphs are globally sparse... yet locally dense.

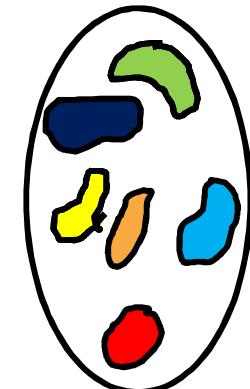
- Graphs in real world are SPARSE
 - Number of vertices = millions
 - Number of edges $\approx 10 \times$ vertices
 - Two random vertices unlikely to be connected (prob = 10^{-5})
- But they contain many dense substructures
 - Within dense region, two random vertices highly likely to be connected (prob = 0.4)



Source: <http://www.complexworld.net/virthulab/ongoing-projects-main>



Community detection:
label most/all vertices



Dense subgraph discovery:
Regions with lots of “activity”

Many applications find dense subgraphs

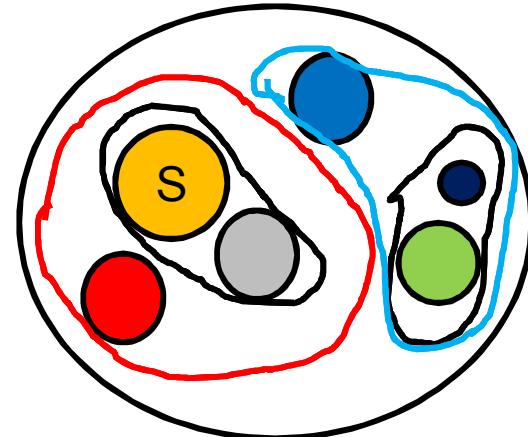
List is long, time is short. Why don't you just trust me?

- Finding communities, spam link farms [Gibson et al., 2005]
- Graph visualization [Alvarez-Hamelin et al., 2006]
- Real-time story identification [Angel et al., 2012]
- DNA motif detection [Fratkin et al., 2006]
- Finding correlated genes [Zhang and Horvath, 2005]
- Finding price value motifs in financial data [Du et al., 2009]
- Graph compression [Buehrer and Chellapilla, 2008]
- Distance query indexing [Jin et al., 2009]
- Throughput of social networking sites [Gionis et al., 2013]
- To name a few...

Dense subgraphs

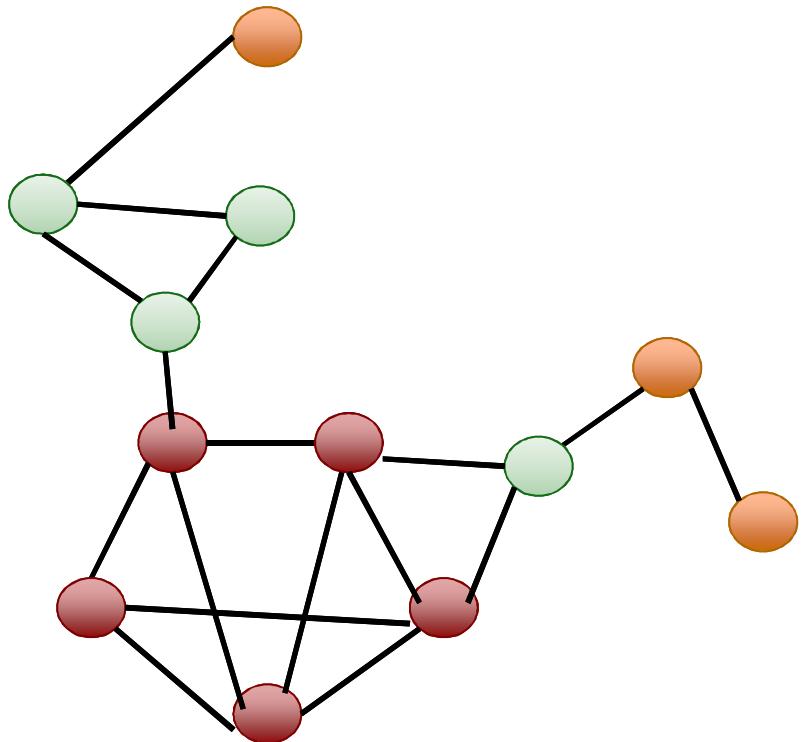
Concept is intuitive, yet formalizations are tricky

- Factors for consideration: size, density of internal edges, density of external edges
- Many formalizations lead to NP-hard problems, and heuristics are used.
- Hard to distinguish , whether an observation is an artifact of the heuristic or not.
- Our goal:
 - Can we formulate the problem such that the result is well-defined?
 - Can we find all dense graph not just the densest?
 - Is there a “natural” hierarchy of dense subgraphs?
 - Can we design efficient, provable algorithms and minimize heuristics/approximations?



