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Abstract. We investigate the complexity and approximability of some
location problems when two distance values are specified for each pair
of potential sites. These problems involve the selection of a specified
number of facilities (i.e. a placement of a specified size) to minimize a
function of one distance metric subject to a budget constraint on the -
other distance metric. Such problems arise in several application areas
including statistical clustering, pattern recognition and load-balancing
in distributed systems. We show that, in general, obtaining placements
that are near-optimal with respect to the first distance metric is NP~
hard even when we allow the budget constraint on the second distance
metric to be violated by a constant factor. However, when both the
distance metrics satisfy the triangle inequality, we present approximation
algorithms that produce placements which are near-optimal with respect
to the first distance metric while violating the budget constraint only by
a small constant factor. We also present polynomial algorithms for these
problems when the underlying graph is a tree.

1 Introduction and Motivation

In this paper, we study some location problems with multiple constraints. The
problems considered in this paper can be termed as compact location problems,
since we will typically be interested in finding a “compact” placement of facil-
ities, i.e. a placement minimizing some measure of the distances between the
selected nodes. Compact location problems without multiple constraints have
been studied extensively in the past (see [RKM*93, AI*91] and the references
cited there in).

To illustrate the types of problems considered in this paper, we present the
following example. Suppose we are given two weight—functions ¢, d on the edges of
the network. Let the first weight function ¢ represent the cost of coustructing an
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edge, and let the second weight function d represent the actual transportation—
or communication-cost over an edge (once it has been constructed). Given such
a graph, we can define a general bicriteria problem (A, B) by identifying two
minimization objectives of interest from a set of possible objectives. A budget
value is specified on the second objective B and the goal is to find a placement
of facilities having minimum possible value for the first objective A such that
this solution obeys the budget constraint on the second objective. For exam-
ple, consider the Diameter—Constrained Minimum Diameter Problem denoted
by DC-MDP: Given an undirected complete graph ¢ = (V, E) with two non-
negative integral edge weight functions ¢ (modeling the building cost) and d
(modeling the delay or the communication cost), an integer p denoting the num-
ber of facilities to be placed, and an integral bound B (on the total delay), find
a placement of p facilities with minimum diameter under the c¢—cost such that
the diameter of the placement under the d—costs (the maximum delay between
any pair of nodes) is at most B. We term such problems as bicriteria compact
location problems. :

Here, we study the complexity and approximability of bicriteria compact
location problems such as the ones mentioned above. Our study of these prob-
lems is motivated by practical problems arising in diverse areas such as statisti-
cal clustering, pattern recognition, processor allocation and load-balancing (see
[HM79, MF90, KN*+95a] and the references cited therein).

2 Preliminaries and Problem Formulation

We consider a complete undirected n—vertex graph G = (V| E). Given an integer
D, a placement P is a subset of V with |P| = p. The set of neighbors of a vertex v
in G, denoted by N (v, G), is defined by N(v,G) := {w : (v,w) € E}. The degree
deg(v,G) of v in G is the number of vertices in N(v,G). For a subset V! C V
of nodes, we denote by G[V’] the subgraph of G induced by V'. Given a graph
G = (V, E), the graph G? = (V, E?) is defined by (u,v) € E? if and only if there
is a path in G between u and v consisting of at most two edges.

If the edge distances are allowed to be zero, then the optimal solution value
may be zero. In a such case, obtaining a solution whose value is within some
factor of the optimal solution value is trivially equivalent to finding an opti-
mal solution itself. Therefore, we assume that the values of both the distance
functions for any edge are strictly positive.

With é € {c, d} denoting one of the two edge—weight functions, we use D;(P)
to denote the diameter and S;(P) to denote the sum of the distances between
the nodes in the placement P; that is

Ds(P) = max d(u,v) and S5(P) = z &(u,v).
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We note that the average length of an edge in a placement P equals m& (P).

Since the average length of an edge in a placement differs from the total length
of all the edges in the placement by only the scaling factor —=— (p_”, finding a
placement of minimum average length is equivalent to finding a placement of
minimum total length. We use this fact throughout this paper.

