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Abstract

The ability to perform effective adaptive analysis has become a critical issue in the area of
physical simulation. Of the multiple technologies required to realize a parallel adaptive
analysis capability, automatic mesh generation is an enabling technology, filling a critical
need in the appropriate discretization of a problem domain. The paving [1] algorithm’s
unique ability to generate a function-following quadrilateral grid is a substantial advantage
in Sandia’s pursuit of a modified h-method adaptive capability. This characteristic
combined with a strong transitioning ability allow the paving algorithm to place elements
where an error function indicates more mesh resolution is needed. Other desirable
characteristics of this algorithm include its boundary sensitivity and orientation
insensitivity (elements near the boundary are of the highest quality and the spatial
orientation of the geometry has no effect on the resulting mesh).

Although the original paving algorithm is highly serial, a two stage approach has been
designed to parallelize the algorithm but also retain the nice qualities of the serial
algorithm. Our approach also allows the subdomain decomposition used by the meshing
code to be shared with the finite element physics code, eliminating the need for data transfer
across the processors between the analysis and remeshing steps. In addition, the meshed
subdomains are adjusted with a dynamic load balancer to improve the original
decomposition and maintain load efficiency each time the mesh has been regenerated.

1. This work was performed at Sandia National Laboratories, which is operated for the U.S. Department of
Energy under Contract No. DE-AC04-94A1.85000.
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This initial parallel implementation assumes an approach of restarting the physics problem
from time zero at each iteration, with a refined mesh adapting to the previous iterations’
objective function. The remeshing tools are being developed to enable ‘real time’
remeshing and geometry regeneration. Progress on the redesign of the paving algorithm for
paralle]l operation is discussed including extensions allowing adaptive control and
geometry regeneration.

Introduction

The traditional finite element method is an established and widely used modeling technique
in the engineering analysis community. Newer adaptive finite element techniques
iteratively redistribute the degrees of freedom (through remeshing) in a finite element
simulation to minimize the error according to a prescribed error function, effectively
increasing the accuracy of the solution. Since non-linear adaptive finite element analyses
are computationally intensive, massively parallel computing is the most appropriate
environment for these analyses. Although massively parallel machines have proven useful
for traditional finite element calculations, adaptive analysis on these machines has largely
been unexplored.

This paper will describe a framework of software components that together define an
approach to achieve a modified h-method adaptive analysis in a parallel environment. The
parallel capability is currently under construction and its components include the Cubit [2]
meshing toolkit (which supplies the paving meshing algorithm with adaptive controls and
geometry regeneration), Sandia’s ‘tiling’ dynamic load balancing code [3], a finite element
physics code (the PRONTO [4] code is employed for the parallel implementation), and
methods to determine the error or objective function resulting from an analysis iteration of
the physics code and map the solution data from the previous mesh to the newly created
mesh [5]. This paper will focus on the parallelization aspects of converting the paving
algorithm (work in progress) and the adaptive and geometric extensions which were made
to the meshing toolkit.

Parallelization Approach

The paving algorithm [1] is a tightly controlled advancing front method which creates all-
quadrilateral meshes in general regions. This technique necklaces rows of well-formed,
boundary sensitive elements around each region boundary (region boundaries must include
one external boundary or loop, and may include numerous internal loops, or boundaries that
divide the area to be meshed from an internal void, or hole, in the region. Refer to Figure
[1]) until the necklaces, or fronts, collide. When collisions or intersections are detected,
angle criteria dictate where connections will be generated between the opposing fronts. In
addition, as the necklaces progressed outward from an internal boundary or hole, elements
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Figure [1] Paving terminology

are inserted when dictated by angle criteria to maintain element aspect ratios on the order
of one. Similarly, when necklaces progress away from a concave boundary and begin to
impinge on themselves, tucks and seams (element deletions) are performed to maintain
element aspect ratio consistency. It has been further established that this technique is quite
powerful in managing transitions from coarse element regions to fine regions, a capability
that has been demonstrated with a previous adaptive refinement scheme [6]. Since the
placement of each element depends on the outcome of the previous element placement,
paving is a very serial technique. Two domain decomposition techniques were considered
to support a parallel paving implementation.

