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App Plagiarism

Miscreants copy apps to siphon ad revenue
• Gibler et al. (MobiSys’13) estimate losses of 14%
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AnDarwin

AnDarwin (Crussell et al., ESORICS’14):
• Crawled 265K apps from 17 Android markets

• Detected copied apps via clustering based on DBSCAN
• One application: plagiarism detection
• Designed to be robust to attacks against data representation
• *Not* designed to be robust to attacks against data analysis

3/13



AnDarwin

AnDarwin (Crussell et al., ESORICS’14):
• Crawled 265K apps from 17 Android markets
• Detected copied apps via clustering based on DBSCAN

• One application: plagiarism detection
• Designed to be robust to attacks against data representation
• *Not* designed to be robust to attacks against data analysis

3/13



AnDarwin

AnDarwin (Crussell et al., ESORICS’14):
• Crawled 265K apps from 17 Android markets
• Detected copied apps via clustering based on DBSCAN
• One application: plagiarism detection

• Designed to be robust to attacks against data representation
• *Not* designed to be robust to attacks against data analysis

3/13



AnDarwin

AnDarwin (Crussell et al., ESORICS’14):
• Crawled 265K apps from 17 Android markets
• Detected copied apps via clustering based on DBSCAN
• One application: plagiarism detection
• Designed to be robust to attacks against data representation

• *Not* designed to be robust to attacks against data analysis

3/13



AnDarwin

AnDarwin (Crussell et al., ESORICS’14):
• Crawled 265K apps from 17 Android markets
• Detected copied apps via clustering based on DBSCAN
• One application: plagiarism detection
• Designed to be robust to attacks against data representation
• *Not* designed to be robust to attacks against data analysis

3/13



AnDarwin

4/13



Thinking like an Adversary

What goals might an adversary have?
• Avoid being clustered with similar apps
• Favorably alter clustering structure
• ...

Confidence Attack
• Inject new points into dataset to poison the clustering
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Is this Feasible?

In most cases, we analyze “found data:”

Semantic Gap (Jana and Shmatikov, IEEE S&P’12)
• Program analysis vs program execution
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Attack Methodology

1. Pick two clusters to merge

2. Generate series of optimal data mines between two clusters
3. Goto 1 until all desired merges completed
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Generating Data Mines

AnDarwin represents apps as sets
• Minimum Jaccard similarity threshold T

Generate points exactly T -width apart:

T T

pipi−1 pi+1
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Generating Data Mines
DBSCAN (Ester et al., KDD’96):

• Core point has >= MinPts neighbors in T -neighborhood
• Clusters form around a core point:

• Other core points that are at least T similar to a core point
already in the cluster

• Points in the T -neighborhood of a core point

Generate points to match MinPts:

T
√
T

√
T T

pipi−1pi−2 pi+1 pi+2
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Which Clusters to Merge?

Depends on adversary goals (and, perhaps, budget)

• Maximally degrade plagiarism detection accuracy
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Dataset: 273 randomly selected clusters (1,394 apps total)
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Defenses?

Increasing T and MinPts may cause us to miss plagiarizing apps

Instead, can we detect and remove data mines?
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Conclusion
Contributions:

• Methodology for selecting and then merging arbitrary clusters
• Evaluate effectiveness in a real-world scenario
• Show DBSCAN’s vulnerability to the chaining phenomenon
• Propose and evaluate outlier-based remediation

Questions/Comments?

Presenter: Jonathan Crussell
jcrusse@sandia.gov

This work was supported by the CADA LDRD program at Sandia National Laboratories. Sandia is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under Contract
DE-AC04-94AL85000.
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How Many Data Mines?

As a function of the T :

UBAC (T ) =
1 + T

1 − T
− 1

As a function of T and MinPts:

UBAC (T ,MinPts) =
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