As usual, we say that § € {c,d} satisfies the triangle ineguality if we have
(v, w) < 8(v,u) + 6{u,w) for all v,w,u € V. Following [HS86], the boitleneck
graph bottleneck(G, 8, A) of G = (V, E) with respect to § and a bound A is
defined by

bottleneck(G, 8, A) := (V, E'), where E' := {e € E : §(e) < A}
We now define the problems studied in this paper.

Definition 1 Diameter Constrained Minimum Average Placement Problem (DC-MAP).

Input:  An undirected complete graph G = (V, E) with two positive edge weight
functions ¢,d : E = Q% an integer 2 < p < n and a number 2 € Q* .

Qutput: A set P CV, with |P| = p, minimizing the objective

So(Py= Y cfv,w)
v, wEP
vEw
subject to the constraint
Du(P) = max d{v,w) < f2.

vEw

Definition 2 Sum Constrained Minimum Average Placement Problem (SC—MAP)
Input: Same as in DC-MAP above.

Output: A set P CV, with |P| = p, minimizing the objective
S(P)y= Y c(v,w)
. v,wEP
vEw
subject to the constraint
Sa(P) = Z d(v;,v;) < 02,

vi,v; EF %
u‘#u

The Sum Constrained Minimum Diameter Placement Problem (SC-MDP)
and the Diemeter Constrained Minimum Diameter Placement Problem (DC-
MDP) can be defined similarly. Given a problem IT, we use TI-IT to denote the
problem IT restricted to graphs in which both the edge weight functions satisfy
the triangle inequality.




We also investigate the existence of “good” solutions for bicriteria compact
location problems when input graphs are restricted to be trees. In such a case,
the distance between any two vertices 4 and v is the length of the path in the tree
between u and v. Given a problem IT, we use TREE-II to denote the problem IT
restricted to trees.

Let IT € {SC-MAP, DC-MAP, TI-DC~MAP, TI-SC-MAP}. Define an (a, 8)-
approzimation algorithm for II to be a polynomial-time algorithm, which for
any instance I of IT does one of the following:

(a) It produces a solution within « times the optimal value with respect to the
first distance function ¢, violating the constraint with respect to the second
distance function d by a factor of at most §.

(b) It returns the information that no feasible placement exists at all.

Notice that if there is no feasible placement but there is a placement violating
the constraint by a factor of at most 8, an («, 8)-approximation algorithm has
the choice of performing either action (a) or (b).

3 Summary of Results

In this paper, we presént both N'P-hardness results and approximation algo-
rithms with provable performance guarantees for several bicriteria compact lo-
cation problems. For additional results on these types of problems, we refer the
reader to a companion paper [KNt95a). Our results are based on two basic tech-
niques. The first is an application of a parametric search technique discussed in
[MR*95] for network design problems. The second is the power of graphs ap-
proach introduced by Hochbaum and Shmoys [HS86]. Our results for complete
graphs are summarized in Table 1. The table contains hardness results and
performance ratios for finding compact placements for different pairs of mini-
mization objectives. The horizontal entries denote the objective function. For
example the entry in row 4, column j denotes the performance guarantee for the
problem of minimizing objective j with a budget on the objective i.

— Object.l|Diameter Sum

| Budget

Diameter ||approximable within * (2,2)|approximable within (2 — %, 2)*
[KN*95a] not approximable within
not approximable within (a,2 —€)*
(2-¢2)or (2,2—¢)

Sum approximable within (2,2 — %) approximable within
(KN*+052] (A+m@E-2),1+1)e-2)
not approximable within (2 —¢, a)




Table 1. Performance guarantee results for constrained compact location in
a complete graph with edge weights obeying the triangle inequality. Asterisks
indicate results obtained in this paper. v > 0 is a fixed accuracy parameter. The
non-approximability results stated assume that P # NP.

— Object.}iDiameter Sum
{ Budget
Diameter [[polynomial time solvable polynomial time solvable
Sum polynomial time solvable NP-hard
approximable within (14v,1+21)

Table 2. Results for constrained compact location in tree networks.

