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Final Report

1 Project Synopsis

The objective of the project is to develop strategies for better representing scientific sensi-
bilities within statistical measures of model skill that then can be used within a Bayesian
statistical framework for data-driven climate model development and improved measures of
model scientific uncertainty. One of the thorny issues in model evaluation is quantifying the
effect of biases on climate projections. While any bias is not desirable, only those biases that
affect feedbacks affect scatter in climate projections. The effort at the University of Texas is
to analyze previously calculated ensembles of CAM3.1 with perturbed parameters to discover
how biases affect projections of global warming. The hypothesis is that compensating errors
in the control model can be identified by their effect on a combination of processes and that
developing metrics that are sensitive to dependencies among state variables would provide
a way to select version of climate models that may reduce scatter in climate projections.
Gabriel Huerta at the University of New Mexico is responsible for developing statistical
methods for evaluating these field dependencies. The UT effort will incorporate these de-
velopments into MECS, which is a set of python scripts being developed at the University
of Texas for managing the workflow associated with data-driven climate model development
over HPC resources. We also will consult with Peter Gleckler (LLNL), Mark Taylor (SNL),
and Rich Neale (NCAR) to provide additional insight into issues concerning CAM5 model
development and multi-model evaluation of the AR5 archive. This report reflects the main
activities at the University of New Mexico where the PI (Huerta) and the Postdocs (Nosedal,
Hattab and Karki) worked on the project.

2 Primary Research and Development Activities

2.1 A modified skill metric for climate models using (aussian
Markov Random Fields

2.1.1 Introduction

A new metric for climate model evaluation has been developed that potentially mitigates
some of the limitations that exists for observing and representing field and space dependencies
of climate phenomena. Traditionally such dependencies have been ignored when climate
models have been evaluated against observational data, which makes it difficult to assess
whether any given model is simulating observed climate for the right reasons. The new
metric uses Gaussian Markov Random Fields for estimating field and space dependencies
within a first order grid point neighborhood structure. We illustrate the ability of Gaussian
Markov Random Fields to represent empirical estimates of field and space covariances using
‘witch hat’ graphs. We further use the new metric to evaluate the tropical response of a
climate model (CAM3.1) to changes in two parameters important to its representation of



cloud and precipitation physics. Overall, the inclusion of dependency information did not
alter significantly the recognition of those regions of parameter space that best approximated
observations. However there were some qualitative differences in the shape of the response
surface that suggest how such a measure could affect estimates of model uncertainty.

Within the climate assessment community, there is an interest to develop metrics of how
well simulations reproduce observed climate for purposes of comparing models, driving model
development, and evaluating model prediction uncertainties [4, 6, 7, 5, 11]. Nevertheless, a
certain level of skepticism exists about whether a scalar metric can be sufficiently informative
for these purposes. Climate phenomena involve interactions of multiple quantities on a wide
range of time and space scales from minutes to decades (and longer) and from meters to
planetary scales. Thus it can be challenging to summarize what is physically meaningful. The
most common approach to climate model evaluation among climate scientists is to display
maps of long-term means of well-known quantities (e.g. temperature, sea-level pressure,
precipitation) whose distribution is familiar and well understood in order to identify the
source of model error. The Taylor metric that is often generated as part of model evaluation
is based on spatial means of squared grid point errors for individual quantities [8]. Such
measures neglect field and space dependencies and thus may be insensitive to mechanisms
giving rise to model errors. There is a need to develop metrics that can evaluate whether
a model is capturing observed space and field relationships sufficiently well [2]. The hope
is that by accounting for relationship information within climate model metrics, they will
prove to be more useful for scientific evaluation.

Given that there is only a limited amount of observations available to quantify field and
space relationships of climate phenomena, data assimilation is the most common approach
to fill in gaps in the observational record of a climate model [9]. While assimilation data
products help solve some aspects of the problem of how one compares point measurements
to the scales resolved by climate models, these data products include the space and field
dependencies of the model that was used to assimilate the data. Here we introduce a new
kind of metric based on Gaussian Markov Random Fields that only needs limited data to
decipher space and field dependencies of climate phenomena.

We define a new Z-test statistic, alternatively referred to as a log-likelihood or cost for
assessing the significance of a discrepancy between model output and observations. The
statistic makes use of Gaussian Markov Random Fields to estimate field and space depen-
dencies that exist within gridded climate model output that can be assessed against space
and field dependent observational data. The matrix form of the test statistic is given by:

viIST @ (al+ (1 —a)Q)v (1)

where v is the vector of differences between model output and observations with a length
given by the product of the number of observational fields and number of grid points, ns X
Npts, v 1s a scalar with a value close to zero, I stands for an identity matrix (a diagonal matrix
of ones) of a dimension corresponding to v and Q is a precision matrix of dimension 7,5 X M5
from a Gaussian Markov Random Field (GMRF) induced by a first order neighborhood
structure. This cost function captures field dependencies through S™! which is a matrix



Neps X Nops Where each of its elements represents a spatial-average of variances and covariances
between fields. The spatial dependency between grids is approximated through Q. The
quantity « could be interpreted as a weight of the spatial relationship between grid cells.
The Kronecker product ® provides a means for associating the different matrix dimensions
of the metric, essentially combining its field and space components.

The following sections explain, test, and provide examples of how various components
of equation (1) work. Section 2.1.2 gives a brief introduction to GMRFs. This section
will allow us to understand how Q is obtained and the information that it provides about
spatial dependency between grid cells. In this section we also define and discuss Kronecker
products, and how to use this concept to generalize GMRFs ideas to deal with more than one
field. Section 2.1.3 introduces a graph for testing the extent to which equation (1) captures
observed variance-covariances of tropical temperature, precipitation, sea level pressure, and
upper level winds. Finally, in Section 2.1.5, we consider the field and space dependencies
that are captured by the GMRF-based metric within the response of an atmospheric general
circulation model CAM3.1 to two model parameters important to cloud and precipitation
physics. What we learned in general is that including the space and field dependencies
provides some qualitatively different perspectives about which model configurations are more
similar to what is observed. For the example we consider, the effects of space dependencies
turn out to be more critical than field dependencies.

2.1.2 Gaussian Markov Random Fields (GMRFs)

A Gaussian Markov Random Field (GMRF) is a special case of a multivariate normal dis-
tribution, one that satisfies additional properties related to conditional independence. The
density of a normal random vector x = (xy, s, ...,2,)7 (where T denotes the operation of
transposing a column to a row), with mean p (n x 1 vector) and covariance matrix 3 (n x n
matrix), is

7 = ) S| Heap x-S x| 2)

Here, p; = E(x;), ¥;; = Cov(x;, x;), and ¥;; = Var(x;) > 0. All eigenvalues of ¥ must be
greater than zero, otherwise 3 becomes a singular matrix and does define a valid multivari-
ate normal distribution. It can also be shown that if all eigenvalues of ¥ are positive then
all eigenvalues of ¥ 7! are also greater than zero. We define Q = X! and refer to Q as the
precision matrix, and denote x ~ N(u, Q) to represent that x follows a multivariate normal
distribution with vector mean p and precision matrix Q.