The first technique considered was termed the moving-front approach. Intending to
preserve two important paving advantages (boundary sensitivity and orientation
insensitivity), the moving-front parallel paving technique was designed to provide each
processor with a dedicated strip of the current meshing front to populate with paved
elements until intersection contact occurred with neighbor processors on both sides of the
dedicated strip. Since this approach is essentially an advancing front method, the nice
paving characteristics are maintained. The limitations include 1) significant communication
requirements to avoid neighboring mesh overlaps, and 2) the problem of detecting
intersecting fronts from the opposite side without global communication from each
processor. While these two issues can be resolved by distributing processor nodes
throughout the meshing domain and assigning each a region of influence, this solution
sounds very much like the second technique we considered, an area-based decomposition
approach. Therefore in its initial form, moving-front contains serious communication
bottlenecks, and with this one envisioned modification, it is really another variation of the
area-based paving approach.




The area-based decomposition approach exhibits an inherent simplicity by employing
paving in essentially the same form in which it operates serially, but contained within a
subdomain. Thus once subdomains are defined for the problem regime, paving is initiated
in each subdomain simultaneously, treating that sabdomain as it would a normal, bounded
surface. The main challenge left to solve is the negotiation of subdomain boundaries, since
typical driving objective functions (like an error measure) will exhibit coarsening regions
as well as refining ones. While this approach seems at first to be the most sure method to
realize a parallel paving algorithm, thought must be given to what makes paving such a
versatile and powerful algorithm in serial: first and foremost, must be its generality in
meshing any region, regardless of boundary complexity or number of boundaries; second
is its orientation insensitivity, and finally, its boundary sensitivity. With the area-based
approach, generality is maintained, but boundary sensitivity and orientation influence may
be affected quite adversely by laying a regular grid over a general geometry and paving the
cells. This intrusion of a geometric artifact into the problem cannot be ignored - this similar
problem affects all quad and octree discretization algorithms and is one of the primary
criticisms of these methods for finite element mesh generation. The investigation into
domain decomposition for parallel meshing literature yielded an interesting alternative [7],
that of using a background coarse mesh as the initial decomposition for the problem. This
approach was implemented and provided a rapid decomposition which was conveniently
defined within our data structure, thus enabling work to progress immediately on the issue
of parallel paving, or paving within a subdomain. The primary method of decomposition
for most problems, however, is to generate a less coarse mesh serially (once prior to start
up of the parallel adaptive problem), and use a proven domain decomposition tool (e.g.,
Chaco [8]) to construct the subdomains. Considering the advantages and disadvantages of
the moving-front and the area-based restructured pavers, the area-based method was
selected for further development.

The Cubit [2] meshing toolkit is providing the development environment for this effort,
supplying the data structures for mesh and geometry entities. The Cubit design currently
employs a one-to-one match between underlying solid model geometry definition and the
overlying data structure that contains the mesh data and finite element model topology.
This mirror-like topology structure allows the meshing tools to generate and store non-
manifold mesh data on top of a standard manifold solid model definition. Following this
approach, the initial area-based parallel paving implementation generated an individual
geometric entity (a surface) and overlying data structure (a reference surface) for each
subdomain to store meshing data and control information. It became apparent, however,
that this one-to-one match with the underlying solid model definition may be quite
inflexible when a finely discretized subdomain boundary needs to be coarsened during
boundary negotiation. By the Cubit definition, mesh nodes representing discretization




points along a curve must in fact lie on that curve, yet it is quite possible in this coarsening
scenario that the curve itself needs to be redefined to allow for sharp corners or even kinking
of the once smooth subdomain boundaries. These curve modifications would be unwieldy
with typical cubic spline curves such as are commonly employed in Cubit’s solid modeler.

