CONF-G95092.45-/

¥

TR ONIC FILE AARAS

&Ju

UCRL-JC-120638
PREPRINT

Flow Visualization Using Moving Textures

N. Max

B. Becker RECEEVED
MOV - 3 1830
ORSF I

This paper was prepared for submittal to the
ICASE/LaRC Symposium on
Visualizing Time Vary Data

Williamsburg, VA
September 18-19, 1995

April 1995

Thisisapreprintofapaperintended forpublication ina journal orproceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

DW%@WNO@W@S mmm 1nn ngvn?
D m(

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

FLOW VISUALIZATION USING MOVING TEXTURES®

Nelson Max
Lawrence Livermore National Laboratory
Livermore, California

Barry Becker
Lawrence Livermore National Laboratory
Livermore, California

SUMMARY

We present a method for visualizing 2D and 3D flows by animating textures on triangles, taking advan-
tage of texture mapping hardware. We discuss the problems when the flow is time-varying, and present
solutions.

INTRODUCTION

An intuitive way to visualize a flow is to watch particles or textures move in the flow. The early color
table animation of [1] was an example of this technique. More recently, van Wijk [2] has proposed advect-
ing and motion blurring particles by the flow field. The LIC method [3, 4, 5] uses integrals of white noise
textures along streamlines, moving the weighting function in the integrals from frame to frame to animate
the texture motion. The motion blur of the particles and the directional texture blurring from the LIC inte-
gration create anisotropic textures which indicate the flow even in a still frame. However they are computa-
tionally intensive, and cannot generate animation in real time. The textured splats of Crawfis [6] use a loop
of cycling texture maps with precomputed advecting motion blurred spots, and take advantage of texture
mapping hardware. These are composited in back to front order in a local region near each data point, and
oriented in the direction of the velocity vector, so that the precomputed advection cycle indicates the flow.

In this paper, we show how texture mapping hardware can produce near-real-time texture motion,

*This work was performed under the auspices of the U.S. Department of Energy by Lawrence Liver-
more National Laboratory under contract number W-7405-ENG-48, with specific support from an
internal LDRD grant. We thank Roger Crawfis for helpful suggestions.

using a polygon grid, and one fixed texture. However, we make no attempt to indicate the flow direction in
a still frame. As discussed below, any anisotropic stretching comes from the velocity gradient, not the
velocity itself.

The basic idea is to advect the texture by the flow field. In [7] we gave an indication of the wind veloc-
ity by advecting the 3D texture coordinates on the polygon vertices of a cloudiness contour surface in a cli-
mate simulation. This was slow, because the 3D texture was rendered in software, and because advecting
the texture was difficult for time-varying flows. In this paper, we replace the 3D textures by 2D texture
maps compatible with hardware rendering, and give techmques for handling time-varying flows more effi-
ciently.

The next section gives our technique for the case of 2D steady flows, and the following one discusses
the problems of texture distortion. Then we discuss the problems with extending our method to time-vary-
ing flows, and our two solutions. Next we develop compositing methods for visualizing 3D flows. The final
section gives our results and conclusions.

TEXTURE ADVECTION FOR STEADY 2D FLOWS

We start with a mathematical definition of texture advection, and then show how it can be approxi-
mated by hardware texture-mapped polygon rendering.

Let Fi(x, y) represent the steady flow solution of the differential equation

ar SEES -Fy) M

where V(x, y) is the velocity field being visualized. Thus point P is carried by the flow to the point F(P)
after a time delay . The flow F* satisfies the composition rule

P = F(F®) @)

for both positive and negative s and ¢. Thus (F*y'1(P) = F(P).

In this paper, we will assume that the initial texture coordinates at ¢ = (are the same as the (x, y) coor-
dinates of the region R being rendered. In practice, the texture is usually defined in a different («, v) coordi-
nate system related to (x, y) by translation and scaling, but for simplicity we will ignore the difference.

If T(x, y) is a 2D texture being advected by the flow, then a new texture T;(x, y) is defined by

—— - - v e - T

ren=1(#) @) = {Fn).