Precision matrix of a GMRF

The precision matrix Q is an operator for obtaining information about dependencies
among neighboring grid cells. Although Q is sparse, its inverse, as a model for the covariance
matrix 3, presumes all grid points are conditionally dependent. Q needs to be constructed
such that it:



e Reflects the kind of spatial dependency we assume our data has.

e Yields a legitimate covariance matrix, 3, i.e. symmetric and positive definite, so that
it can be used to compute a likelihood function.
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Figure 1: Graphical representation of 2 x 2 lattice and elements of x.
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Figure 2: Neighbors of x1, x5, x3 and x4

Consider x, a vector of measurements on a 2x2 lattice, as represented in Figure 1. Assume
a neighborhood structure between the four elements of x. In Figure 2, the neighbors for each
element of x are defined graphically. Given the neighborhood structure shown in Figure 2,
the precision matrix that works for this problem is

2 -1 -1 0

-1 2 0 -1

Q= -1 0 2 -1
0o -1 -1 2

which follows these rules,



o Q;; = —1, if z; and z; are neighbors.
e Q;; =0, if x; and x; are not neighbors.
e Q;; gives the total number of neighbors of z;.

While the implementation of GMRF is simple, the theory and mathematics are rather in-
volved. It may also not be immediately clear to a physical scientist that such a simple
specification, where only relationships among neighboring grid cells are taken into account,
would be sufficient to quantify correlated quantities across large distances. The mathematics
of working with precisions allows one to infer the net effect of long distance relationships
through relationship information that exists among neighboring cells. While the GMRF
approach does not include information about particular teleconnection structures such as
ENSO, the approach is sensitive to how changes in large scale conditions induce local co-
variances across multiple fields within the entire domain. In this way teleconnections are
represented through a conditional dependence.

A problem arises in that one of the eigenvalues of the Q matrix is 0, which implies that
this definition of the precision matrix does not induce an invertible covariance matrix. This
problem is solved by using oI + (1 — «)Q, instead of Q. If « is small, the neighborhood
structure remains, basically, unchanged. A subsequent section describes our approach to
specifying a value for a.

Generalizing concepts to deal with multiple fields

The generalization of Q to handle multiple fields will be illustrated by an example using
x and y which represent observations for two different fields of interest. These observations
are taken on a 2 x 2 lattice. First, x and y are combined to form one vector v as follows:
vl = (21, 29, 3, 24, Y1, Y2, Y3, ¥1). The average covariances among these observations can be

represented by a 2 x 2 matrix between the first field, x, and the second field, y:

011 012
S =
012 022

where Var(x) = o011, Var(y) = o9, and Cov(x,y) = 012. Recalling that the correlation

between fields 1 and 2 is defined as: p = \/%, it is easy to show that the inverse of S is
1 —p _ _
Sfl _ o11(1—p?) (1—p?)y/o11022 _ ( Sll1 3121 )
= —p i =\ g1 g
(1-p?)\/o11022 o11(1—p2) 12 29 -

If we consider the Kronecker product in Equation 1 when o = 0,
_ ST1Q S
S Q= ( QS
= sQ s.Q
then
viST @ Qv = S;'xTQx + S5,y Qx + S5)'xQy + Sy'y " Qy.



In this last expression, one can see that the inverse of S in combination with the Kronecker
product with Q includes terms involving cross products between fields.

2.1.3 A test of GMRF estimates of variance

GMRF provide a way to approximate field and space dependencies contained in the inverse
covariance matrix X! of equation (1) by its GMRF equivalent S™ ® (al + (1 — a)Q). In
this section, we will test how well GMRF are able to reproduce observed space and field
dependencies. This may be achieved by comparing field and spatial variance and covariance
estimates obtained from the inverse of the GMRF equation with those obtained empirically
from observational data. It turns out this comparison is sensitive to the value that is selected
for a. Fortunately, the optimal choice of a depends only on geometric considerations of the
neighborhood model that is used for GMRF and the number of grid points in the fields and
not the properties of the field data. We introduce a ‘witch hat” graph that provides a compact
summary of variance-covariance information between these two methods in order to show
that GMRF does a reasonable job approximating observed field and space relationships.

2.1.4 Finding an appropriate value of «

In the effort to compare space and field dependences approximated by GMRF with empirical
estimates we need to determine an optimal value for . In order to carry out this comparison,
we need to find the inverse of S™' ® (al + (1 — a)Q), our proposed precision matrix based
on GMRF. Using results of Kronecker products, we have that [S™! @ (oI + (1 — )Q)] " =

S®(al+(1—a)Q)™ . Let Q* = (al+(1—a)Q)~!, then S® Q* for two fields can be written

as
( ‘5'11(2>|< SIQQ* )
SIQQ* 522Q* ‘

If n = ny, is the total number of grid points of the lattice, S ® Q* is a (2 x n) x (2 x n)
covariance matrix. Note that each element of diag(S;;Q*) contains the estimated variance
or covariance at each grid point for fields ¢ and j using a GMRF where ¢ can be equal to j.
If we average these estimates across the whole lattice, we obtain G;;, the GMRF estimate of
the variance or covariance. Therefore,

Sii 2 ope1 Qi Sigtr(Q°
Gij: JZl;ll kk — J rrf ) (3)

R

where tr(Q*) denotes the trace of Q* and Q, are its diagonal elements. We will now select
a value for a that allows the GMRF estimate for field variances and covariances to be equal,
on average, to what has been calculated for S. In order to achieve this, GG;; needs to equal
S;;. Satisfying this condition is equivalent to finding the solution for

= 1. (4)



It may not be so obvious what the diagonal elements of Q* are, however, one can use the
fact that for any matrix A that admits a Singular Value Decomposition, tr(A) is equal to
sum of its eigenvalues. In our case, if the eigenvalues of Q are Ai, Ao, ..., \,,, the eigenvalues
of al + (1 — )Q are a + (1 — a)A\j,a + (1 — a)Ag, ..., + (1 — ) \,. The eigenvalues of
Q" =(al+(1-a)Q) tare (a+ (1 —a)\) ™ (a+ (1 —a)X) .., (a+ (1 —a)\,) "t This
implies that in order to satisfy Equation 4, we need to find a from

- 1
fe)=3 rara—am =t (5)

=1

Figure 3 shows the relationship between various values of o and f(a)). The eigenvalues
used to obtain this figure correspond to a precision matrix, Q, for a GMRF induced by a
first order neighborhood structure and considering a 128 x 22 lattice (which is the dimension
of our data). From the figure we can see that the curve crosses the value of 1 when « is close
to 0. By using linear interpolation, we determine that « is approximately 0.0024.
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Figure 3: a vs f(«).

