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Modeling approaches 

Research: 

a)  = 1 and thresholdless lasing 

b) Single-photon sources and photon statistics 

Correlations and photon statistics in nanocavity emitters 

Thanks to:  

Christopher Gies and Frank Jahnke, Bremen University 

Sandia’s Laboratory Directed Research & Development (LDRD) Program 

SAND2015-3531PE



Why nano-emitter research? 

Data centers and optical communication 

Save energy 

• Reducing energy per bit  

• At limits for electrical approaches 

• Optical interconnects: laser energy consumption  volume 

1 

Safe communication 2 

• Quantum key distribution (QKD) 

• Single-photon sources 

• Types of light 

Time 

Laser (random) Single-photon (antibunched)  
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VCSEL 

Nanolasers 

Photonic crystal 

(Courtesy of Willie Luk, Sandia National Labs) 

Nanocavity 

(Adapted from a figure by Lu et al., UIUC) 
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Dynamical behavior of a quantum system 
Schrödinger Picture 
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𝝍 𝒓 ≡ 𝒓|𝝍  Wave function: 

Basis: |𝒋, 𝒏  
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+ + + ... Cluster expansion: 

Overview of both approaches: Chow & Jahnke, Progress in Quantum Electronics 37, 109 (2013) 
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Nano-emitter model: population dynamics and correlations 

For now emphasis is on correlations involving light-matter 

interaction instead of Coulomb interaction 

QW 𝒏𝒆,𝒌
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Emphasis now is on correlations involving light-matter 

interaction instead of Coulomb interaction 

Nano-emitter model: population dynamics and correlations 
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Spontaneous emission factor 

Questions: 

1) Is thresholdless lasing real? 

2) What is lasing?  

Interesting physics with nanolasers 

Most lasers     << 1 

Some nanolasers     = 1 
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All emission into single resonator mode 

Example 1: Laser threshold and thresholdless lasing 

Early answer in Jin, Boggavarapu, Sargent, Meystre, Gibbs, Khitrova, Phy Rev A 49, 1994 
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Second-order intensity 
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Criterion for lasing: g(2)(0) 
NQD = 50, inh = 20meV 
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 = 1, NQD = 50, inh = 20meV 

Other criteria for lasing 
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Other criteria for laser: stimulated emission 

Light amplification by stimulated 

emission of radiation 
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Light: Science and Applications, online 29 August, 2014 



Interesting physics with nanolasers 

Most lasers     << 1 

Some nanolasers     = 1 
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Single-photon purity and emission rate 
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g(2)(0) vs. emission rate 

(by increasing cavity-Q) 

Concern: g(2)(0) as measure of error 



Single-photon purity:  

From calculating photon statistics 

Gies, Jahnke, Chow (submitted) 
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Single-photon purity:  

From calculating photon statistics 

Gies, Jahnke, Chow (submitted) 
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Correlations and photon statistics in nanocavity emitters 

Approach • Quantized light and carriers 

• Consistent account of light-carrier correlations 

• Combination of intensity & g(2)(0) gives definitive description of lasing 

• There is no thresholdless lasing 

Nanolasers 

Bridge: tradeoff among efficiency, rate and error 

Disconnect: 

Quantum communications 

• Challenges in fabrication and modeling 

• Questions concerning present measure of performance 

Ideal Applications 
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Single-photon sources 

Chow, Gies & Jahnke, Light: Science and Applications, online 29 August, 2014 

Chow & Jahnke, Progress in Quantum Electronics 37, 109 (2013) 



Other applications of modeling approach 

Gain medium engineering 

Chow, Lorke & Jahnke, ‘Will Quantum Dots Replace Quantum Wells As the Active 

Medium of Choice in Future Semiconductor Lasers?’ IEEE J. Selected Topics in 

Quantum Electron. 17, 1349 (2011). 

Quantum optomechanics 

Carmele, Kabuss & Chow, ‘Highly detuned Rabi oscillations for a quantum dot in a microcavity,’ 

Physical Review B 87, Rapid Communication, 041305 (2013). 

Solid state lighting 

Chow, Novel LED Model Offers New Insights, Compound Semiconductor Magazine, July, 2014. 

BEC and Atomtronics 

Chow, Straatsma & Anderson, ‘An engineering design tool for atomtronic circuits’ 

(submitted PRA). 

Liu, Chow, Gossard, Bowers,  “Extraction of inhomogeneous broadening and nonradiative 

losses in InAs quantum-dot lasers,’ (in preparation)  
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