K-cores in graphs

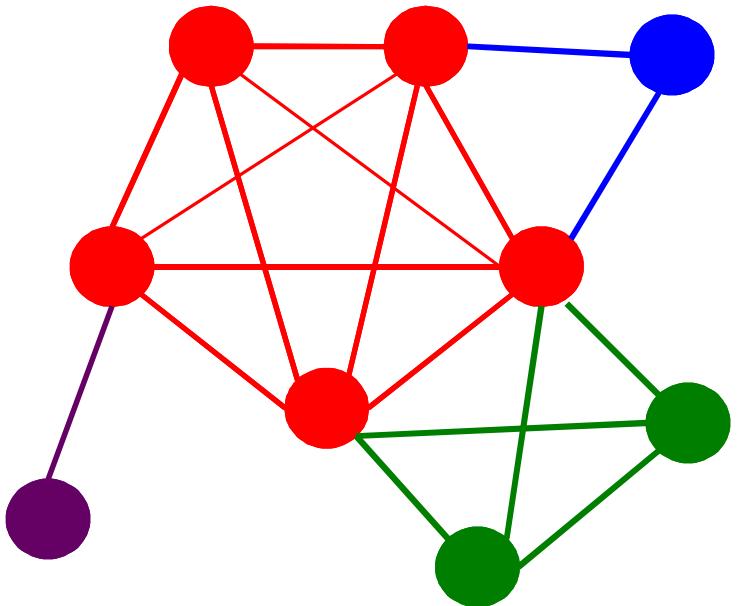
Unit of observation: vertex
Witness: Edge



- k -core of a graph is its largest induced subgraph, where degree of each vertex is at least k .
- Introduced by [Matula and Beck, 1983]
- Algorithm
 - Compute degrees
 - Iterative removal in increasing order
 - Assign K value during removal
- **$O(|E|)$ complexity**

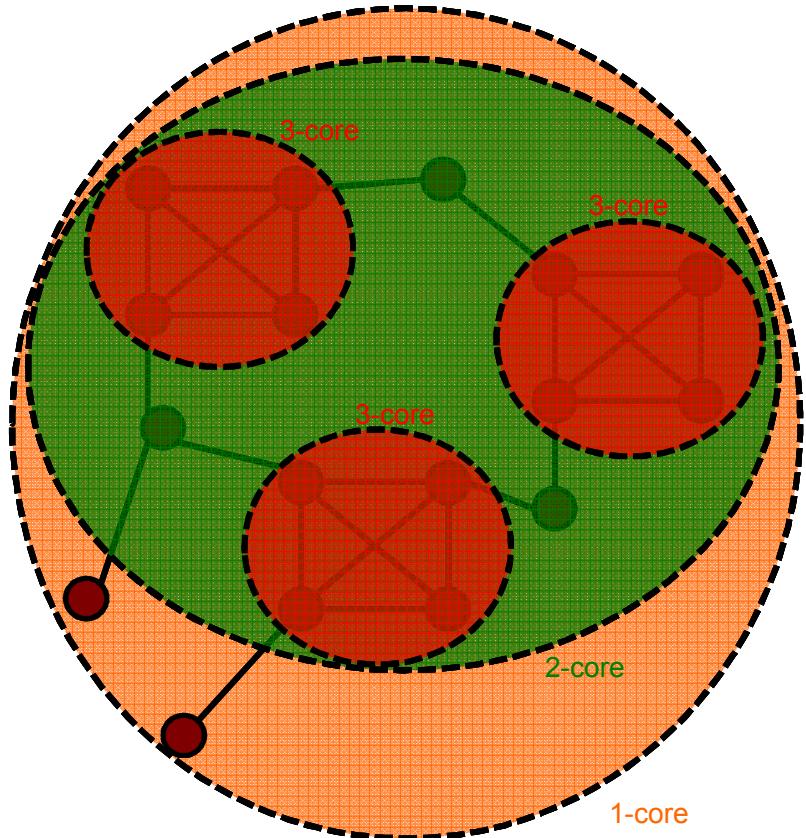
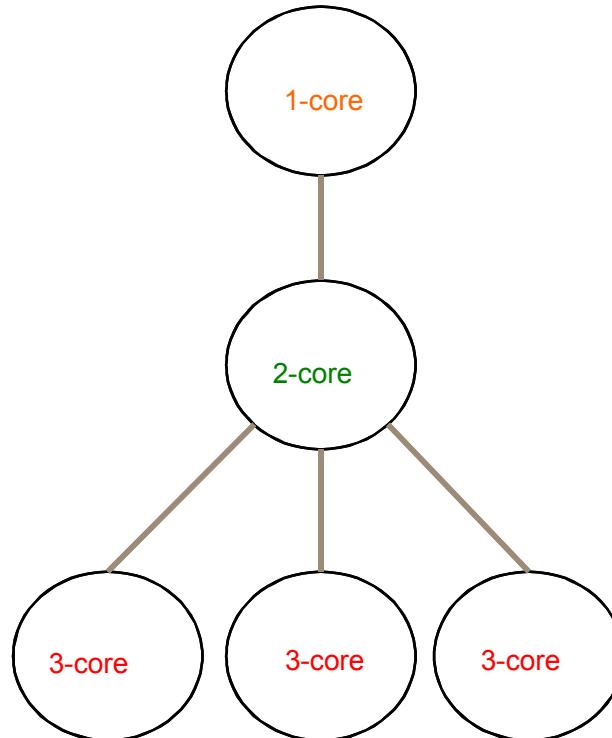
K-truss decompositions go a step further

Unit of observation: Edge
Witness: Triangle



- K-truss of a graph is its largest induced subgraph, where each edge participates in at least k triangles.
- Introduced by Cohen and Parthasarathy independently.
- Applied to visualization and dense graph finding

Decompositions lead to hierarchies



Caveat: k-core decomposition typically leads to long chains as opposed to well-branched trees.