Witch hat comparison test

To illustrate any differences that may exist between empirical estimates of the covariance
matrix ¥ and its GMRF equivalent S ® (ol + (1 —a)Q)™! , we rely on a graph that shows



the spatial average grid point variance and covariances as a function of distance for cells and
their neighbors. We compute the average entries of the covariance matrix corresponding to
each grid cell and the corresponding element to the north (for the positive distances) or to
the south (for the negative distances) relative to the main diagonal of the matrix. The zero
distance case is the average of variances of the main diagonal. Alternatively, we can produce
a graph that considers the east and west directions. On average, covariances decrease with
distance making the graph have the shape of a witch’s hat. This graph is symmetric because
covariance matrices are symmetric.

Figure 4 shows a witch hat test of estimated variances for air temperatures simulated
by the Community Atmosphere Model version 3.1 (CAM3.1). The variances are estimated
from 15 samples of two year mean summertime temperatures. Setting o = 1 provides a
solution to equation (5), however, this will shut down the effect of Q and only the variances
at the reference point (lag 0) will be well estimated. On the other hand, when o = 0.024,
we allow Q to play more of a role which results in a better representation of covariances at
neighboring points (lags different of zero).
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Figure 4: ‘Witch hat’ graphs for air temperature on a 128 x 22 lattice of the tropics from
30°S to 30°N.

2.1.5 Climate response to uncertain parameters

In this section we show how inclusion of field and space dependencies using GMRF affect
comparisons of the Community Atmosphere Model (CAM3.1) [3] with observations. We con-



sider CAM3.1’s response to to changes in parameter ke, which controls rain drop evaporation
rates, and parameter c0, which controls precipitation efficiency through conversion of cloud
water to rain water. For this comparison we only consider the response for the June, July,
and August (JJA) seasonal mean between 30°S to 30°N on four variables including 2 meter
air temperature (TREFHT), 200-millibar zonal winds (U), sea level pressure (PSL), and
precipitation (PRECT). Experiments with CAM3.1 use observed climatological sea surface
temperatures and sea ice extents. Each experiment with CAM3.1 is 32-years in duration.

The observational data that is used to evaluate the model comes from a reanalysis product
ECMWF-ERA interim [10] for 2 m air temperature, 200-millibar zonal winds, and sea level
pressure and GPCP [1] for precipitation. We make use of approximately 30 years of JJA
mean fields between 1979 and 2009. For constructing S, we calculate variances from 2-year
means (i.e. 15 samples).

A total of 64 experiments were completed, varying each of the two parameters within
an 8 x 8 lattice. For each experiment we calculate three versions of GMRF-based cost
(equation 1); The first version is the traditional cost based on the assumption of space and
field independence set here by setting the off diagonal components of S to zero and setting
a =1 . This approach is similar to what has been done previously for (author?) [8]. The
second version of evaluating the cost takes field dependencies into account by including all
components of S and setting « = 1. The third version for the cost takes field and space
dependencies into account by including all components of S and setting a = 0.0024.

The correlation matrix, R, corresponding to the S matrix of 2-year JJA seasonal mean
variances and covariances, as estimated from 30 years of observations, is:

PRECT PSL TREFHT U
PRECT 1 -0.219 -0.047 0.015
PSL -0.219 1 -0.313 -0.112
TREFHT | -0.047 -0.313 1 -0.145
U 0.015  -0.112 -0.145 1

The primary field correlations are the values of (-0.313) and (-0.219) occurring between sea
level pressure (PSL) and 2 m air temperature (TREFHT), and precipitation (PRECT) and
sea level pressure (PSL), respectively. These correlations make physical sense in that precip-
itation mainly occurs within low pressure storm systems which tends to cool the underlying
surface. The other correlations are minimal and there is not a good physical argument
supporting their relationship. Figure 5 shows a comparison of the three versions of the
GMRF-based cost for the 64 experiments within an 8 x 8 lattice. All versions of cost result
in qualitatively similar results with high and low cost values roughly in the same portions of
parameter space. The main difference among the versions of cost comes from taking space
dependencies into account within the field-space version. In this case, extremely low values
of ke result in higher metric values. Figure 6 examines the reasons for this by graphing the
different field contributions to the GMRF-based costs for a slice where c0 = 0.0035 which
corresponds to one of the rows of the lattice. By plotting everything differenced from metric
values at ke = 3 x 107°, one can learn that the biggest qualitative difference comes from cost



a) Field and Space Independence (b) Field Dependencies (c) Field and Space Dependencies
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Figure 5: Three versions of the GMRF-based cost as a function of two CAM3.1 parameters
ke and c0 that assumes the data has (a) field and space independence (Traditional), (b)
field dependencies (Field), and (c) field and space dependencies (Field-Space). Each color
represents ten percentiles of the cost distribution. The cost is shown relative to the value of
the default model configuration.
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values associated with 2 m air temperature. Closer inspection of differences between model
output and observations of 2 m air temperature (not shown) indicates that the traditional
cost is likely reflecting large-scale differences over the southern hemisphere oceans. Inclusion
of space dependencies places much greater significance on smaller-scale anomalies occurring
over the continents, particularly over the Andes Mountains. This finding is a result of the
mathematics of GMRF. It does not imply that the large-scale errors are of lesser scientific
importance. It only means that GMRF is less sensitive to large-scale anomalies, perhaps
because they are associated with fewer degrees of freedom than highly structured errors. Un-
derstanding whether and how these distinctions aid model assessment needs further study.
We do find it reassuring that GMRF-based metrics of distance to observations are similar,
at least in the example provided, to a traditional metric.

2.1.6 Summary of work on GMRF’s measure of model skill

We have developed a new test statistic as a scalar measure of model skill or cost for evaluat-
ing the extent to which climate model output captures observed field and space relationships
using Gaussian Markov Random Fields (GMRF's). The challenge has been that few obser-
vations exit for establishing a meaningful observational basis for quantifying field and space
relationships of climate phenomena. Much of the data that is typically used for model eval-
uation is suspected of having its own relationship biases introduced by the numerical model
that is used to synthesize measurements into gridded products. The GMRF-based metric
overcomes some of these limitations by considering field and space variations within a neigh-
borhood structure thereby lowering the metric’s data requirements. The form of the metric
separates space and field dependencies using a Kronecker product that, when multiplied out,

10
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Figure 6: Different field contributions to the GMRF-based costs for a slice of Figure 5 where
c0 = 0.0035. Cost values are relative to the default parameter setting for ke. Note that
total cost (black dashed line) is a weighted sum of field contributions as given by S™! with
contributions from sea level pressure (PSL, red line), 2-m air temperature (TREFHT, green
line), 200-millibar zonal winds (U, blue line), and total precipitation (PRECT, cyan line).

has all the terms necessary to represent how different points in space are tied together across
multiple field. We also include a scalar o that weights the importance of spatial relationships
between grid cells. Its optimal value turns out to be independent of the data type which
aids the use of GMRF for comparing model output to data across multiple fields. Using
‘witch hat’ graphs, we show a first order (nearest neighborhood) structure does an excellent
job of capturing empirical estimates of field and space relationships. We have applied three
versions of cost that selectively turn on or off field and space dependencies in a climate model
(CAM3.1) output against observational products for tropical JJA climatologies for 2 m air
temperature, sea level pressure, precipitation, and 200-millibar zonal winds. The results
show subtle, but potentially important differences among these versions of the cost which
may prove beneficial for selecting models that capture observed climate phenomena for the
right reasons.