4 Related Work

As mentioned earlier, problems involving the placement of p facilities so as to
minimize suitable cost measures bave been studied extensively in the litera-
ture. These problems can roughly be divided into two main categories. The
first category of problems involves selecting a set of p facilities so as to mini-
mize (or maximize) the distance {cost) from the unselected sites to the selected
sites. Problems that can be cast in this framework include the p-center prob-
lem [HS86, DF85], the p—cluster problem [HS86, FG88, Go85] and the p-median
problem [LV92, MF90]. The second category consists of problems where the
goal is to select p facilities so as to optimize a certain cost measure defined on
the set of selected facilities. Problems that can be cast in this framework in-
clude the p-dispersion problem [RRT91, EN89], the p-minimum spanning tree

problem [RR*94, GH94, AA*94, BCV95] and the p—compact location problem
" [RKM+*93, AT+91, KN*+95a). '

In contrast, not much work has been done in finding optimal location of
facilities when there is more than one constraint. A notable work in this direction
is by Bar-Ilan and Peleg [BP91] who considered the problem of assigning network
centers, with a bound imposed on the number of nodes that any center can
service. We refer the reader to [MR+95, RMR'93] for a survey of the work
done in the area of algorithms for bicriteria network design and location theory
problems. In [KN+95a], we studied the minimum diameter problems under sum
and diameter constraints. There we gave efficient approximation algorithms with
constant performance guarantees for these problems when both the edge weight
functions obey the triangle inequality.

Due to lack of space, the rest of the paper consists of statements of results
and selected proof sketches.




5 Problems for General Graphs

5.1 Diameter Constrained Problems

We begin with a non-approximability result for DC-MAP and TI-DC-MAP. The
proof this result uses a reduction from the Clique problem [GJ79].

Theorem 3. If the distance functions ¢, d are not required to satisfy the triangle
inequality, there can be no polynomial time (o, §)-approzimation algorithm for
DC-MAP for any fired a, 8 > 1, unless P = N'P. Moreover, if there is a poly-
nomial time (@, 2 — €)—approximation aelgorithm for TI-DC-MAP for any fized
a>1lande >0, then P = NP.

Proof Sketch: We first consider the DC-MAP problem. Suppose there is a
polynomial approximation algorithm A with a performance guarantee of (a, 8)
for some a,8 > 1. We will show that A can be used to solve an arbitrary
instance of the Clique problem in polynomial time, contradicting the assumption
that P # NP.

Let the graph G = (V, E) and the integer J form an arbitrary instance of
Clique. Construct the following instance I of DC~-MAP. The vertex set for I is V
itself. For all u,v € V (u # v), let e(u,v) =-1; also, let d(u,v) = 1 if (u,v) €E
and d(u,v) = B+ 1 otherwise. Finally set p = J to complete the construction.
In the remainder of this proof sketch, we will refer to any edge in the instance I
with d value equal to 8 + 1 as a long edge; other edges are referred to as short
edges.

If G has a clique of size J, then the nodes which form this clique constitute an
optimal solution to the DC-MAP instance I with sum (under c—distance) equal
to J(J —1)/2 and diameter (under d-distance) equal to 1. Since .A provides a
performance guarantee of (a, 8), the solution returned by A cannot include any
long edges. If G does not have a clique of size J, then every subset of J nodes
must include at least one long edge. Therefore, by merely examining the solution
produced by A, we can solve the Clique problem.

We use the same construction for TI-DC-MAP except that for every long
edge, the d value is chosen as 2. This ensures that both the distance functions
satisfy the triangle inequality. u]

Using recent hardness results from<([BSQ4] about the non-approximability of
Max Clique, we obtain the following noh-approximability result.

