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* For cesium 3.2 E-27 N is 1.5 mg Demonstrated entanglement, arXiv:1501.03862




Light-pulse atom interferometry h) s,

Atom in
free fall Distance
< '
.¢ 0 k
-—= = : i — Keff - X
6P, T A O-IIIIIII|||||||||||||I||||||I|||||
e
gx
852 nNm .
Raman laser ¢z | Koy |= 4w/ A
sl AN
keﬁ”
I I
6S1/2 F4 -
' fe3 >
il DN
stimulated Raman transition
\4
1

For an atom starting in F=3: Pr—s = ; (cos A¢) & Ap = @1 — 202 + @3




Measuring acceleration and rotation with a )
particle in free-fall
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Launch and recapture ) i

CCD images of ensemble exchange
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* Reduced complexity 20.0
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Rakholia, McGuinness, and Biedermann, Phys. Rev. Applied 2, 054012 (2014)



Launch and recapture )
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* Repeats at = 60 measurements per second



Experiment platform ) i
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Trapping Coils




Characterizing ensemble exchange )
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* Dynamic aspects of Ensemble Exchange characterized
* Robust to rotations, tilts and displacements
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t=0ms

t=10ms

Angular acceleration and jerks  ([@is
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Controlling frequency and phase in a dynamic environment

Raman laser frequency scan
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Significant detuning develops over 10 ms
due to gravitationally-driven Doppler shift

Raman laser phase scan
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Technical challenge IO CEN
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* Real-time cosensor read, Runge-Kutta propagator calculation, and phase/frequency
write to interferometer laser in less than 0.5 ms (note: T = 4.5 ms)
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Control hardware

PCI

NI-DAQmMx
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Feed-forward electronics




Phase feed-forward results  [iiPIi® @Ex.
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OPEN LOOP FEED FORWARD
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Phase feed-forward results [RAPHI®) @ .
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LPAIl feedback would increase dynamic range >10x

MEMS accel scale factor corrected (post-process)
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* Extends dynamic range to = +/- 10 mg




Exploring ultra-short T ) i,

= Want a small, low-power, low-
cost atomic accelerometer

= Warm vapor approach has
historically made excellent gyros,
clocks and magnetometers.

= What about accelerometers?

Sandia atom interferometer
* Laser cooled ensemble

* >1,000,000 cc Symmetricom SA.45s CSAC
* Warm vapor ensemble
e 17cc




Warm vapor concept rh)

= Using the Doppler sensitivity of Raman transitions, and ultra-short duration atom
interferometry, LPAI is possible in a warm vapor

= The challenge: Target atom shot noise limit on 108 atoms
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Motivation: potentially highly compact and simplified. Conceptual diagram
(not to scale) of a 2-axis atomic sensor.




Velocity selectivity of Raman pulse @),
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Result of Raman transition used for LPAI Analyze in momentum space

e each atom interferes with itself
* Non-ideal paths do not contribute
to fringe

K. Moler, et al., Phys. Rev. A, 45, 342 (1992)

Ad = ke - (g — 2v x Q)T?
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Warm vapor atom interferometer
Ultra-short T
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State preparation ) i,
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To eliminate background signal, must depump all velocity classes

In-house coating development . .
Tris(N,N-dimethylamino)octadecylsilane
measured: T = 23 ms hyperfine state lifetime

Trajectory simulation
= 200 bounces
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Simultaneous interferometers ) e

Common mode noise rejection
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Simultaneous interferometers D
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