The definition of nuclei

DEFINITION 1. Let $r < s$ be positive integers and \mathcal{S} be a set of $K_s s$ in G .

- $K_r(\mathcal{S})$ the set of $K_r s$ contained in some $S \in \mathcal{S}$.
- The number of $S \in \mathcal{S}$ containing $R \in K_r(\mathcal{S})$ is the \mathcal{S} -degree of that K_r .
- Two $K_r s$ R, R' are \mathcal{S} -connected if there exists a sequence $R = R_1, R_2, \dots, R_k = R'$ in $K_r(\mathcal{S})$ such that for each i , some $S \in \mathcal{S}$ contains $R_i \cup R_{i+1}$.

DEFINITION 2. Let k , r , and s be positive integers such that $r < s$. A k -(r, s)-nucleus is a maximal union \mathcal{S} of $K_s s$ such that:

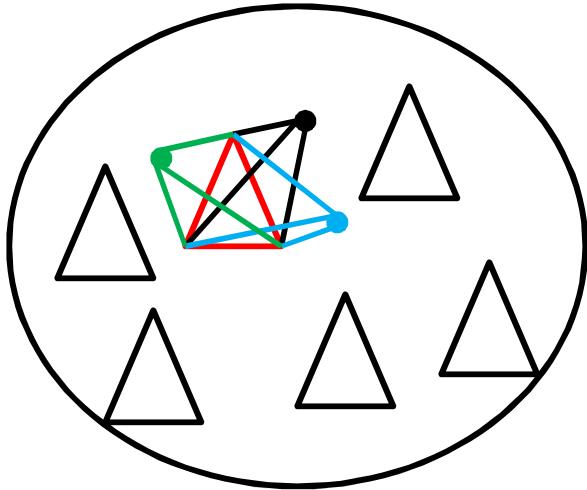
- The \mathcal{S} -degree of any $R \in K_r(\mathcal{S})$ is at least k .
- Any $R, R' \in K_r(\mathcal{S})$ are \mathcal{S} -connected.

r refers to the size of the unit of observation

s refers to the size of the witness + unit

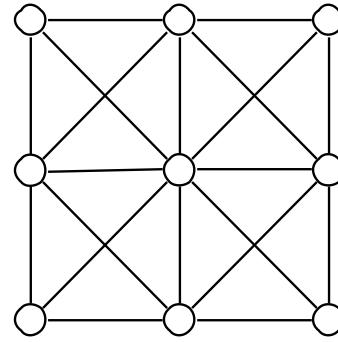
k is the number of witnesses; not a parameter we sweep through

Examples of nuclei



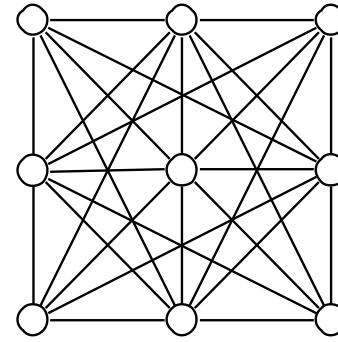
- k -(3,4) nucleus: subgraph formed by maximal union of triangles. Every triangle in at least k four-cliques
- k -(1,2) is core decomposition
- k -(2,3) is truss decomposition

