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Z iron opacity experiments refine our understanding of the 
sun and photon absorption in high energy density matter. 

• Solar interior predictions don’t match helioseismology 

• Z experiments have measured iron plasma opacity at 

nearly solar convection zone base conditions 

 Arbitrary opacity increase of 10-20% would fix 

the problem, but is this the correct explanation?  

• Opacity models disagree with measurements at 

near-solar-interior conditions 

 Experiment temperature is the same as in sun, 

density within a factor of 2 

3 

The measurements imply photon absorption in high energy 

density matter is different than previously believed 

 The solar Rosseland mean opacity is ~ 7% higher 

using Z iron data instead of OP calculations 

Bailey et al., Nature 2015 



If our opacity measurements are correct, we must revise 
our understanding for atoms in HED plasmas 

• Measured opacities are generally higher than theory predicts – 

     e.g., Rosseland mean is 30-60% higher 

• The measurements alter our understanding of the sun 

• Solar physics calibrates many other objects. Therefore the measurements 

alter our understanding of every main sequence star in the sky, including 

exoplanet host stars 

• The measurements imply likely revisions for ICF capsule dopants 

 

These serious consequences mandate continued effort 

• We invested the last 2 years investigating possible errors and refining results 

• The major conclusions survived this scrutiny  

• Going forward, new experiments will further test hypotheses for possible 

theory deficiencies and possible experiment deficiencies 

• Our job isn’t finished until we resolve the model/data discrepancy 
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Standard solar model predictions of the solar structure 
disagree with helioseismology 

• predicted boundary 

location different from 

measured 

{~ 10-20 s difference} 

 

Density and sound speed 

structure are also very 

different 

Bahcall et al, ApJ (2004) 

Basu & Antia Physics Reports 2008 

 

Asplund et al Ann Rev AA (2009) 

Christensen-Dalsgaard et al A&A (2009) 

• Boundary location depends on radiation transport 

• A 1% opacity change leads to observable changes. 

• This accuracy is a challenge – experiments are needed to know if the 

solar problem arises in the opacities or elsewhere. 
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• Standard solar model (simulation) 

 

• Abundance 

• EOS 

 

• Helioseismology (measurements) 

 

 

• Solar abundance revised in 2005 

• C, N, O, Ar, Ne  lowered by 35-

45 % 

 

• Now, standard solar model disagrees 

with helioseismic measurements 
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The disagreement arose after the solar abundance revision 
that began in 2000 

• Opacity 

• Etc. 

S. Basu et al, Physics Reports 457, 217 (2008). M. Asplund et al, Annu. Rev. Astro. Astrophys. 43, 481 (2005). 
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The disagreement arose after the solar abundance revision 
that began in 2000 
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Old 

abundances 

The disagreement arose after the solar abundance revision 
that began in 2000 

• Opacity 

• Etc. 
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Disagreement could be resolved if the true opacity is 
higher than predicted 
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Iron makes an important contribution to the solar opacity 
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At the convection zone base iron contributes opacity 
predominantly from L-shell transitions  

J.E. Bailey et al, Phys. Plasmas 16, 058101 (2009). 

Photons are transported in opacity windows, but windows are 

filled by other elements 
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Multiple entangled physical processes are a 

concern for opacity models 

•Energy level structure and detail 

•Multiply excited states 

•Autoionizing levels 

•Photoionization 

•Line broadening 

•Continuum lowering 

Fe +17 : 1s22s22p5 

F-like 

n = 4 

n = 1 

n = 3 

n = 2 
L-shell 

ground state 

bound-free 

excited state 

bound-free 
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One challenge for iron opacity models is that significant 
population resides in myriad excited states 

Accurate energy level description 

required for all excited states 

 

Plasma effects more easily modify 

excited states 
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0.2 Example: Ne-like iron 

excited state fraction = 93% 

ground state fraction = 7% 

 

Implies a ~3% increase in excited state 

population causes ~40% decrease in 

ground state population 

 

i.e., 40% decrease in lines originating 

from ground state 

 Iron at 195 eV, 4e22 electrons/cc 

SCRAM calculation 
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Another challenge: Line broadening influences opacities 
but models for many-electron ions are untested 

• Broadening tends to close the opacity windows between lines 

• Modeling high-n and multiply-excited states is difficult 

PrismSPECT calculations 

Iron; 150 eV, 8e21 cm-3 
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Strategy: frequency-dependent transmission 
measurements test opacity model physics 
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Detailed information about the physical basis for opacity models is 
encoded in the frequency dependent transmission spectra. 
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The importance of stellar opacity was recognized nearly a 
century ago, but no laboratory measurements have been 
done up to now. Why? 