Thus, to compute T, at a point P, we go backwards along the streamline through P, to find the point Q such
that F(Q) = P, and then evaluate the texture function T at ©. When animated, this will give the appearance
that the initial texture T is being carried along by the flow. By equation (2) above,

FrUran (P) = F’A'(F(p)) Thus the streamlines F/(P) needed for the texture coordinates can be

computed incrementally.

There are two problems with this formulation when the domain of definition for V(x, y)or T(x, y) is
limited to a finite region R in which the velocity data or texture is available. First of all, if the streamline
F(P) leaves the region R, the necessary velocities are not available to continue the integration. One must
either extrapolate the known velocities outside R, or continue the streamline as a straight line using the last
valid velocity. Fortunately, either of these extrapolation methods will give a correctly moving texture in
animation. This is because the visible texture motion at a point P inside R is determined only by the veloc-
ity at P, and the extrapolation of the streamline beyond R serves only to determine what texture will be
brought in from “off screen”.

Second, even if F!(P) is extended outside R, the texture may not be known there. The standard solu-
tion to this is to take T(x, y) to be a periodic function in both x and y, so that it is defined for all (x, ¥). Most
texture mapping hardware is capable of generating this sort of wraparound texture, by using modular arith-
metic (or truncation of high order bits) to compute the appropriate texture map address from the x and y
values. There are also tools to generate textures which wrap around without apparent seams [8].

To adapt this technique to hardware polygon rendering, the 2D region R is divided up into a regular
grid of triangles, and the texture coordinates F “!(P;) are only computed for the vertices P; of the grid. Dur-
ing the hardware scan conversion, texturing, and shading process, the texture coordinates at each pixel are
interpolated from those at the vertices, and the appropriate texture pixels are accessed. For triangles, the
standard bilipear interpolation, which is not rotation invariant, reduces to linear interpolation, which is. For
anti-aliasing, the hardware can use the higher order bits of the texture coordinates to weight an average of
four adjacent texture map values (or four values in each of the two most-nearly-appropriate-resolution ver-
sions of the texture, if MIP mapping [9] is employed.)

TEXTURE DISTORTION

The flow F(P) can change the shape of a triangle, so that it becomes long and thin in texture space, as
shown in figure 1. In the direction where the triangle is stretched by F/, the texture will be compressed by
F'. This distortion will not be present if the velocity is constant, so that F~* and F* are both translations.
The distortion instead indicates anisotropies in the derivatives of V. For incompressible 2D flows, stretching

in one direction will be compensated by compression in a perpendicular direction. For compressible flows,
there may be stretching in all directions at some positions, and shrinking in all directions at others.

Figure 1. The triangle on the right is mapped to the texture on the left, which ends up being
compressed vertically when the triangle is rendered.

During the animation of the texture advection, this distortion continues to build up, so that eventually
the visualization will become useless. Therefore we periodically restart the texture coordinates back at their
original positions in the regular grid. To avoid the sudden jump this would cause in the animation, we grad-
ually fade up the new texture and fade down the old one, according to the weighting curves in figure 2.
Each texture starts with weight zero, fades up over the old texture until it alone is present, and then fades

Figure 2. Three cycles of the weighting curves for fading the textures up and down.

down as an even newer texture takes its place. This “cross dissolve” can be done in hardware, using o com-

positing [10]. If the textures are random, and contain an adequate range of spatial frequencies, this cross
dissolve will not disturb the perception of continuously flowing motion.

Since each texture is used for only a short time, the distortion does not become extreme. For a steady
flow, one cross dissolve cycle ends with the same image at which it began, so an animation loop may be
created which can be cycled rapidly and repeatedly on a workstation screen. Similar precomputed loops are
possible with the surface particle [2], LIC [3], and textured splat [6] techniques.