Edge (2-clique) and 3-clique interaction

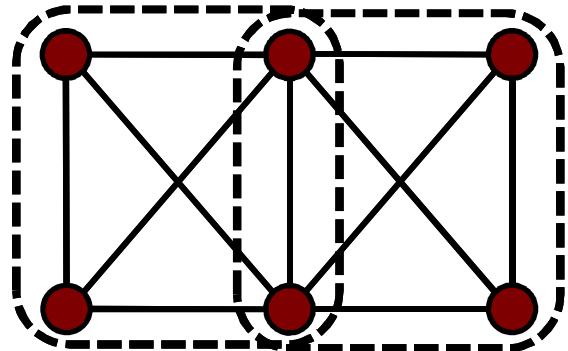


2-(2,3)
nucleus

Edge (2-clique) and 4-clique interaction



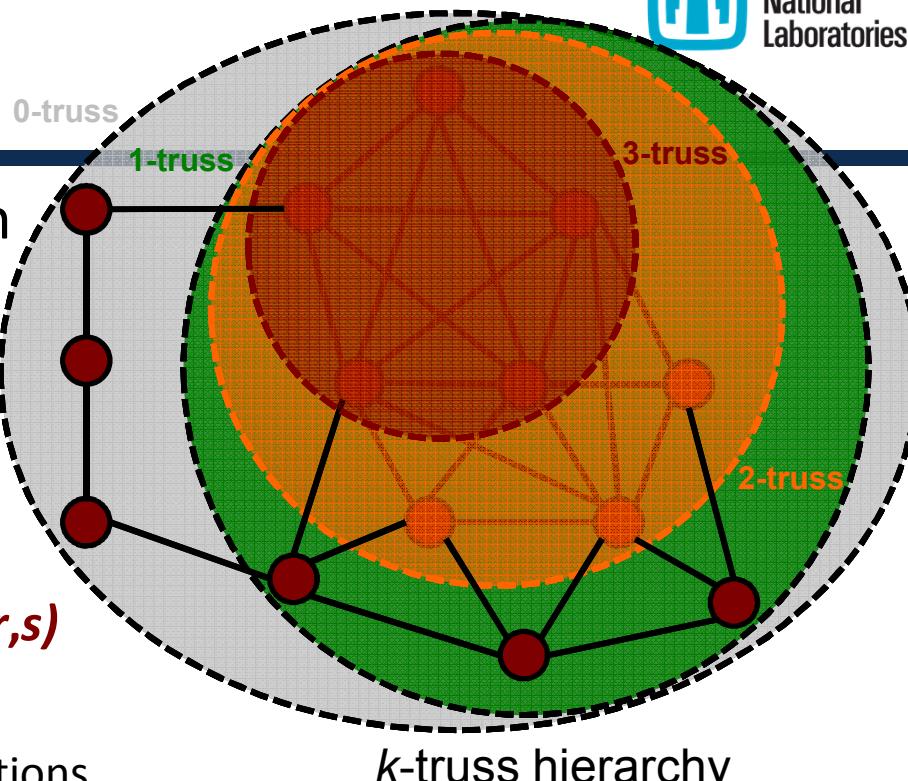
2-(2,4)
nucleus



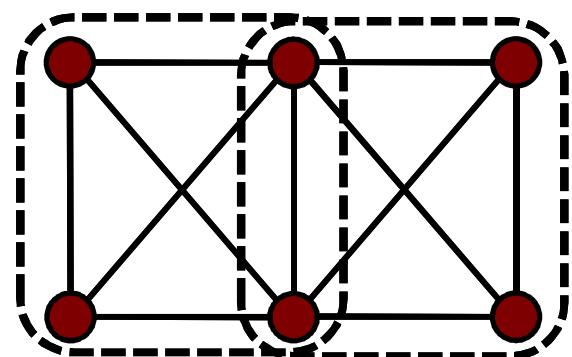
Two 1-(3,4) nuclei

Properties of nuclei decomposition

- Well-defined property of the graph
 - Not heuristic
 - No optimization
 - **Deterministic**
- Forest of nuclei
 - **Smaller k -(r,s) contained in larger k -(r,s)**
 - Hierarchy of dense subgraphs
 - Finding many and understanding relations
- **Overlaps of nuclei**
 - **For $r \geq 2$, lower orders structure can be shared among nuclei**
 - No overlaps for k -cores!