Theoremd. Let € > 0 and ' > 0 be arbitrary. Suppose that A is a polynomial
time algorithm that, given any instance of TI-DC~MAP, either returns a subset
S CV of at least lv—lffh nodes satisfying Dy(S) < (2 — )42, or provides the
information that no placement of p nodes having d-diameter of at most {2 does
exist. Then P = N'P. ) a




Procedure HEUR-FOR-DIA-CONSTRAINT
1 G’ := bottleneck(G, d, £2)
2 Veana == {v € G’ : deg(v,G’) > p — 1}
3 if V.una = 0 then return “certificate of failure”
4 Let best := 400
5 Let Pbest = 0
6 for each v € Viqna do
7  Sort the neighbors N(v, G') of v according to their c—distance from v
8  Assume now that N(v,G') = {wi,...,w.} with ¢(v,w1) <--- < e(v,w,)
9 Let P(v):={v,wy,...,wp_1}
10 if S(P(v)) < best then Py.s 1= P(v)
11 best := S.(P(v))
12 output Pyese

Fig. 1. Details of the heuristic for TI-DC-MAP.

We now consider the TI-DC-MAP problem where the distance functions sat-
isfy the triangle inequality. For this problem, we present an approximation al-
gorithm that provides a performance guarantee of (2 — 2/p, 2). The algorithm is
shown in Figure 1. The performance guarantee is established below.

Theorem 5. Let I be any instance of TI-DC-MAP such that an optimal solu-
tion P* of total c—cost OPT(I) = S.(FP*) exists. Then the algorithm HEUR-
FOR-DIA-CONSTRAINT returns a placement P satisfying Dy(P) < 242 and
S:(P)/OPT(I) < 2~ 2/p.

Proof: Consider an optimal solution P* such that Dy(P*) < 2. By definition,
this placement forms a clique of size p in G' := bottleneck(G, d, £2). Conse-
quently, for any node v € P* the set N(v,G") has size at least p and Vegnq is
non—empty. Thus the heuristic will not output a “certificate of failure”.

Moreover, any placement P(v) counsidered by the heuristic will form a clique
in (G')2. By the definition of G' as a bottleneck graph with respect to d, the
bound §2 and the assumption that the edge weights obey the triangle inequality,
it follows that no edge e in (G')? has d-weight more than 2{2. Thus, for every
placement P(v) considered by the heuristic, the value of Dq(P(v)) is no more
than 262.

Now we are going to establish the performance guarantee with respect to
the objective function value. To this end, défine for a node v € P*: §, =
wa:; c(v,w). Then we have S.(P*) = 3 cp. Sy. Now let v € P* be so that

Sy is a minimum among all nodes in P*. Then clearly

OPT(I) = 8(P*) = pSv- 6

As mentioned earlier, v € V4. Consider the step of the algorithin HEUR-FOR-~
DIA-CONSTRAINT in which it examines v. Let N(v) := P(v) \ {v} denote the




set of p — 1 nearest neighbors of v in G’ with respect to ¢. Then we have

Z (v, w) < Sy, (2)

wEN(v)
wiu

by definition of N(v) as the set of nearest neighbors. Let w € N(v) be arbitrary.
Then

z e(w,u) = c{w,v) + Z o(w,u)

ueN(v)u{r\{w} veN(v)\{w}
< e(w,v) + Z (c(w,v) + c(v,u))
' weN(v)\{w}
= (p— e(w,v) + Z e{v,u)
veN(v)\{w}
= (p — 2)e{v,w) + Z c(v,u)
u€EN(v)
2) '
< (p— 2)c(v, w) + S, 3)

Now using (3) and again (2), we obtain
Se(P(v)) = Se(N(v) U {v})

= ) cvu)+ > 2 c(w,u)
( )uEN(v) wEN(v) veN(v)U{vN\{w}

2 .

<Sy+ X > c{w,u)

weN(v) veN()U{v\{w}

(2 Se+ > ((p—2)e(v,w)+ Sy)

weEN(v)
=S+ (-2)Sy +(p-1)S,
= (2p-2)S,

)
< (2 -2/p)OPT(I).

As the algorithm chooses the placement Pies; with the least S, the claimed
performance guarantee follows. u]

5.2 Sum Constrained Problems ™

Next, we study bicriteria compact location problems where the objective is to

minimize the sum of the distances S, subject to a budget—constraint on Sy.
Again, it is not an easy task to find a placement P satisfying the budget-

constraint or to determine that no such placement exists. Using a reduction from

Clique [GJ79] similar to that used in the proof of Theoremn 3, we get the following
result.