Climate models can be used to estimate changes in climate as a difference from the
modern. While it is acknowledged that climate models can contain significant biases or
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errors in simulating what is observed, by using models to estimate climate changes there is
an implicit assumption that biases that exist for modern climate remain fixed even as system
evolves. In a linear system such differencing will eliminate the biases in predictions. Since
important facets of climate can respond non-linearly, the preferred solution to this problem
is to minimize model biases during model development by capturing observed phenomena for
the right physical reasons. However selecting which of the existing climate model biases are
most problematic for predictions is not well established. Current approaches to highlighting
the most problematic biases emphasize scientific intuition, which has its limitations.

2.2 A regression between bias and climate sensitivity within a
perturbed physics ensemble of CAM3.1

2.2.1 Introduction

The objective here is to identify which model errors are most relevant to a models predictions
of global warming response to CO2. This calculation involves creating a statistical summary
of a perturbed physics ensemble that through multivariate regression relates model bias to
what occurs in a climate change experiment. The results we seek are latitude-longitude maps
indicating how various quantities and locations need to be weighted to predict a models
response to CO2 forcing. The solution to this problem is not unique insofar as one is
potentially relating 10 or more predictors (errors at each grid point for any number of
fields) to estimate only 102 response variables such as the level of global warming for a
limited set of models. Thus part of the present objective is to describe a test that can
differentiate between robust and non-robust predictors. The calculation is formulated with
both frequentist and Bayesian approaches, which result in slightly different interpretations
and outcomes.

This calculation is also related to a growing literature concerning the identification of
“emergent constraints” which are observables that are predictive of the level of warming
that occurs in response to a doubling of atmospheric CO, concentrations within a multi-
model ensemble (MME) (Piani et al., 2005; Harris et al., 2006; Piani et al., 2007; Volodin,
2007; Huber et al., 2011; Abe et al., 2011; Klocke et al., 2011; Yip et al., 2011; Fasullo and
Trendberth, 2012; Ingram 2013, Masson and Knutti, 2013; Sanderson 2013; Caldwell et al.
2014; Sherwood et al. 2014) Identification of emergent constraints is an essential ingredi-
ent within probabilistic frameworks for climate predictions because of its role in weighting
model output by each model’s skill in representing what is important to predictions. The
identification of emergent constraints has proven challenging (Caldwell et al., 2014), per-
haps because the causes for differences in sensitivity are dependent on structures that are
model specific. By focusing on a single model, the Community Atmosphere Model version
3.1 (CAM3.1), our objective is use tools of statistical regression to diagnose those structures
that are important determinants of its climate sensitivity. We do not attempt to address
here how this calculation can be applied to other models.
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2.2.2 Description of ensemble

A 165 member ensemble was generated representing parametric uncertainties resulting from
a calibration of a set of 16 parameters important to clouds, convection, and radiation within
the Community Atmosphere Model version 3.1 (CAM3.1) at an approximate resolution of
2.80 longitude by 2.80 latitude with 26 vertical levels. The ensemble design follows Jackson
et al. (2008) with differences relating to shorter model experiments (4 years instead of
11 years), an expanded list of uncertain model parameters, and a revised test statistic or
“cost function”. The updated test statistic is based on quantities, observations, and regions
that are used within the development of CAM through a set of Taylor diagnostics within
the Atmosphere Model Diagnostic Package (http://www.cgd.ucar.edu/cms/diagnostics/).
These metrics emphasize fields between 30S and 30N including 2 m air temperature (Willmott
and Matsuura 2000), vertically averaged air temperature (ERA40, Uppala et al. 2005), latent
heat fluxes of the ocean (Yu et al. 2008), zonal winds at 300 mb (ERA40, Uppala et al.
2005), longwave and shortwave cloud forcing (CERES2, Loeb et al. 2009), precipitation over
land and ocean (GPCP, Adler et al. 2003), sea level pressure (ERA40, Uppala et al. 2005),
vertically averaged relative humidity (ERA40, Uppala et al. 2005). Other quantities include
Pacific Ocean wind stress between 5S and 5N (ERS-2, Bentamy et al. 1999) and the global
mean annual mean radiative balance.

In total 3336 experiments were conducted with fixed sea surface temperatures. 1800
of these experiments were identified by the sampling algorithm to represent the parametric
uncertainties. All model configurations selected attained a test statistic skill score equal to or
better than the default value and were within 1 Wm™2 of radiative balance at the top of the
atmosphere. These 1800 were ordered by their test statistic values and every 10th member
for a total 180 model configurations were selected for representing parametric uncertainties
in global warming experiments. Global warming experiments consist of coupling the model
to a slab ocean, integrating the model 50 years under modern (year 2000) CO2 values and
again for another 50 years under doubled COs values. Unlike Jackson et al. (2008) heat flux
adjustments were only estimated from the default model, which were subsequently used for
all global warming experiments. 15 model configurations resulted in runway cooling along the
equator which is a result of increased cloud cover over regions where there exists negative heat
flux adjustments. Because the slab ocean lacks the correct physics to account for changes in
ocean heat transports, such a circumstance is unphysical and is one of the limitations of using
AGCM-slab ocean models as a computationally inexpensive way to estimate the equilibrium
response of a coupled climate system model to changes in atmospheric CO4 concentrations.
The 165 member ensemble has a range of equilibrium climate sensitivities (the amount of
warming in response to a doubling of atmospheric CO, concentrations) ranging between 2o
C and 4o C with the maximum likelihood centered at 2.70 C. An evaluation of this ensemble
relative to other models has been presented in Yokohata et al. (2011) and Yokohata et al.
(2013).
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2.2.3 Regression Modeling

Consider the linear model
Y =XB+e, FEe,)=0, Cov(e,) = o°I,, (6)

where Y is an n X 1 vector of observable response random values, X is an n X p known
model matrix, 3 is a p X 1 vector of unknown parameters, I,, is an identity matrix of size n,
o? is an unknown parameter, e,, is an n x 1 vector of independent and unobservable errors,
E(.) and Couv(.) are the expectation and the covariance operators respectively. Depending
on the context, the latter operator will be also used to indicate the sample covariance. D(z;)
defines a diagonal matrix that has z1,..., 2, as diagonal entries. The size of the matrix
should be clear from the context. It is usually assumed that e, follows a multivariate normal
distribution. This assumption is not necessary for estimation or prediction but needed in
order to compute confidence intervals for parameters and prediction intervals for future values
of the response variable. We assume throughout that the data follow a normal distribution
and, thus, model (1) can be re-expressed as Y ~ N (X3, 0%I,).

