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Modeling approaches
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Why nano-emitter research?
@ Save energy

Data centers and optical communication

 Reducing energy per bit
« At limits for electrical approaches

« Optical interconnects: laser energy consumption oc volume

@ Safe communication

* Quantum key distribution (QKD)
« Single-photon sources
» Types of light

Laser (random) Single-photon (antibunched)

» Time




Towards smaller and smaller lasers
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Hamiltonian: physics entering into the theory
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Dynamical behavior of a quantum system
Schrodinger Picture
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Dynamical behavior of a quantum system

Heisenberg Picture

System operator
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Overview of both approaches: Chow & Jahnke, Progress in Quantum Electronics 37, 109 (2013)



Nano-emitter model: population dynamics and correlations
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For now emphasis is on correlations involving light-matter
interaction instead of Coulomb interaction



Nano-emitter model: population dynamics and correlations
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Emphasis now is on correlations involving light-matter
interaction instead of Coulomb interaction




Interesting physics with nanolasers
Example 1: Laser threshold and thresholdless lasing

Spontaneous emission factor

Most lasers P <<1
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All emission into single resonator mode 2) What is lasing?

Early answer in Jin, Boggavarapu, Sargent, Meystre, Gibbs, Khitrova, Phy Rev A 49, 1994



Photon number

Photon number
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Criterion for lasing
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Photon number

Photon number

Criterion for lasing
Nop = 50, Ay = 20meV
Input/Output
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Photon number

Photon number

Criterion for lasing: g®(0)
Nop = 90, A, = 20meV
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Y. X coherence time

Other criteria for lasing

Population clamping

Coherence time )
and hole burning
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Photon number
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Other criteria for laser: stimulated emission

Light amplification by stimulated
emission of radiation

dp,

dt

=-yi(n+1)

Stimulated Spontaneous

emission

emission

2.0

1.0

o fB=1
— B=0.01

0.8 L
104

102 1

102
Photon number

104



Other criteria for laser: stimulated emission
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Interesting physics with nanolasers

Example 1
Thresholdless lasing

Most lasers P <<1
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All emission into single resonator mode

Example 2
Single-photon generation

Most OD-laser active reqions

Few- OD active regions

Nonclassical light




Single-photon source

Error-free but slow ~ Cavity enhancement: Too much cavity
Directionality and Purcell
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What is the right Q?

Fundamental limit to efficiency, rate and error?



Photon number

Simulations
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Single-photon purity and emission rate

g@(0) vs. emission rate
(by increasing cavity-Q)
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Single-photon purity: m =

Concern: g®(0) as measure of error

Single-photon emission probability
Multi-photon emission probability

g@(0) vs. emission rate
(by increasing cavity-Q)
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From calculating photon statistics
Gies, Jahnke, Chow (submitted)




Concern: g®(0) as measure of error

Single-photon emission probability
Multi-photon emission probability

Single-photon purity: m =

Purity vs. emission rate
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From calculating photon statistics
Gies, Jahnke, Chow (submitted)



Concern: g®(0) as measure of error

Single-photon emission probability
Multi-photon emission probability

Single-photon purity: m =

Purity vs. emission rate

(by increasing cavity-Q) g@(0) fails
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From calculating photon statistics
Gies, Jahnke, Chow (submitted)



Correlations and photon statistics in nanocavity emitters

Approach < Quantized light and carriers
« Consistent account of light-carrier correlations

Nanolasers

« Combination of intensity & g®(0) gives definitive description of lasing

 There is no thresholdless lasing

Single-photon sources

Quantum communications

ldeal Applications
Disconnect:  Single-photon Dimmed Iaser
|0t|2
|n) Z |n) el <1

\/

Bridge: tradeoff among efficiency, rate and error
« Challenges in fabrication and modeling
* Questions concerning present measure of performance

Chow & Jahnke, Progress in Quantum Electronics 37, 109 (2013)
Chow, Gies & Jahnke, Light: Science and Applications, online 29 August, 2014



Other applications of modeling approach

Gain medium engineering
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Solid state lighting
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Quantum optomechanics
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