Proposition 6. If the distance functlions ¢, d are not required to satisfy the tri-
angle inequality, there can be no polynomial time («, B)-approzimation algorithm
for SC-MAP for any fized o, 8 > 1, unless P = NP. a

We proceed to present a heuristic for TI-SC-MAP. The main procedure shown
in Figure 2 uses the test procedure from Figure 3. We note that «y is a fixed
quantity that specifies the accuracy requirement.

Procedure HEUR-FOR-SUM-CONSTRAINT

1 Use a binary search to find the smallest integer T € [0, p’ max{ e(e) : e € E }]
such that Sum-Test(T)=VYes.

2 output the placement generated by Sum-Test(T).

Fig. 2. Main procedure for TI-SC-MAP.

Procedure Sum-Test(T") .

1Let p:= % '

2 for each pair (v, w) of nodes define the distance function h(v,w) by
hiv, w) := (v, w) + pd(v, w).

3 Compute a (2 — 2/p)-approximation for the problem of finding a set of p nodes mini-
mizing Sp.

4 Let Pr be a set of p nodes with Sp(Pr) < (2-2/p) - g%:ir‘} Sw(P).

Pl=p

5 if Sn(Pr) < (2 —2/p)(1 + )T then output Yes else output No.

Fig. 3. Test procedure used for TI-SC-MAP.

For a value of T let OPT,(T) denote the sum of the distances of an optimal
placement of p nodes with respect to the distance function h{v, w) := (v, w) +
Ld(v, w) = c(v, w) + pd(v,w); ie.,

OPTh(T) = lgg{/l Sh(P)
1Pl=p

Then we have the following lemma:

Lemma 7. The function R(T) = Qiqg@l is monotonically nonincreasing on

@\ {0}. a

Proof: Suppose for the -sake of contradiction that for two values of T, say T}
and T» with T} < T3, we have that R(T}) < R(Z32). Let P, and P> denote
optimal placements of p nodes under h when ' = T} and T = T3 respectively.
For i € {1,2}, let C; and D; denote the costs of placement P; under ¢ and d
respectively. Thus, we have that R(T}) = %—& + %‘ for i € {1,2}.




Consider the cost under £ of the placement P; when T = T,. By the definition
of C; and D, it follows that the cost of Py is C + —DJ-B—'& Thus the value of
R(T2) is at most this cost divided by T5 which is % + <+ This in turn is less
than % + %1, since T} < T3. But -f,—.;‘- + % is exactly R(T1), and this contradicts
the assumption that R(T}) < R(T2). a

Now we can establish the result about the performance guarantee of the
heuristic. Let OPT(I) = §.(P*) denote the function value of an optimal place-
ment P* of p nodes. To simplify the analysis, we assume that OPT(I)/v is an
integer. This can be enforced by first scaling the cost function ¢ so that all values
are integers and then scaling again by v.

Theorem 8. Let I denote any instance of TI-SC-MAP and assume that there
is an optimal placement P* with OPT(I) = S.(P*). Then HEUR-FOR-SUM-
CONSTRAINT with the test procedure Sum-Test returns a placement P with
S4(P) < (1+7)2 - 2/p)2 and S(D)/OPT(I) < (2 - 2/p)(1 +1/7).

Proof: Consider the call to the procedure Sum-Test when T' = T* = OPT(I)/~.
Notice that T* is an integer by our assumption. The hA—cost of the placement P*
is then OPT(I) + %Q = OPT(I)+T* = (1+4)T*. Thus we have OPT,(T*) <
(1 +9)T* and the (2 — 2/p)—approximation Pr that is computed in step 3 will
satisy Su(Pr) < (2 - 2/p)OPTH(T*) < 2 - 2/p)(1+MT*.