To address this issue, a virtual geometry paradigm was conceived where the one-to-one
solid model entity to data structure entity ratio is relaxed completely. This methodology is
similar to the “structured block” technique which is used by several commercial grid
generators for the computational fluid dynamics field. In this approach, mesh data and
control instructions can span multiple physical geometric entities and vice-versa, since the
one-to-one ratio can now be maintained with virtual geometry which can exist anywhere in
the model. For the purposes of parallel paving, this paradigm will consist of physical
geometry defining the underlying surface equation and bounding curves of the problem
domain, but the internal subdomain boundaries are defined by ordered lists of mesh entities,
i.e., connected mesh nodes that lie on a surface, but whose position within the surface can
be manipulated as necessary by the two subdomains sharing the boundary and the nodes
that define the boundary. The ability to manipulate the subdomain boundary topology
without disturbing the underlying surface geometry is a nice advantage for the virtual-
geometry based area decomposition method. In this method virtual curves can be defined
from consecutive sequences of nodes where appropriate, constructing a series of connected
straight line segments which together will be treated as a single curve. To modify these
curves, nodes can be added or removed from the defining sequence order. Now the sharp
corners can be resolved readily, and elements can be swapped between adjacent
subdomains (which will be typical during dynamic load balancing) without the need to
modify the underlying solid model definition.

Virtual curves will also be modified by boundary negotiation between neighboring
subdomains. Boundary negotiation will occur at each iteration of the overall parallel
adaptive analysis loop as the mesh relocates to better resolve the emerging gradients of
interest. The significant steps of this data flow loop are as follows:

Serial portion (first iteration only):

1. Start up (generate coarse mesh, initial mesh decomposition (subdomain construc-
tion), data loading

Parallel portion (each iteration):

2. Subdomain boundary discretization and negotiation

3. Adaptive meshing via sizing function

4. Re-map variables from old mesh to current (beginning with second iteration)
5. Dynamic load balancing (beginning with second iteration)

6. Finite element analysis




7. Convergence test (met accuracy criteria? if yes, exit)

8. Generate new spatial objective function over problem domain (error metric)

9. Gotostep2
A controlling driver code is being constructed to manage this process loop and enable
efficient diskless data exchange between the various code components. Since the density
of the subdomain boundary discretization listed in the second step above is controlled by
the objective function from step 8, the virtual curves which define the subdomain
boundaries will adjust as the number of nodes supplied to model the virtual curve increases
or decreases. The topology of the subdomain geometry will remain constant even though
the underlying geometry can change at each iteration. As some subdomains grow in
number of elements contained and others diminish, Sandia’s “tiling” load balancing code
[3] will balance the resulting mesh at each iteration to maintain analysis efficiency. Figure
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Figure [2] NURB surfz.>e mesh containing 24 simple subdomains

[2] shows the result of paving the interior of 24 subdomains of an automotive-like fender
(NURB surface), and Figure [3] displays the same 24 subdomains after load balancing has
occurred. Note the significant element swapping that occurs between adjacent subdomains:
this result improves parallel performance but will require constant change to the subdomain
boundaries. This tendency further justifies the need of representing the interior subdomain
boundaries with the more flexible virtual geometry paradigm.

Adaptive Meshing Capability
To begin the generation of an adaptive mesh, a function to define the mesh density must be

developed. This function will typically be an error function which will guide the paving
algorithm to resolve high error regions with greater mesh detail. One error measure has