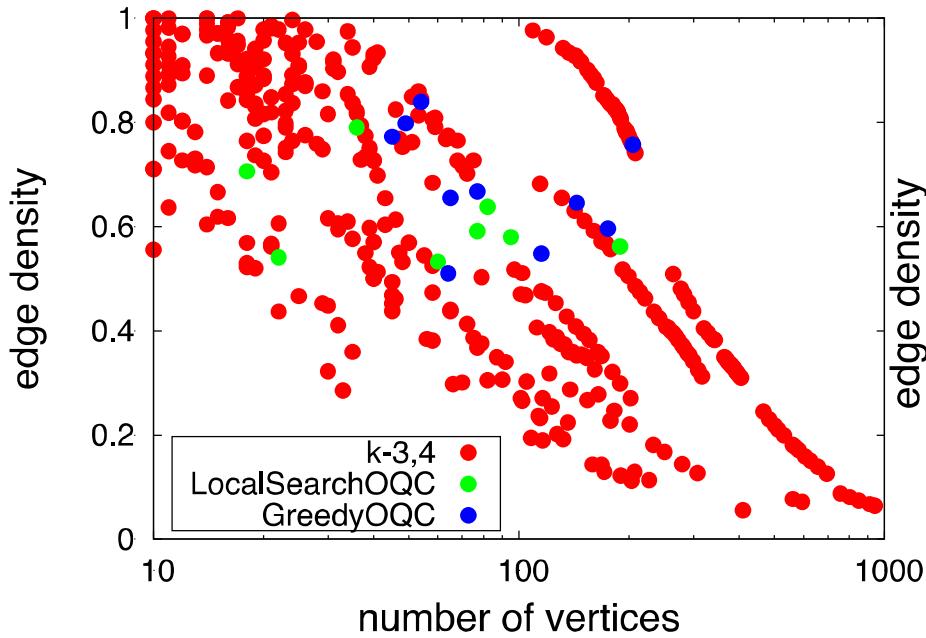


k -truss hierarchy

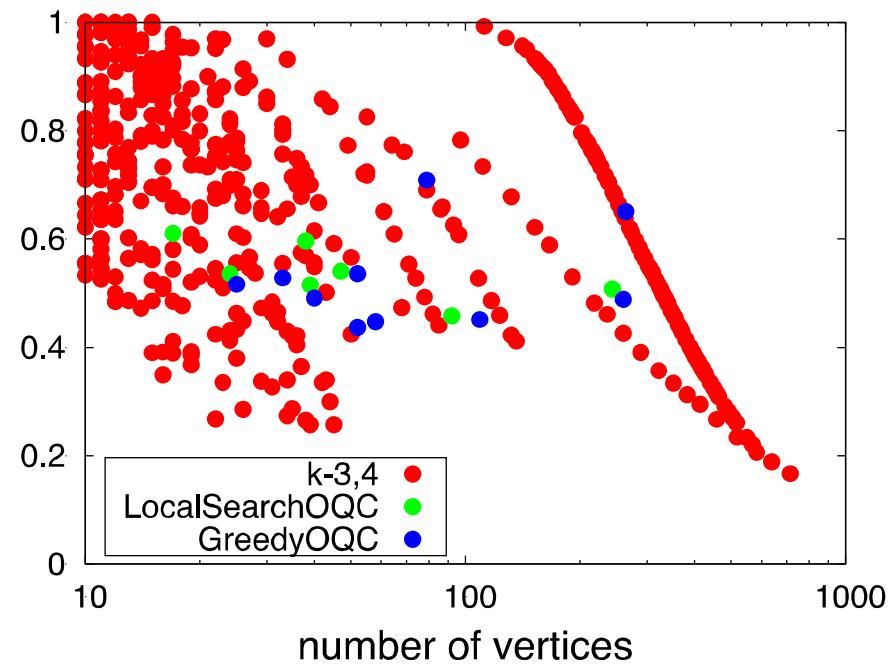


Two 1-(3,4) nuclei

Nucleus decomposition finds dense subgraphs



Facebook

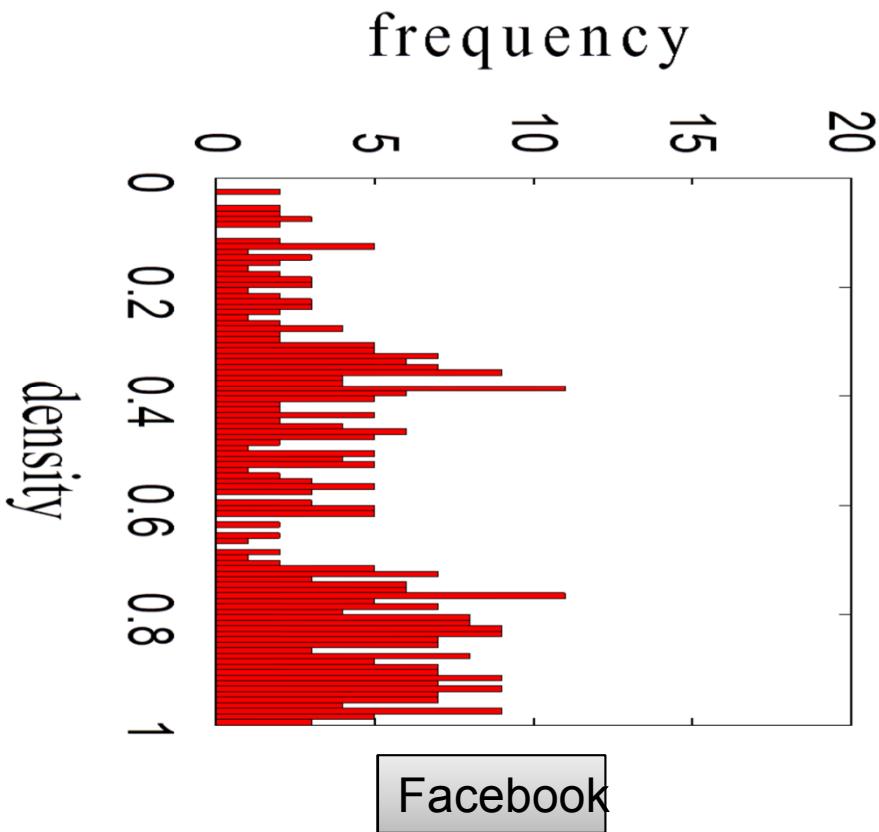
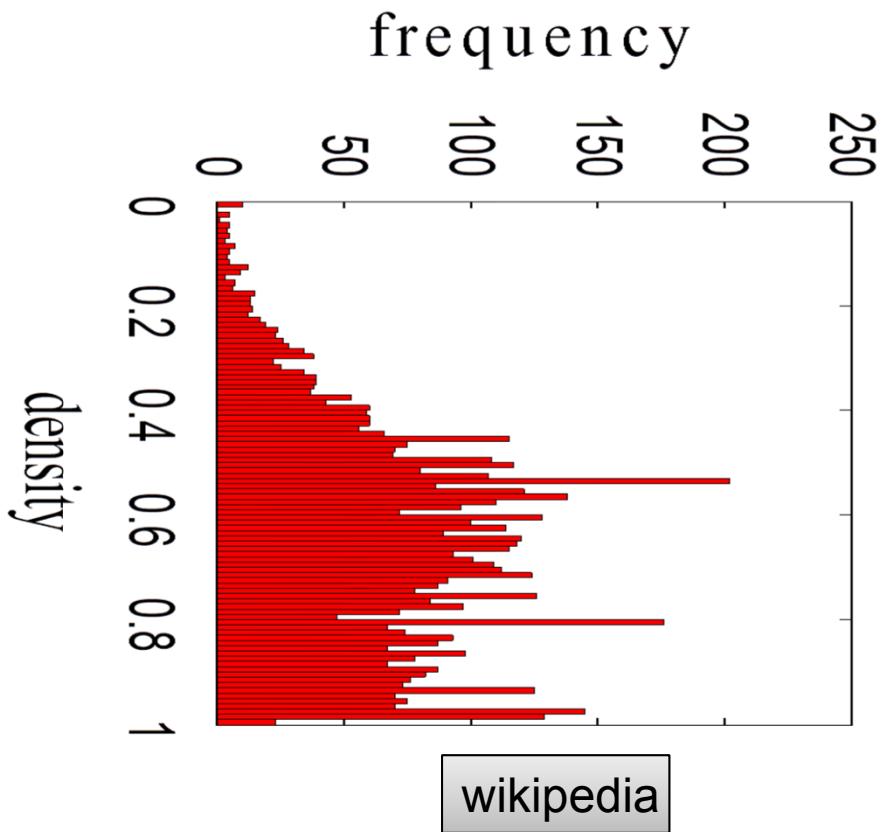