TEXTURE ADVECTION FOR UNSTEADY 2D FLOWS

If the velocity V depends on ¢, the differential equation
a APl V(F‘(x, 1) ®

defines a flow which no longer satisfies equation (2). For a fixed initial position Q, the curve F fQ)isa par-
ticle trace C(#) asin [11], rather than a streamline. To find the texture coordinates for P at time £y we need to
find the point Q such that F (Q) = P. We must go backwards along the particle trace, and thus solve the
differential equation

dC (1)

Tl V(C(),1) @

for the ¢ range 0 < ¢ < £, with “final” condition C(t) = P, and then set Q = C(0). With the change of vari-
ables u = £, - ¢, this is equivalent to the differential equation .

dC(u) _

= = VW, 4-w) ®)

for the u range 0 < u < #;, with initial condition C(0) = P. Then Q = C(tp).

In the case of unsteady flow, the differential equations (5) for different #y are not related and define
completely different particle traces, so incremental methods can no longer be used. In [7] we integrated
equation (5) anew for each frame time #. To find the texture coordinates for frame #;, we had to access the
time varying velocity data for the whole z range 0 < ¢ < ;, which is very inefficient for large data sets. Here
we propose two more practical methods.

-1
The first method is to derive a differential equation for the flow G’ (x,y) = (F‘) (x,y) . This flow
maps a point P to the texture coordinate point Q needed at frame time ¢, that is, the point with F(Q) = P.
Thus we have

F‘(G‘(P)) = P. (6)

Let G'; and G, be the x and y components of the vector-valued function G'(x, y), and similarly let F.and
F‘y be the components of . Then by differentiating the components of equation (6) with respect to ¢ by the
chain rule, we get the pair of equations
oF, ap‘ 3G, ap‘ 3G,
ot T ox ot ay ot
JF, aF‘ 3G, aF‘ 3G,
5t ay o =

=O,

JF, ?
Now by equation (3), —tx =V, and a_:y = V,,, where V and V, are the components of the velocity field

at position F (G (P) | = P and time ¢. Therefore we have
3G,
ot | (—V:)
] T \-V
26,
ot
where M is the Jacobian matrix for the flow F(x,)
OF, OF,
M= |0x 9o _

a# ap‘
ax ay

Thus
pled
T -1V
att =M 1(—V;) .
o,
ot
, 1 _
But since G'(x, y) = (1’?r) (x,y) , the matrix M ! is the Jacobian matrix J for G'(x, »:

]
20, 36,
J = ax ay .
4 t
26, 3,
| dx 9y |
Thus G'(x, y) satisfies the partial differential equations:

3G, (5y) _ 3G, (%) L ACS) v

ot ox x dy y
3G’ (x,) 3G (x,y) 3G (xy)
Yy) R
ot o Vx dy Yy M

These differential equations essentially say that the flow G'(x,) is determined from the negative of the
velocity V, as transformed into the texture coordinate system appropriate for ¢ = 0, so they determine the
texture flow necessary to give the desired apparent velocity at time . The initial condition for G* at =0 is
that GO(P) = P, that is, G is the identity map. Equations (7) can be integrated incrementally in time by
Euler’s method. If G'(P;) is known at time ¢ for all vertices on a regular grid, the partials in the Jacobian
matrix J(P;) can be estimated from central differences between the G values at adjacent grid vertices. (For
vertices at the boundary of R, one-tsided differences n}ust be used.) Then, using the current velocity

oG aG.
V(G'(P), 1), increments AG, = —a—t‘-‘At and AGy = '52):’” are found for the components of G'. If necessary,
At can be a fraction of the time step between frames, and/or the vertex grid used for solving equations (7)
can be finer than the triangle grid used in rendering the texture, in order to make the solution more accurate.

The vertex gridt spacing will affect the accuracy of the finite difference approximations to the partial

derivatives like —;” . This accuracy is critical, because small errors in these partials will cause errors in
position in the next frame, which may compound the errors in the partials, and cause them to grow expo-
nentially from frame to frame. Here again, it is useful to fade out the current advected texture and fade in a
new texture whose coordinates are reinitialized to the identity map, so that the integration errors cannot
accumulate for too long.