Figure [3] NURB surface (mesh hidden) with 24 subdomains after load balancing

already been tested [9] in this scenario, and more error measures are planned to be added
as needed. The issue of resolving this background objective function has significant impact
on the parallel capability of this code. Two types of analysis output variables can be used
to provide sizing information: nodal and element based. Nodal variables (temperature or
displacement) contain discreet values at each node point of the previous mesh, and new
point evaluations along a boundary between two subdomains can be determined explicitly
with only the two neighboring subdomains. This characteristic of nodal variables is
desirable, since the communication needs of these evaluations for a parallel computation
are limited to the two neighboring domains. Element based variables must be extended to
the node locations via a standard Laplacian interpolation. The value of the function at a
node, n, is simply the summation of all the contributions from its surrounding elements
divided by the number of surrounding elements. Due to this interpolation, this type of
variable requires more information in the neighborhood of a vertex (to produce an
equivalent field of nodal function values) at which more than two subdomains meet (see
Figure [4]). Since the function value at the vertex requires contributions from each of the
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Figure [4] Interpolating element function values to nodal locations




neighboring elements, each adjacent subdomain must communicate its corner element’s
contribution at this location. It is then important to minimize the number of subdomains
which meet at a vertex for analyses which use element based variable functions. Once the
nodal function values are available, function size requests are computed using a bilinear
interpolation technique from the nodal values residing on the previous mesh nodal
locations. This interpolation works well [6] for the resolution range of the paving
algorithm, even though the gradient of the interpolated function changes discontinuously at
the boundaries of each element of the previous mesh. Other higher order interpolations
could be pursued (such as bicubic interpolation) which would alleviate the discontinuity,
but at a higher computational cost.

Paving displays significant strength in its role as a versatile quadrilateral meshing algorithm
for general geometry. The transitioning capability of paving is what allows it to effectively
generate new mesh which follows a provided function. This extension of following a
function introduces some additional constraints, however. Paving operates in several
stages: 1) mesh filling, then 2) mesh cleanup. Mesh filling is intended predominately to
manage the coverage of the problem domain with quadrilaterals, even if some of the

resulting element connections are less than ideal. The mesh filling process is controlled by -

numerous heuristic constraints which produce very good quadrilateral (nearly square)
elements to begin with. Mesh cleanup improves the overall mesh by looking for
undesirable node topology and replacing them with near-regular mesh configurations. The
extension of paving to follow an objective function dynamically adjusts some of these
heuristics, guiding the mesh filling phase to create elements smaller or larger as indicated
by the local objective function values. While the mesh filling phase tends to model the
gradients of the objective function quite well, the subsequent mesh cleanup and overall
smoothing operations (grid relaxation) tend to muddy the gradients out again, since the
gradients are normally achieved in part by allowing slightly elevated element deformation
in the local neighborhood of the gradient. In short, the objective of capturing an external
function within a mesh is many times in contrast with the objective of maintaining pristine
element quality.

Meshing controls were designed to provide the user with some external capability to buffer
the severity with which the objective function behaves. Functions with extreme gradients
(orders of magnitude) in a very small area are more difficult to accurately represent in a
mesh than are functions with more gentle fluctuations. The current controls allow users to
set maximum and minimum mesh size values, which effectively scale the range over which
the objective function can request, allowing the paving algorithm more flexibility to insure
an appropriate mesh is constructed. Quality metrics were also added to assess element
quality and actual size versus requested size by the driving objective function.




Once a satisfactory new mesh has been built, the physical simulation is started again. The
initial implementation will support a remesh/restart methodology in which the physics code
is restarted with the improved mesh at time equals zero. The tools to perform a true
adaptive solution (in which remeshing is performed at multiple intervals throughout the
analysis) are currently being developed within this same framework. In this latter scenario,
the analysis data must be transferred from the previous mesh to the new one at each
remeshing interval. An isoparametric finite element data remapping code, MERLIN II [5],
is currently being tested with several cases for the nodal and element variable cases.
MERLIN II employs an isoparametric representation of the finite elements, and uses
Newton’s method to iteratively determine interpolated quantities.