Soc-Epinions

$$\text{Density of } S = E(S, S) / \binom{|S|}{2}$$

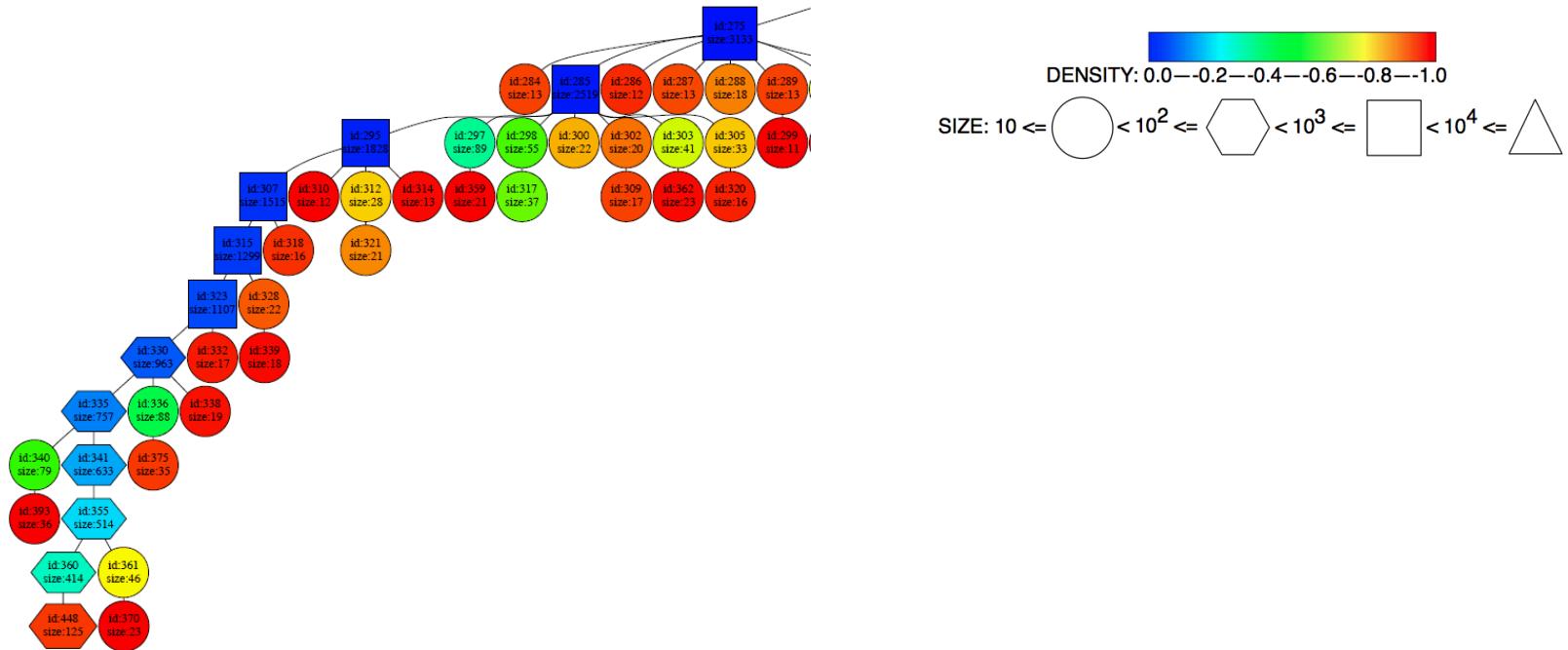
- We can find many dense subgraphs, not just one at the same time.
- Solution qualities can match the state of the art tools.