In our problem, Y represents the climate sensitivity which is the average change in global
mean temperature when CO2 is doubled. The design matrix X forms a set of predictors that
takes on values on 11 fields measured over grid points (a set of spatial locations) that form
part of the climate model output. There are 8192 locations represented by their latitudes
and longitudes for the first seven fields which are denoted by TREFHT, SWCF, PRECT,
LWCF, FSNT, FLNT and TAUX. For the rest of the fields RELHUM, U, T and CLOUD,
the locations are represented by their latitudes and heights. Currently, we have 165 climate
sensitivity experiments. Hence, the sample size and number of rows of X, n = 165. CLOUD
could not be measured over a small set of locations producing missing values for X. After
omitting these missing values, p, the number of regression parameters (predictors) or equiva-
lently the number of columns of X, is 63873 including the intercept. 3 represents predictors
effects.

One of the main purposes of this study is to present sensible estimate of 3. Another
goal is to produce predictions of climate sensitivity, 1y, when a set of predictor values, @,
is provided. @ is a vector column of size p representing a new set of values of the 11 fields
over all locations. A prediction of ¥y, is computed as gy = wOT,B where B is an estimate of
B. Note that p is much larger than n, thus the least squares method to estimate 3 will
interpolate the data points without giving a reasonable approximation of the underlying
process that generated them. Therefore, we will rely on Principal Component Regression
(PCR) to estimate B and perform predictions.

2.2.4 PCA

Principal Component Analysis (PCA) is primarily used as a data reduction technique by
constructing a small set of new variables that carry and summarize most of the variability
of the data matrix X. These new variables (Principal Components), which are linear com-
binations of the original variables, are chosen so that they are uncorrelated and represent
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the maximum variability contained in X. PCA can accomplish a huge reduction especially
when p is much greater than n which is our case. For the following discussion, p is assumed
to be greater than n. For more details on PCA and PCR, see Johnson and Wichern (2007),

Jolliffe (2002), and Massy (1965).
Since the sample covariance of X, S = Cov(X), is a symmetric non-negative definite

~ - T
matrix, it can be expressed through the spectral decomposition as S = V.D(\;)V" where
~ ~ o~ T ~ T ~

V is an orthogonal matrix of size p, ie. VV =V V = I, with columns representing

eigenvectors of S and D()\;) is a diagonal matrix carrying the eigenvalues of S. The vec-
tors v;’s are usually termed in the geophysical sciences as Empirical Orthogonal Functions
(EOFs).

Define W = [wl, Wy, ..., wp} = [le, Xvy, ..., X'vp] — XV. W has the

same dimension as X, n X p.

2.2.5 PCR

2.3 Estimation

PCR is concerned in performing regression analysis using the principal components as pre-
dictors rather than the original variables. Model (1) can be represented as

Y=XB+e,=Wa-+e, (7)

where o = V'3 which is a vector of length r. Equivalently, Y ~ N(Wa,o?I,) under
normality of e, . The estimation problem has been reduced from estimating p coefficients
to r. For the NCAR CAM 3.1 data described previously, p = 63872 and r = 164, so a large
reduction has been accomplished.

This system does not have a unique solution. In fact, it has infinitely many solutions and
all are given by Vé + w or 3 + u where u = (I, — VV7T)z for an arbitrary vector z.

2.3.1 Prediction

A prediction for a future response value, yp, at a new point x(, which is a vector of length p,
can be obtained by finding &1 3 or £ V' é&. The latter quantity is an estimation of 278 which
is E(yo). The prediction variance is 02 + xf VCov(&)V ' axy. More precisely, the prediction
and prediction variance are Y + @8 and 02 + 02 /n + & VCov(&) VT x, respectively. For
now we will ignore Y~ and concentrate on :ch

2.3.2 Bayesian Paradigm

The paper by West (2003) imposes a generalized shrinkage prior on a = [oq, g, ..., oz,,}

for Model (2). In particular, he assumes that o; ~ N (0,¢;/¢;) for i = 1,...,r, where the
¢;’s are independent and identically distributed as Gamma(j/2,7/2) where j is a known
positive constant. In one of the examples in West (2003), he chooses j that would minimize
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the mean square prediction error. It follows that e ~ N, (0, D(c;/¢;)). As mentioned in
Section 4.2, there are multiple ways to extract @ from a and West (2003) properly justifies
the use of the Moore-Penrose generalized inverse to make inferences on 3. This choice is
irrelevant for predictions. Thus 8 = Va ~ N, (0, VD(c;/¢;)V'") is the implied prior (sin-
gular distribution) for 3. Samples from the posterior distribution of 3 are easily obtained
once samples for a have been drawn. The components of 3 are usually estimated by either
their posterior means or posterior medians. Percentiles of the posterior distribution provide
credible intervals. All these quantities are approximated from the posterior samples.

The scalar ¢; can be interpreted as weights to indicate the importance of the ith PC,
w;. Usually, the PCs with small variances are deleted from the model. This can be directly
done by setting ¢; = 0. Instead of this arbitrary practice, West (2003) suggests to assume
that ¢; = gi~2 where g is a scale factor that has a flat prior. This is a shrinkage prior and
requires a stronger evidence from the data to see the influential role for higher ordered PCs.
In accordance with Jolliffe (1982), we prefer to use ¢; = g to give all PCs the same chance
to appear in the model. Assuming an Inverse-Gamma prior for o2 or a uniform distribution
on log o completes the prior specification.

Posterior sampling for this model is easily implemented using MCMC and simply executed
by standard software tools such as OpenBugs or rjags. The predictions over X are naturally
found by treating the future responses, Y, as missing values and to be imputed during the
MCMC sampling iterations. We reiterate that X, must be stacked to X before performing
PCA. Thus the analysis has to be repeated if X changes. The prediction is usually given by
the median or the mean of the posterior predictive distribution, F (Y o|Y’). These quantities
along with 95% credible predictive intervals are easily approximated from the posterior
predictive samples.

2.3.3 Analysis

In this section we present a frequentist analysis of the data. It is assumed that PCA has been
already performed on X. The fitting procedure for Model (2) is introduced and described
under the general framework. Recall that Model (2) is

Y=XB+e,=Wa+e,

For our data, n = 165 and » = 164. One degree of freedom has been lost to estimate
the intercept (the response mean which is 2.789) leaving us with a saturated model, i.e. 0
degrees of freedom and an estimate of the error cannot be obtained. Formal tests to assess
predictors significance are not feasible. In such cases, predictors screening process such as
normal probability plot is pretty useful and presented next. One might suggest to consider
the PCs that are associated with small eigenvalues as non-significant and to be removed from
the model since they explain a little of the variability of the original variables. However,
Jolliffe (1982) demonstrated that these components can be equivalently important as much
as those with large eigenvalues. He claims that a selection process depending solely on the
magnitude of the eigenvalues should not be considered. An alternative solution is presented
next.
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Table 1: PC Estimates and their Standard Errors multiplied by 103

PC # 1 2 3 5 7 8 10 11
Q; 1.298 | 1.844 | -1.187 | -1.004 | 1.690 | 3.341 | 1.938 | 1.708
SE 1 0.050 | 0.115 | 0.129 | 0.175 | 0.224 | 0.253 | 0.329 | 0.354

Model (2) constitutes an orthogonal design because W' W is a diagonal matrix. The