The second method for handling unsteady flows is to move the triangle vertices by the flow Fi(x, y),
keeping their texture coordinates constant. This advects the texture directly, by moving the triangles, and
carrying the texture along with them. To do this, we incrementally integrate equation (3), and no partial
derivative estimates are needed for a Jacobian. However we again have a problem at the edges of the region
R. The boundary vertices may move inside R, leaving gaps at the edges, or may move outside, causing too
much texture to be rendered. The excess rendering is easily prevented by clipping all triangles to the
boundary of R. The gaps can be eliminated by creating extra guard polygons around the edges of R, widen-
ing it to a larger region S. Whenever any vertex on the boundary of S crosses into R, a new row of guard
polygons is added to the affected side of S. Again it is useful to integrate only over a limited time interval
before reinitializing the texture coordinates, to avoid creating too many extra polygons.

FLOWS IN 3D

In three dimensions, one could advect 3D texture coordinates, but 3D texturing is not widely available.

We have instead used 2D textures on parallel section planes. We made the textured planes semi-transparent,
and composited them from back to front using the o compositing hardware in our workstation. (This is how
3D texture mapping is usually implemented in hardware.) For the methods which change only the texture
coordinates, we used the 2D projection of the velocity onto the section plane. For the method which moves
the triangle vertices, we used the true 3D velocity, allowing the section surfaces to warp out of planarity.

Combining the compositing for the cross-dissolve of figure 2 with the compositing of the separate tex-
ture planes can lead to problems in the accumulated opacity. Given two objects with opacities c; and o,
the resulting opacity from compositing both objects is o + o, - 0t;0t,. (See [10] or multiply the transparen-
cies.) Suppose f1(#) and f,(#) are the two weighting curves shown in figure 2, with f] + f; = 1, and o is the
desired section plane opacity. If we just take the two component opacities to be o; = of; and o, = af;, the
result is a composite opacity

y 2

The unwanted last term causes a periodic pulsation in o.

A solution is to use exponentials, which have better multiplicative properties. Define an “optical

fil -
depth”l=-ln(1-oc),sothatoz=l-e'l,andletoq:l-ef' andooz=l-ef2.Theresultingcomposite

opacity is then

o il ~fil AR
= l—ef1 +1—ef2-(1—efl)(1—ef2)

-1+ -1
_e =

=1 l—-e =0

as desired.

Another problem with compositing texture planes of constant transparency is that the frontmost planes
will eventually obscure the ones to the rear if the data volume gets large. One solution is to use variable-
transparency textures, so that some regions of the texture are completely transparent. Another is to specify
the transparency on triangle vertices using a separate scalar data variable which can select out regions of
interest where the texture motion should be visible. In [7] we used percent cloudiness contour surfaces to
specify the location of the advecting software-rendered texture. With our new hardware based technique,
this cloudiness variable is used to specify the vertex transparency, and produces similar realism in much
less time.

IMPLEMENTATION AND RESULTS

The different types of moving textures discussed were implemented as a class hierarchy in C++. Inven-

tor [12] quadmeshes were used to represent texture layers. An Iris Explorer module was then constructed in
order to make use of color maps and data readers.

Figure 3 shows what happens when the vertices themselves are advected. The whole surface distorts,
even in the direction perpendicular to the plane. In Figure 4 the texture coordinates are advected backwards
while the vertices are held fixed. This gives the impression of motion in the direction of flow. Unfortunately
the texture distorts too much over a long period of time. Also the texture vertices may move outside the
defined domain. A solution to the first problem is to fade in a second texture with the texture coordinates
reset to their original positions. The resulting cross dissolve is shown in Figure 5. The opacity for each tex-
ture is computed using exponentials, as discussed above, so there is no distracting variation in the overall
intensity during animation. To avoid the problem of having to sample outside the domain, we used the
inverse flow G’ for the texture coordinates, as explained above, while keeping the vertices fixed (Figure 6).
This method also gives bad results over time if we do not periodically fade in a new unadvected texture as
shown figure 7. Figure'8 illustrates how flow moves through particles of acrogel, a material with very low
density which is a good thermal insulator. Figure 9 shows a frame from an animation of global wind data on
a spherical mesh. The opaque regions represent high percent cloudiness. Although the vector field is static,
the texture (but not the colors) appear to move in the direction of flow. Figures 10 and 11 depict steady flow
near a high density contour in an interstellar cloud collision simulation (data courtesey of Richard Klein).
Figure 10 has moving vertices, while figure 11 has moving texture coordinates. The color indicates density.
A frame from an animation of unsteady wind data over Indonesia on a curvilinear mesh is shown in Figure
12. Percent cloudiness is mapped to color and opacity.