Thus, we observe that the procedure will return Yes and that R(T*) < 1+4+.
Further, the value T found by the binary search in the main procedure satisfies
T < T*,since T is the minimum value such that Sum-Test(C") returns Yes. Let
Py be the corresponding placement that is returned by Sum-Test. Then we have

5:(Pr) < Su(Pr) < (2= 2)(OPT(D) + Toy<e- 2)(1+2) - OPT().
Moreover, we see that
5P <SP S @ DL+ T,

and multiplying the last chain of inequalities by 2/T yields
Sa(Pr) < (2-2/p)(1 + )12

and this completes the proof. % a

~
N

6 Problems for Tree Networks

In this section we study the constrained compact location problems for tree
networks. In this case the distances between two vertices correspond to the path
lengths along the trees.




Definition9. A tree based distance structure 7 is a set V = {vy,v2,---vn} of
n vertices, a spanning tree T on these vertices, and two non-negative lengths
¢(e), d(e) assigned to each edge of the tree. For each pair v;,v; of vertices, the
distances ¢(v;,v;) and d(v;,v;) implied by 7 are the sum of the corresponding
edge lengths along the unique path in T connecting v; and v;.

Versions of compact location problems can be defined for trees, in the same
manner as we defined for arbitrary graphs but the distances are now specified by
a tree-based distance structure. We denote these problems by TREE-DC-MAP
and TREE-SC-MAP respectively. For instance, for the TREE-DC~MAP problem
the input is a tree based distance structure, an integer p and a bound §2. The
requirement is to find a subset consisting of p nodes, such that the sumn of the
c—distances between the nodes is minimized and the diameter with respect to
the d—distance does not exceed the bound f2.

It has been shown in [RKM+*93] that the unconstrained problems, TREE-
MAP and TREE-MDP, which involve finding a subset of p nodes minimizing
the sum of the ¢-distances and the c—diameter respectively (and ignoring the
d-weights on the edges), can be solved in polynomial time.

6.1 The Complexity of TREE-MAP

The following result points out that obtaining an optimal solution to the SC-
MAP problem is difficult even for trees.

Proposition 10. SC~-MAP is N'P-hard even when the underlying graph is a
tree. ,

Proof: We use a reduction from Partition: Given a multiset of (not necessarily
distinct) positive integers {a;,...,a,} the question is whether there exists a
subset I C {1,...,n} such that } ;. a; = ) ;o a;. Partition is known to be
NP~complete (cf. [GI79]).

Given any instance of Partition we construct a star-shaped graph G having
n + 1 nodes {z,y1,...,Uyn} and n edges (z,y;), i = 1,...,n. We then define
e(z, ;) = a; and d(z,y;) == D — a;, where D := ¥ 1| a;.

We then run the hypothetical polynomial time algorithm A for SC-MAP for
the instance Ij consisting of the graph defined as above and the parameters
pi, 82,5 =1,...,n where p; := j+1 and §2; ;== 2(j — 1)jD ~ (j — 1)D. Observe
that this will still result in an overall polynomial time.

Let j € {1,n} be fixed and assume that P is any placement of p; = j + 1
nodes that includes the node z. It then follows that

Se(P)y=2(7-1) Y a; and Sa(P)=2(j-1)jD-2G-1) > a;. (4)

r;eF z;EP




Moreover, if P is any feasible placement for I; (i.e., Sg(P) < £2;) that includes
the node z, then using the feasibility, equation (4) and the definition of £2;, we
obtain

Sa(P)=2(j ~1)jD~2(j —1) Y a; <2(j ~1)iD - (j —~ 1)D.

z;EP
Thus for such a placement we get
> a2 D/2. )
z;EP

So far we have considered only placements that include the node z. The
striking point now is that any optimal feasible placement for I; must indeed
include z. This follows from the fact that replacing any node z; in the placement
by the node z will decrease both S, and Sy.

Hence using (4) and (5) we see that for any optimal placement P for I; we
have .

Se(P)=2(-1) }_ a; 2 (G~ 1)D. (6)

z;EP

Assume that there is a partition I with |I| = j elements. Then, if we choose
the placement P := {x} U {y; : a; € I'} for the instance [;, we get

Sa(P) =2(i -1)jD -2 ~1) Y a; =2 -1)j~ (i~ 1)D = 2.