_ 1
least squares estimate of o, & = (W'W) ‘W'Y = D (m) WY and Cov(&) =
_ 1
o? (WTW) '~ 2D (m) In particular, the ith component of the least squares
A
timate a w Y dh (6) 7 Clearly, é; depends solely on th
i = ——— an ar(&;) = ——— . Clearly, &; depends solely on the
estimate & )\i(n—l)a as v N =1) arly. p y

1th PC in isolation of the other PCs. Orthogonality also implies that these components
are uncorrelated (independent under normality). Note also that the significance of a PC
depends directly on the magnitude of \;. Low ordered PC’s have smaller standard errors.
As a result of that, higher ordered PC’s might not be declared significant even though they
may be highly correlated with Y. If the w;’s are all scaled to have the same length (divide

o’I, o?I,

by VA ), then Cov(&) = 7 It follows that & ~ N (a,

and PC selection

based on normal probability plot is now feasible. As we will see shortly, this method is very
simple and yet effective. Originally, it was introduced by Daniel (1959) for unreplicated 2*
factorial design when the number of factors is large and obtaining another replication of the
experiment is not possible. Daniel (1959) suggests to investigate a normal probability plot
of the estimates of the predictors. Negligible or inactive predictors, i.e. have a zero mean,
should fall on a straight line. Critical or active predictors, have nonzero means, will tend
to deviate from the line. Only active predictors will be represented in the model. For more
details and examples see Montgomery (1996).

A normal probability plot for the scaled PCs is shown in Figure 1-a. According to Daniel
(1959), PC#: 1,2, 3,5, 7,8, 10 and 11 are deemed significant and exclusively considered
in the preliminary model. The estimates for the rest of the PCs are set to zero. Notice
that higher ordered PC’s such as 10 and 11 are more important than the relatively low
ordered PCs 4 and 6. Table 1 presents the coefficient estimates &; along with the standard
errors for the significant PCs according to Daniel’s plot. Additionally, Figure 1-b displays
the actual values of Y versus the fitted values Y = X B = W a. The correlation between
Y and Y exceeds 94 %. Residual analysis and diagnostic plots (not shown here) support
the appropriateness of the model apart of an apparent outlier with an observed climate
sensitivity of about 1.95°C. Refitting the model with this point removed yielded somewhat
similar results in terms of parameter estimates, standard errors and predictions.

As mentioned earlier an estimate of 3, the standardized regression coefficient vector,
can be obtained by B = V& where &T = [661, @2, 6&3, 0, 665, 0, 5(77 dg, O, d107 dlla 01><(153)] It
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follows that 3 = &;v; and Cov 3) =
B=Y" B =T
ied ied R
Note that each term v;v7 is a p X p matrix, therefore finding Cov(3) may not be computa-

tionally feasible if p is excessively large. We concentrate, instead, on its diagonal elements
2

2

na_ ] Z U)\—]: where vj;
i€d

is the jth component of v;. The standard error of Bj is found by taking the square root and

replacing o2 by its estimate 62

Figures 2 and 3 display the components of B distributed over their corresponding geo-
graphic locations within each underlying field generated by the CAM. Figures 4 and 5 present
their standard errors. The quantities in these maps are multiplied by 10°. In particular, Fig-
ures 2 and 3 provide a visual display of how fields are impacting climate sensitivity across
the geographical regions.

To assess the model predictive ability, 17 observations selected randomly (around 10%
of the data) have been held out and removed for prediction validation. Figure 1-c displays
the actual values of these observations versus predicted values along with 95% prediction
intervals. This procedure has been repeated several times with a random selection of points
chosen to be removed and then predicted. The results for these repetitions are similar to
what is observed in Figure 1-C. The prediction at xq is Y + wOT,B =Y + Z Q;wepi. The

ied
o Whos
i€d

where d = {1,2,3,5,7,8,10, 11}.

which represent var(Bj), j=1,...,p. The latter quantity is exactly

L ~ 2 2 T A 2 2
prediction variance is o° + o°/n + wy,Cov(&)wey = 0 + 0 /n +

, where

woo = VT and woy; is its ith component.

2.3.4 Bayesian Analysis

Now we reanalyze the climate model output from CAM 3.1 using the Bayesian model pre-
sented in Subsection 4.3. Two priors are introduced for a. The first one, denoted by M,
assumes o; ~ N(0,¢;/¢;), where ¢; = gi~2. The other one, My,assumes a; ~ N(0,¢;/;),
where ¢; = g. In both cases, we adopt adopt flat priors for 5y (the intercept) and g and
also assume that ¢; ~ Gamma(0.8,0.8) and 1/0? ~ Gamma(1,1). These choices of priors
are not critical. In fact, the posterior analysis was minimally affected when we assumed
different Gamma priors. Posterior analysis, posterior medians and 95% credible intervals,
for a for both M; and M, are presented in Figure 6. The Red bars represent the PCs that
are significantly different from 0 from Bayesian perspective.

Both M; and M, agree with the previous analysis presented in Section 5 in terms of
significant PCs. M, intervals narrow down to 0 as the index, 7, increases as a result of the
prior specification. Also, M; yielded slightly shorter intervals for the first PCs. Next we
removed the non-significant PCs by setting ¢; = 0 for i ¢ d. We also set ¢; = ¢ for i € d
where d is defined in Section 5. This model is denoted by Ms;.

Three MCMC chains were initiated using different starting values. Each chain has a
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Figure 10: Standard Error of 8 x 10°. (a) SE:TREFHT. (b) SE:SWCF. (c) SE:LWCF. (d)
SE: TAUX. (d) SE:FSNT.
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Figure 12: Posterior Analysis of o multiplied by 103. Top (M;), Bottom (M)
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Table 2: E(o;|Y) and SD(;]Y) multiplied by 103
PC # 1 2 3 ) 7 8 10 11
E(a;|Y) [ 1.295 | 1.832 | -1.173 | -0.984 | 1.647 | 3.284 | 1.841 | 1.603
SD(e;]Y) | 0.070 | 0.160 | 0.179 | 0.243 | 0.310 | 0.352 | 0.457 | 0.493

length of 30000 and the first 5000 iterations had been used as burn-in. The computation
time did not exceed 15 seconds. Several diagnostics procedures have shown that convergence
has been reached quickly. In particular trace plots for g, o and the intercept versus the
iteration index are shown in Figure 7. Posterior analysis for the parameters «; and ¢; is
displayed in Figure 8. Table 2 shows posteriors means and standard deviations for a;. Note
that E(«;|Y) ~ &;, the least squares estimate of a;, and SD(;|Y) > SE(&;). The actual
values for the climate sensitivity versus the fitted values, F(X3|Y), are shown in Figure
7-d which almost coincides with Figure 1-b. Assuming other priors on g, 02 and ¢; yielded
very similar results. However, assuming ¢; = ¢ for all ¢ produced poorer fit and less stable
results. Similar issues were observed when g was fixed at 1.