Distributions of dense structures



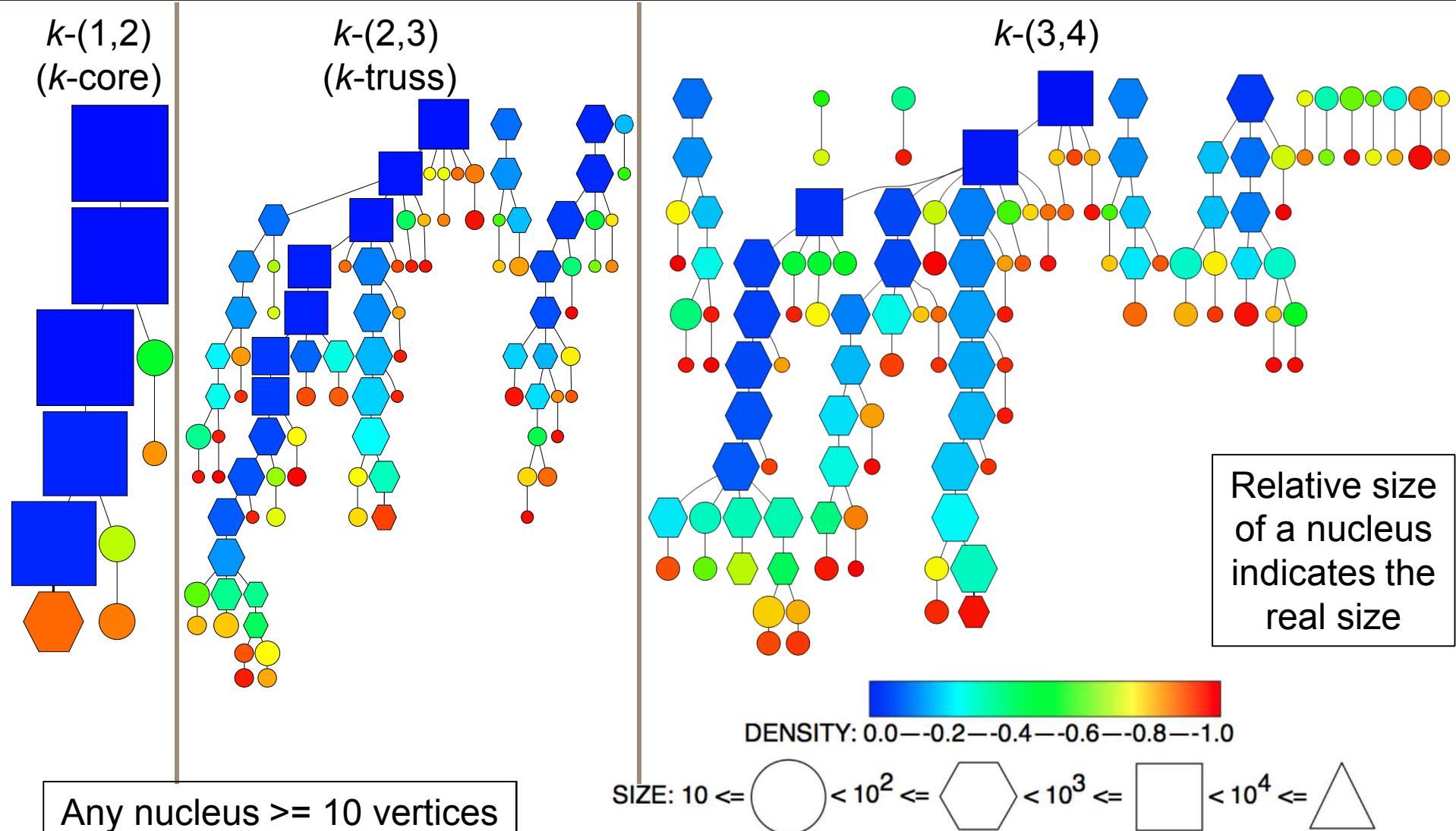
- Finding many dense structures enables producing a density structure profile.

Hierarchy reveals structure among communities.

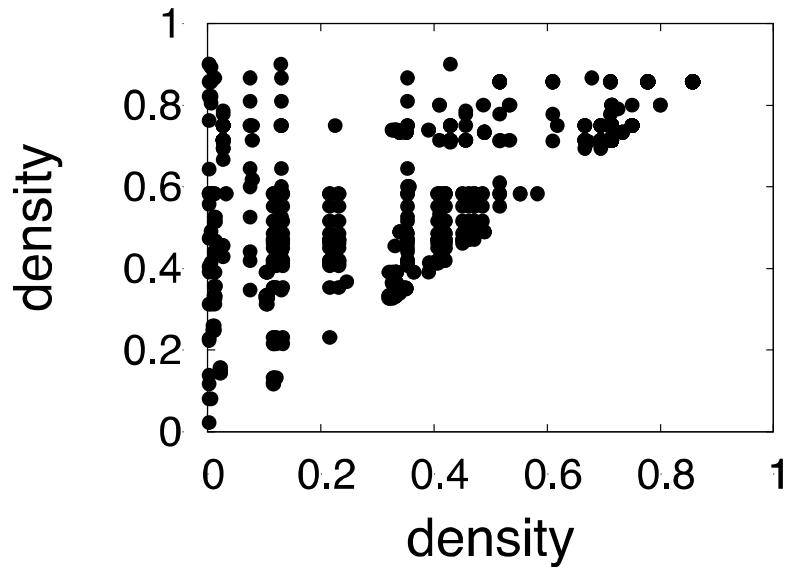


- Results on experimental protein interaction data from Baylor College of Medicine.
- More than 50K vertices, 400K edges, but only few hundred nuclei, with tree of size 50