We ran our software on an SGI Onyx supporting hardware texture mapping. For a 32 by 32 slice of a
volume (as in the aerogel example) we were able to achieve about four frames per second. To rotate a com-
plete 50x40x10 volume, like the one shown in Figure 9, about 15 seconds was required.

REFERENCES

1. Shoup, Richard: Color Table Animation. Computer Graphics Vol. 13, No. 2 (August 1979) pp.8-13

2. van Wijk, Jarke: Flow Visualization With Surface Particles. ITEEE Computer Graphics and Applications,
Vol. 13, No. 4 (July 1993) pp. 18 - 24.

3. Cabral, Brian; and Leedom, Lieth: Imaging Vector Fields Using Line Integral Convolution. Computer
Graphics Proceedings, Annual Conference Series (1993) pp. 263 - 270.

4. Forssell, Lisa: Visualizing Flow over Curvilinear Grid Surfaces using Line Integral Convolution. Pro-
ceedings of IEEE Visualization *94, pp. 240 - 247.

5. Stalling, Detlev; and Hege, Hans-Christian: Fast and Resolution Independent Line Integral Convolution.
ACM Computer Graphics Proceedings, Annual Conference Series, 1995, pp. 249 - 256.

6. Crawfis, Roger; and Max, Nelson: Texture Splats for 3D Scalar and Vector Field Visualization. Proceed-
ings of IEEE Visualization *93, pp. 261 - 265.

7. Max, Nelson; Crawfis, Roger; and Williams, Dean: Visualizing Wind Velocities by Advecting Cloud Tex-
tures. Proceedings of IEEE Visualization *92, pp. 179 - 184.

8. Heeger, David; and Bergen, James: Pyramid-Based Texture Analysis and Synthesis. ACM Computer
Graphics Proceedings, Annual Conference Series, 1995, pp. 229 - 238.

9. Williams, Lance: Pyramidal Parametrics. Computer Graphics Vol. 17 No. 3 (July 1983) pp. 1 - 11.

10. Porter Tom; and Duff, Tom: Compositing Digital Images. Computer Graphics Vol. 18, No. 4 (July
1984) pp. 253 - 259.

11. Lane, David: UFAT - A Particle Tracer for Time-Dependent Flow Fields. Proceedings of IEEE Visual-
ization 94, pp. 257 - 264.

12. Wernecke, Josie: The Inventor Mentor. Addison -Wesley Publ. Co., Inc., 1994.

) igure 6. Texture coordina adv
using vectors transformed by the local
backwards. jacobian matrix, while vertices are held fixed.

Figure 7. Same method
as figure 6, but with a
new texture fading in
as soon as the other
becomes too distorted.

Figure 5. Same method
as figure 4, but with a
new texture fading in as
soon as the other
becomes too distorted.

Figure 8. Method of
figure 6 appliedto a
steady flow moving
through particles of
acrogel and using a

colored texture.

Figure 9. Method of
figure 5 appliedto a
steady flow depicting
wind data on a spherical
mesh. Color and opacity
from percent cloudiness.

Figure 11. Method of
figure 6 applied to a steady
flow representing a field
from an interstellar cloud
collision simulation.

Figure 10. Several layers of textures advected using the
method of figure 3. The layers are colored by density and
move near a high density solid contour surface.

Figure 12. Method of
figure 7 applied to an
unsteady flow
representing global
climate data. Color and
opacity indicate percent
cloudiness. Both the
winds and percent
cloudiness vary in time.

ISSP6 BIUION[BD ‘QIOWIIALT « BIRIOJED) JO AIISIVAJULY
OWIIIALY SOUIIMR'Y o JUstiptnda(q uoyvULIOfU] 102122

Kx03BI0qR"] [BUORBN] o1