The posterior analysis for 3, displayed in Figures 9-12 produced similar results to the
frequentist approach presented in Section 4 in terms of point estimates, i.e. E(5;]Y) =~ Bj
but with higher variability, SD(3,|Y") > SE(B;). It can be seen again that there are some
locations having larger effects on climate sensitivity than other locations depending on each
field. The posterior median and 95% probability intervals for the coefficients of one location
that has longitude of 261.5625 and latitude of 29.30136 are shown in Figure 13. Notice that
none of these intervals include zero. For example, we expect that for every one standard
deviation increase in TREFHT on this location corresponds to, on average, 3.559223 x 1075
increase in climate sensitivity keeping all other predictors fixed. We have a 95% probability
that this increase falls between 2.846493 x 10~° and 4.233791 x 107°. The other estimates
and intervals on Figure 13 can be interpreted similarly. Notice that climate sensitivity in
this location is positively associated with some fields and negatively over others. These
relationships can change across locations.

For illustration purposes, the data matrix, X has been divided into two parts, X =
Xr
Xo

and to be predicted over these points. Figure 14 shows the resulting Bayesian predictions
which are slightly better in terms of the mean squared error compared to the Frequentist
predictions. It is evident that the Bayesian credible intervals are wider than the Frequentist
intervals. In fact they are on average 46% wider. We also found V' RV%X '~ Xx OT where V i
is the V' matrix that resulted from performing PCA on X z. This supports the suitability
of X OB for predictions. The two approaches can produce results that might be drastically
different if V R VEXT does not give a reasonable approximation for X¢ .

Climate sensitivity is a quantity of great interest in climatological research which is de-
fined as the average change in global mean temperature when CO2 is doubled. To study
this quantity, we considered output/data generated by the NCAR Community Atmospheric

. X consists of the 17 points in Figure 1-c. Climate sensitivity is considered missing
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Figure 14: Mj Posterior Analysis. (a) a; x 103 (b) ¢;
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Figure 16: E(B|Y) x 10°. (a) FLNT. (b) RELHUM. (c) U. (d) CLOUD.
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Model (CAM 3.1). In addition to climate sensitivity, CAM 3.1 produces model runs of
climate simulation generating output related to 11 different fields or variables, such as hu-
midity, and measured over a spatial grid consisting of 8192 locations. There are only 165 of
such model runs which induces a problem where the number of predictors is overwhelmingly
greater than the number of observations. The main goal of this study was to introduce
sensible and flexible methods to predict climate sensitivity based on the current CAM 3.1
models runs and for those available for other models. The problem was tackled via Princi-
pal Component Regression (PCR) analysis based on Bayesian and Frequentist perspectives.
Specifically, the Bayesian approach is needed to solve identifiability issues that are needed
to differentiate between robust and non-robust predictors, an issue that is usually ignored in
the literature of PCR. Our framework provides maps to visualize the relationship between
climate sensitivity and the 11 fields considered
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Invited talk for DOE Principal Investigators Meeting. Climate Sciences division, Wash-
ington, DC, May 2014. (joint with C. Jackson).

A new metric for climate models that includes spatial and field dependencies using
GMREF. Invited talk at SIAM Conference in Uncertainty Quantification, Savannah,
GA, April 2014. (joint with A. Nosedal-Sanchez and C. Jackson).

A new metric for climate models that includes spatial and field dependencies. De-
partment of Mathematics. University of Nevada-Reno, June 2014, Reno, NV (with C.
Jackson and A. Nosdeal-Sanchez).

A metric of CAM performance that includes field dependencies. National Center for
Atmospheric Research, February 2014, Boulder, CO (with C. Jackson and A. Nosdeal-
Sanchez)

Selecting, weeding, and weighting biased climate model ensembles. American Geo-
physical Union (AGU) meeting, December 2012, San Francisco, CA (with C. Jackson
and A. Nosedal-Sanchez).

SIAM Conference on Uncertainty Quantification, Huerta, G, C. Jackson, A. Nosedal,
G. Stark, J. Gattiker, D. Higdon (Spring 2012) “Measures of model skill and parametric
uncertainty estimation in climate models”

International Society of Bayesian Analysis World Meeting, Huerta, G, C. Jackson, A.
Nosedal, G. Stark, J. Gattiker, D. Higdon (Summer 2012) “Measures of model skill
and parametric uncertainty estimation in climate models”

Joint Statistical Meetings of the ASA, Huerta, G., Stark G. (Summer 2012) ”Dynamic
and spatial modeling of precipitation extremes”.
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18.

19.

20.

21.

Using Stochastic Sampling of Parametric Uncertainties to Quantify Relationships Be-
tween CAM3.1 Bias and Climate Sensitivity. Department of Energy 2011 Climate
Modeling Meeting, September 2011, Washington, DC (with C. Jackson).

DOE PI meeting, Jackson, C. S., Huerta, G. (Fall 2011) Assessing which climate model
biases affect predictions

SAMSI, Program on Uncertainty Quantification, Pleasanton CA. Jackson, C. S., Huerta,
G. (Fall 2011) Assessing which climate model biases affect predictions

AGU, Fall Meeting 2011, Jackson, C. S., Huerta G., Tobis, M. (2011) Using stochastic
sampling of parametric uncertainties to quantify relationships between CAMS3.1 bias
and climate sensitivity (Invited)”

36



1]

References Cited

Robert F Adler, George J Huffman, Alfred Chang, Ralph Ferraro, Ping-Ping Xie,
John Janowiak, Bruno Rudolf, Udo Schneider, Scott Curtis, David Bolvin, Arnold
Gruber, Joel Susskind, Philip Arkin, and Eric Nelkin. The Version-2 Global Precip-
itation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present).
http://dx.doi.org/10.1175/1525-7541(2003)004j1147: TVGPCP;2.0.CO;2, 4(6):1147—
1167, July 2009.

Amy Braverman, Noel Cressie, and Joao Teixeira. A likelihood-based comparison of
temporal models for physical processes. Statistical Analysis and Data Mining, 4(3):247—
258, April 2011.

W D Collins, P J Rasch, B A Boville, J J Hack, J R McCaa, D L, Williamson, and B P
Briegleb. The formulation and atmospheric simulation of the Community Atmosphere
Model version 3 (CAM3). Journal of Climate, 19(11):2144-2161, 2006.

P J Gleckler, K E Taylor, and C Doutriaux. Performance metrics for climate models.
Journal of Geophysical Research: Atmospheres (1984-2012), 113(D6):1-20, March 2008.

Reto Knutti, R Furrer, C Tebaldi, J Cermak, and Gerald A Meehl. Challenges in
combining projections from multiple climate models. Journal Of Climate, 23(10):2739—
2758, 2010.

Thomas Reichler and Junsu Kim. How Well Do Coupled Models Simulate Today’s
Climate? Bulletin of the American Meteorological Society, 89(3):303-311, March 2008.

B D Santer, K E Taylor, P J Gleckler, C Bonfils, T P Barnett, D W Pierce, T M L
Wigley, C Mears, F J Wentz, W Briiggemann, N P Gillett, S A Klein, S Solomon, P A
Stott, and M F Wehner. Incorporating model quality information in climate change

detection and attribution studies. Proceedings of the National Academy of Sciences,
106(35):14778-14783, September 2009.