Geometry Regeneration

Another important capability to support adaptive analysis is the geometry regeneration
task, that of reconstructing surface and solid model data from deformed tessellated models
(finite element mesh models). Since finite element mesh models are typically non-
manifold, constructing a manifold solid model from the non-manifold mesh information
only can be challenging. By definition, a non-manifold edge (or curve) is being used to
bound more than two faces (or surfaces), and a non-manifold vertex has geometric elements
that can only be connected topologically through that vertex (such as two cones which meet
at their apexes). To help with this construction difficulty, topology records were added to
the finite element model data which Cubit [2] generates to be used by the analysis code. By
retaining this geometric topology information with the mesh, Cubit can reconstruct new
solid geometry (currently in two dimensions) from deformed mesh and uwse the new
geometry to generate a new adaptive mesh.

A fluid mechanics example demonstrates the generation of new two dimensional geometry
from a deformed mesh. This problem simulates the filling of a mold, specifically the
manufacturing of rocket propellant. GOMA [10], a full-Newton finite element program for
free and moving boundary problems with coupled momentum, energy, mass, and chemical
species transport, has been used to model the fluid behavior during the filling of the mold.
The fluid motion begins flowing to the right, as shown in Figure [5]. As the material flows
past the upper right corner of the boundary, it expands upward resulting in significant and
rapid mesh deformation at this location. Figure [6] shows in detail this deformation, which
prevents the GOMA solver (a fully coupled Newton-Raphson iteration) from converging.
The severe kinking in the corner element of Figure [6] is possible since the chosen element
type was a nine-node quadrilateral, however the finite element solution at this element is
meaningless as a result of the kinking. Elements which undergo distortion resulting in
internal angles greater than 180° will not yield useful results, yet the advantage of
remeshing allows one to proceed beyond the extensive distortion by replacing the deformed
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Figure [S] Mold filling: initial and first deformed mesh
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Figure [6] Mold filling: close view of upper right corner, first deformed mesh
mesh with newly generated elements. By remeshing in intervals whenever deformation
begins to deteriorate the efficiency of the GOMA solver, the problem can progress through
time effectively. At each remeshing interval, Cubit was used to create new geometry from
the previous deformed mesh and generate a new mesh, which MERLIN II populated with
the appropriate variable values from the previous iteration. Figure [7] and Figure [8]
display the resulting new mesh following the third and fourth remeshing intervals from the
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mold filling simulation. A capability to perform geometry regeneration for multiple
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Figure [7] Mold filling: new mesh after third remesh interval
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Figure [8] Mold filling: new mesh after fourth remesh interval

material models is also being developed.

Future Directions

Future effort will focus first on completing the driver code to control the data exchange
between code modules. The area-based decomposition paver with virtual geometry will
then be tested (in parallel on a network) with the parallel driver code, using external files
initially for data exchange. Then an efficient diskless data exchange mechanism will be
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designed and implemented within the driver code to avoid excessive disk access during
loop iterations. The issue of subdomain boundary negotiation will be resolved with one of
the two methods being considered: 1) a single processor will “own” each subdomain
boundary and will assume the responsibility of meshing it, or 2) processors sharing a
subdomain boundary will each generate their own local mesh for it using a deterministic
algorithm. Next, the global smoothing stage of the paving process will be investigated for
reformulation as a fully parallel operation that is still adherent to the objective function, and
the cleanup stage (element deletion/insertion to improve a mesh containing poorly shaped
elements) will be redesigned to reduce connectivity irregularities along the interior
subdomain boundaries. The meshing code module memory requirements will be reduced
to allow operation within the typical memory space of a single node of a massively parallel
machine. At this point, the ability to operate a remesh/restart adaptive analysis loop in
parallel will be tested using a problem which exhibits a coarsening and refining objective
function (on a network), followed by a large problem to be run on a massively parallel
machine. Additional work will also be performed in the improvement of the adaptive
meshing and the geometry regeneration capability. The ultimate goal of this adaptive work
is the achievement of tools to perform adaptive analysis on general two and three
dimensional geometry in serial and in parallel environments.
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