Eddington, “The Internal Constitution of the Stars”, 1926 

 

 

 

High transmission accuracy is needed since   t = -ln (T) 

 

High accuracy requires: 

Macroscopic samples uniformly heated to stellar interior conditions 

Backlight bright enough to overcome emission at stellar interior temperatures 

 

Stellar opacity measurements are possible for the first time: 

MegaJoule class facilities like Z and NIF 

3 decades of opacity research at smaller scale facilities to hone our approach 

Advanced plasma diagnostic techniques 
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Benchmark quality opacity experiment requirements 

have been developed over 30 years 

Bailey et al., Phys Plasmas 16 (2009) 
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Overarching requirements for each application:  

Ideally: Reproduce the temperature, density, and radiation  

Minimum: Reproduce the same charge states and measure the same transitions 

  

Experiment requirements: 

1. Accurate transmission measurements (~ + 5%) 

2. Demonstrated uniformity 

3. Reliable plasma diagnostics 

4. Freedom from self emission 

5. Freedom from background contamination 

6. Multiple areal densities (for dynamic range and systematic error tests) 

7. Thorough sample characterization 

8. An evaluation of suitable the LTE appoximation is 

9. Multiple Te, ne conditions, to aid disentangling physical effects 

10.Multiple atomic number elements, to aid disentagling physical effects and help 

verify robustness against systematic errors 

11.Multiple experiments of each type, to confirm reproducibility 

12.Peer review and documentation 

Example references: 

Davidson et al. Appl. Phys. Lett. 1988 

Perry et al. Phys. Rev. Lett 1991 

Foster et al. Phys. Rev. Lett. 1991 

Perry et al. Phys. Rev. E 1996 

Springer et al. JQSRT 1997 



J 

B JxB   

Prad ~ 220TW (±10%),  Yrad ~ 1.6 MJ (±7%) 

~ 8% wall plug efficiency 

We use the Z machine to create energetic and 

powerful x-ray sources 

*Stanford, PoP 9 (2002); Bailey et al,PoP 13 (2006); Slutz et al., PoP 13 (2006); Rochau et al., PPCF 49 (2007) 

4cm 
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Foil is heated during  

the ZPDH implosion 

Foil is backlit  

at shock stagnation 

Thin 

Foil 

The ZPDH radiating shock is used to both heat and 

backlight samples to stellar interior conditions. 

Bailey et al., POP 16 (2009) 

Thin 

Foil 
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Transmission is inferred by dividing the attenuated 

spectrum by the unattenuated spectrum. 

Bailey et al., POP 16 (2009) 
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Measurements with half-moon shaped samples enable 
transmission determination from single experiments 

J.E. Bailey et al, RSI (2008). 

transmission image 

Z x-rays 

spectrometer 

Fe 

side 

l 

Backlit spectra with and without sample 

determine transmission 

T.S. Perry et.al. Phys. Rev. E (1996) 

J.E. Bailey et.al. Phys. Plasmas (2009) 

 

CH 

side 

CH 
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Opacity data are recorded with an array of crystal 

spectrometers 

23 



Hundreds of spectra were measured and analyzed to 

support the experiment reliability and reproduciblity 
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Data from z2762 
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Plasma conditions are inferred by mixing Mg with Fe and 
using K-shell line transmission spectroscopy 

Density from Stark broadening1 Temperature from line ratios 

Mg K-shell Fe L-shell 

Hea Lya Heb 

Heg 
Lyb 

wavelength [Angstroms] 

R. C. Mancini, comp. phys. commun. (1991) 

T.N. Nagayama et. al. RSI (2013)  

T.N. Nagayama et. al. POP (2014) 
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In 2007, Z experiments produced the iron charge 
states that exist in the solar interior 

Fe charge state 
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Producing the correct charge states 

enables opacity model tests: 

1) Charge state distribution 

2) Energy level description 

 

High density and high temperature 

studies required further progress 
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[Bailey et al., PRL (2007)] 



The 2007 Z data was matched well by “best-effort” 
models, but not by a model used in solar research 
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OP Rosseland mean is ~ 1.5x lower than OPAS at Z conditions. 

If this difference persisted at solar conditions, it would solve the CZ problem 

Experiments at higher density needed 
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Adjusting the CH tamper thickness controls the opacity 
sample density and temperature 
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The achieved temperature and density depend on 

the target design. 