:EjGP

Thus the placement is feasible. Moreover,

Se(P)=2(-1) ) aj=(-1)D. (7)

z;EP

Hence, by (6) this placement is optimal and the bound frowm equation (6} is
satisfied as an equality.

Assume conversely that there is an optimal placement for some I; where
the bound from (6) is satisfied as an equality, i.e., equation (7) holds. If we let
I:={j:z; € P}, wethen have } ; ja; =3 pai=D/f2.

Thus by running the hypothetical algorithm A on all the instances [;, j =
1,...,n and inspecting the optimum function value S; we can decide whether
or not the given instance of Partition las a solution. . a

Given that TREE-SC-MAP is A"P-hard we investigate the existence of ef-
ficient approximation algorithms for it. By combining the parametric search
technique from section 5.2 with the polynomial time algorithm in [RKM*93], for
solving TREE-MAP (unconstrained version) optimally, we can obtain approxima-
tion algorithm for TREE-SC-MAP with performance guarantee (1+v,1+1/7).
Thus we have the following theorem.




Theorem 11. For any fized v > 0 there is a polynomial time algorithm which,
given any instance of TREE-SC-MAP such that there ezxists an optimal solution
P* of total c—cost OPT(I) = §.(P*) exists, finds a placement P of total d-cost
Sa(P) no more than (1 + )2 and satisfying Sc(P) < (1+1/4)OFT(I). O

6.2 Polynomial Time Solvable Subcases

While TREE-SC-MAP is NP-hard, it turns out that the other three constrained
compact location problems for trees (namely TREE-DC-MAP, TREE-DC-MDP
and TREE-SC-MDP) are polynormmial time solvable.

Here, we outline our idea for the TREE-DC-MAP problem. Polynomial time
solvability for the other problems follows the same outline and is omitted in this
version of the paper.

Theorem 12. TREE-DC-MAP can be solved in polynomial time.

Proof Sketch: It is easy to see that if two vertices a and b are in a solution,
then each vertex on the unique path between e and b can also be added to the
solution without violating the diameter constraint and also without increasing
the value of the sum cost. Thus, there always exists an optimal solution which is
connected; that is, there is an optimal solution which is a subtree of the original
tree.

Consider an optimal solution T (i.e., a subtree of the original tree with p
nodes) for an instance I of TREE-DC-MAP. Let L be the diameter of the tree
with respect to distance function d and let @ and b be the vertices in T' which
are at a distance of L from each other. For this proof sketch, let us assumne that
the cost with respect to the distance function d is integral and also that it is
polynomially bounded. (The general case can be handled in a manner similar to
the algorithm for the minimumn diameter p-spanning tree problem discussed in
[RR+94).) Let us subdivide the edge by placing a dummy node r on it in such a
way that d(a,r) = d(b,r) = L/2. Next, we prune the tree given by the instance
I to obtain T} as follows. We delete all vertices in J which are at a distance
more than L/2 from the point 7. Then the pruned tree T; has the following
desirable property. Every pair of vertices in T is within a d-distance of L from
each other. Now we solve the TREE-MAP problem on T} using the procedure
outlined in [RKM*93]. By repeating this procedure for each pair of vertices a
and b such that the d-distance between a and b is at most §2 and choosing a
placement with the minimum sum cost with respect to the ¢—distance, we obtain
an optimal solution to the TREE-DC-MAP instance I. O

The algorithm for TREE-DC-MAP resulting from the above discussion is
outlined in Figure 4.




Procedure TREE-DC-MAP

1 for each v,w € V do

2  Let L be the d—distance between u and v.
if L > {2 (the diameter constraint) then go to the next iteration.
Prune the tree I to obtain a new tree T, ,(V), E|) such that
every pair of nodes in Ty, is within a d-distance of L.
if JVi| < p, then start the next iteration of the for loop.

3 Solve the unconstrained compact location problem with distances given by ¢
on the tree T . optimally in polynomial time using the algorithm in [RKM193].
Let P(u,v) the placement obtained this way.

4 output the best placement P(u,v). '

Fig. 4. Details of the heuristic for TREE-DC-MAP
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