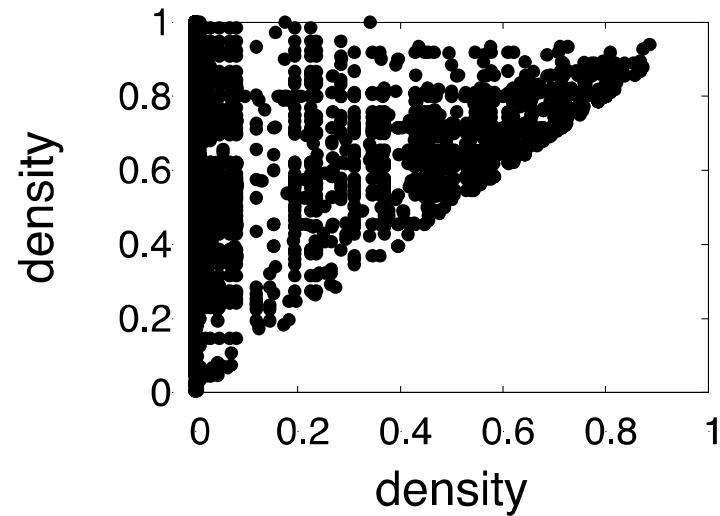
Hierarchies (facebook $|V|: 4K$, $|E|: 88K$)



Many dense structures overlap

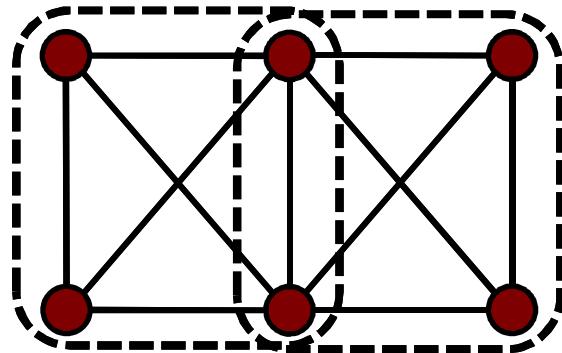


Web-NotreDame



Wikipedia

- Overlap size is at least 5



How to compute Nucleus Decomposition

- Given r and s , **find all k -(r,s) nuclei**
- Just like k -core decomposition
- Find K values of all K_r s**

Algorithm 1: set- k (G, r, s)

- 1 Enumerate all K_r s and K_s s in $G(V, E)$;
- 2 For every $K_r R$, initialize $\delta(R)$ to be the number of K_s s containing R ;
- 3 Mark every K_r as unprocessed;
- 4 **for each** unprocessed $K_r R$ with minimum $\delta(R)$ **do**
- 5 $\kappa(R) = \delta(R)$;
- 6 Find set \mathcal{S} of K_s s containing R ;
- 7 **for each** $S \in \mathcal{S}$ **do**
- 8 **if** any $K_r R' \subset S$ is processed **then**
- 9 Continue;
- 10 **for each** $K_r R' \subset S$, $R' \neq R$ **do**
- 11 **if** $\delta(R') > \delta(R)$ **then**
- 12 $\delta(R') = \delta(R') - 1$;
- 13 Mark R as processed;
- 14 **return** array $\kappa(\cdot)$;

Two ways to implement:

- Enumerate all K_r s and K_s s
 - Not feasible for large r, s
 - Huge space complexity
- Construct adj. lists of K_r s online (only enumerate K_r s)
 - Better space complexity**
 - Time complexity is**

$$O(RT_r(G) + \sum_v ct_r(v)d(v)^{s-r})$$

Total num of K_r s

Num of K_r s of v Degree of v

Future Directions

- **Applications of nucleus decomposition**
 - Protein-protein and protein-gene interaction networks
 - Ongoing collaboration
- Larger values of r and s
 - Computational cost of increasing r and s is significant.
 - **Preliminary experimentation for (4,5)**
 - Very little quality benefit
 - **Is (3,4) a sweet spot?**
- Faster k -(3,4)
 - Clique enumeration
 - **Parallel algorithms**
 - GPU implementation of k -core [Jiang et al., 2014]
 - Pregel algorithm for k -truss [Shao et al., 2014]

Conclusions

- Nucleus decomposition is a generalization of k-core and k-truss decompositions
- It can identify many dense structures at the same time.
 - Competitive with state of the art algorithms that find a single dense structure
- It can provide a hierarchy of density structures
- It can find overlapping dense structures
- The hierarchical structure is unique; it is a property of the graph, not the algorithm being used
- Runtimes are in the order of hours for > million vertex graphs.

Questions