KE Taylor. Summarizing multiple aspects of model performance in a single diagram.
Journal Of Geophysical Research-Atmospheres, 106(D7):7183-7192, 2001.

Kevin E Trenberth, Toshio Koike, and Kazutoshi Onogi. Progress and Prospects for
Reanalysis for Weather and Climate. Fos, Transactions American Geophysical Union,
89(26):234-235, June 2008.

S M Uppala, P W Kallberg, A J Simmons, U Andrae, V Da Costa Bechtold, M Fiorino,
J K Gibson, J Haseler, A Hernandez, G A Kelly, X Li, K Onogi, S Saarinen, N Sokka,
R P Allan, E Andersson, K Arpe, M A Balmaseda, A C M Beljaars, L. Van De Berg,
J Bidlot, N Bormann, S Caires, F Chevallier, A Dethof, M Dragosavac, M Fisher,
M Fuentes, S Hagemann, E H6lm, B J Hoskins, L Isaksen, P A E M Janssen, R Jenne,

37



[11]

1]

2]

A P Mcnally, J F Mahfouf, J J Morcrette, N A Rayner, R W Saunders, P Simon,
A Sterl, K E Trenberth, A Untch, D Vasiljevic, P Viterbo, and J Woollen. The ERA-40
re-analysis. Quarterly Journal Of The Royal Meteorological Society, 131(612):2961—
3012, October 2005.

Andreas P Weigel, Reto Knutti, Mark A Liniger, and Christof Appenzeller. Risks of
Model Weighting in Multimodel Climate Projections. Journal Of Climate, 23(15):4175—
4191, August 2010.

References Cited

Daniel, C. 1959. Use of Half Normal Probability plots in Interpreting Factorial Two Level
Experiments. Technometricsl, 311-342

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P.; Janowiak, J., et al. 2009.
The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation
Analysis (1979-Present). J. Hydrometeor.4, 1147-1167.

Bentamy, A., Queffeulou, P., Quilfen Y., and Katsaros, K. 1999. Ocean surface wind
fields estimated from satellite active and passive microwave instruments. IEFEFE Trans.
Geosci. Remote Sensing 37,2469-2486.

Caldwell, P. M., Bretherton, C. S., Zelinka, M. D., Santer, B. D., Klein, S. A., and
Sanderson, B. M. (2014). Statistical significance of climate sensitivity predictors obtained
by data mining. Geophysical . http://doi.org/10.1002/2014GL059205

Fasullo, J. T., and Trenberth, K. E. (2012). A Less Cloudy Future: The
Role of Subtropical Subsidence in Climate Sensitivity. Science, 338(6108), 792-794.
http://doi.org/10.1126/science.1227465

Harris, G. R., Sexton, D. M. H., Booth, B. B. B., Collins, M., Murphy, J. M., and
Webb, M. J. (2006). Frequency distributions of transient regional climate change from
perturbed physics ensembles of general circulation model simulations. Climate Dynamics,
27(4), 357-375. http://doi.org/10.1007 /s00382-006-0142-8

Huber, M., Mahlstein, 1., Wild, M., Fasullo, J., and Knutti, R. (2011). Constraints on
Climate Sensitivity from Radiation Patterns in Climate Models. Journal of Climate,
24(4), 1034-1052. http://doi.org/10.1175/2010JCLI3403.1

Ingram, W. (2013). Some implications of a new approach to the water vapour feedback.
Climate Dynamics, 40(3-4), 925-933. http://doi.org/10.1007/s00382-012-1456-3

Klocke, D., Pincus, R., and Quaas, J. (2011). On Constraining Estimates of Climate
Sensitivity with Present-Day Observations through Model Weighting. Journal of Climate,
24(23), 6092-6099. http://doi.org/10.1175/2011JCLI4193.1

38



[10] Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F., Kato, S., et al.
(2010). Toward Optimal Closure of the Earth’s Top-of-Atmosphere Radiation Budget.
Dx.Doi.org, 22(3), 748-766. http://doi.org/10.1175/2008JCLI2637.1

[11] Masson, D., and Knutti, R. (2013). Predictor Screening, Calibration, and Observational
Constraints in Climate Model Ensembles: An Illustration Using Climate Sensitivity.
Journal of Climate, 26(3), 887-898. http://doi.org/10.1175/JCLI-D-11-00540.1

[12] Piani, C., Frame, D. J., Stainforth, D. A., and Allen, M. R. (2005). Constraints on
climate change from a multi-thousand member ensemble of simulations. Geophysical
Research Letters, 32(23), L23825. http://doi.org/10.1029,/2005GL024452

[13] Piani, C., Sanderson, B., Giorgi, F., Frame, D. J., Christensen, C., and Allen,
M. R. (2007). Regional probabilistic climate forecasts from a multithousand, multi-
model ensemble of simulations. Journal of Geophysical Research, 112(D24), D24108.
http://doi.org/10.1029/2007JD008712

[14] Sanderson, B. M. (2013). On the estimation of systematic error in regression-
based predictions of climate sensitivity. Climatic Change, 118(3-4), 757-770.
http://doi.org/10.1007/s10584-012-0671-6

[15] Sherwood, S. C., Bony, S., and Dufresne, J.-L. (2014). Spread in model cli-
mate sensitivity traced to atmospheric convective mixing. Nature, 505(7481), 37-42.
http://doi.org/10.1038 /nature12829

[16] Uppala, S. M., Kallberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino,
M., et al. (2005). The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological
Society, 131(612), 2961-3012. http://doi.org/10.1256/qj.04.176

[17] Volodin, E. M. (2008). Relation between temperature sensitivity to doubled carbon
dioxide and the distribution of clouds in current climate models. Izvestiya, Atmospheric
and Oceanic Physics, 44(3), 288-299. http://doi.org/10.1134/S0001433808030043

(18] Willmott, C. J. and K. Matsuura (2001) Global Air  Temper-
ature: Regridded ~ Monthly  and  Annual  Climatologies (V.  2.02)
http://climate.geog.udel.edu/climate/html_pages/README.lw2.html

[19] Yokohata, T., Annan, J. D., Collins, M., Jackson, C. S., Shiogama, H., Watanabe, M., et
al. (2013). Reliability and importance of structural diversity of climate model ensembles.
Climate Dynamics. http://doi.org/10.1007/s00382-013-1733-9

[20] Yokohata, T., Annan, J. D., Collins, M., Jackson, C. S., Tobis, M., Webb, M. J., and
Hargreaves, J. C. (2011). Reliability of multi-model and structurally different single-
model ensembles. Climate Dynamics, 39(3-4), 599-616. http://doi.org/10.1007/s00382-
011-1203-1

39



[21] Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes
(OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface
meteorological variables. OAFlux Project Technical Report. OA-2008-01, 64pp. (2008)
by L. Yu, X. Jin, R. A. Weller

40