10 mm CH 
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Iron opacity spectra have been acquired at conditions 
approaching the solar convection zone base 

• Multiple conditions helps dis-entangle the different physical processes 

• Some clear trends are observed as Te, ne increase: shorter, fatter lines; 

windows fill in; quasi-continuum opacity increases 
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The OP opacity model is used in solar models but it 
disagrees with Z iron plasma opacity measurements 
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“Best Effort” opacity models “match” the data at lower 
Te/ne conditions but not at conditions near the CZB 
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Plot of SCRAM and Z data at three Te/ne conditions 
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At high temperature , density, calculations are generally lower than the data 



No model examined up to now has satisfactory agreement 
with iron opacity measured at near-CZB conditions 
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The measured hot iron plasma opacity exceeds past 
measurements of the cold iron opacity 
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This could imply errors in either our hot opacity measurement, the cold opacity 

measurement, photoionization calculations, or BB opacity calculations 



The serious implications of this research mandate scrutiny 
of random and systematic uncertainties 

Random error determination: average many spectra from multiple experiments 

 

Systematic error determination: 

Experiment tests of hypotheses 

Simulations of sample conditions, postprocessed  

 

Specific potential errors investigated include: 

 

Transmission accuracy – tamper-only experiments, reproducibility, Beer’s Law scaling 

 

Sample uniformity – direct measurements, simulations 

 

Self emission – direct observations, Beer’s Law tests, post-processed simulations 

 

Tamper attenuation – change tamper material, Beer’s Law, post-process simulations  
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Tamper-only experiments confirm transmission accuracy 
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• For this example the average absolute error is  ~7% 

• Errors are further reduced by averaging repeated experiments 

• We repeat this test in every experiment series to avoid the possibility of 

anomalously large errors 



Possible experiment flaws can be evaluated from 
transmission scaling with sample thickness (Beer’s Law) 

experiment problems cause transmission scaling to deviate: 

• Sample emission 

• Background subtraction 

• Crystal defects  

• Gradients 

Most  potential experiment problems cause the scaled thin sample 
transmission to be lower than the thick sample transmission 
  

Expected scaling with thickness : T1 = T2 
(x1/x2) 

e.g., if X2= 2 * X1, then T2= T1 * T1 

I0(n) 
I2(n) 

x2 

I0(n) 
I1(n) 

x1 



Beers Law test confirms reliability of high Te/ne iron 
data in the 8-13 Angstrom range 
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Al lines 

Direct uniformity measurement confirmed that there is no 
significant spatial gradient in the sample 

radiation 

source 

spectrometer 

68 mm CH 
Fe/Mg 

Fe only 

Fe/Al 
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Simulations can provide significant insight and 
quantitative estimates for systematic error hypotheses 
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1. Why do Te and ne increase with tamper thickness? 

2. Is sample shadowing predicted to be important? [Yes] 

3. Are spatial gradients predicted to be important? [No] 

4. Are temporal gradients predicted to be important? [No] 

5. Is the time-integrated Fe/Mg self-emission negligible compared to the 

time-integrated backlighter? [No] 

6. Is the time-integrated CH self-emission negligible compared to the 

time integrated CH attenuated backlighter? [Yes] 

 

We use 1D HELIOS simulations to help answer these questions 

 

We use our best experimental knowledge of the radiation drive, but this 

knowledge is imperfect 

 

Therefore a key question is simulation credibility 



Simulations reproduce sample temperature and 
density for a wide range of experiments 
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Credibility is supported by the fact that simulations reproduce multiple experiments 
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Self emission influence on opacity is modest for wavelengths 
below  ~12.5 Angstroms  
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Simulated opacity 

with self-emission 
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• If present, self emission always reduces the inferred opacity 

• Any self emission correction will increase model discrepancies for l < 13 A 

• We observe no self emission, but the quantitative constraint this provides is 

still under evaluation 



A valid question is whether the rear tamper thickness 
alters the inferred opacity 

43 

10 mm CH 

radiation 

source 

FeMg 

spectrometer 

radiation 

source 

FeMg 

spectrometer 

40 mm CH 

radiation 

source 

FeMg 

spectrometer 

68 mm CH 

reasonable  

model 

agreement 

poor  

model 

agreement 

very poor 

model 

agreement 

We use the same heating radiation, backlight, diagnostics, sample fabrication for all 

The only difference is the tamper thickness 

 



Hypothesis: Does the FeMg sample “shadow” the CH 
tamper behind it enough to enhance inferred attenuation? 
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S1 S2 Half-moon sample: Transmission = S1/S2 

 

This assumes the CH tamper on the side with the FeMg is heated the same 

as the side without the FeMg 

 

Simulations suggest the cooler CH behind the FeMg may alter the inferred 

opacity by up to 20% ; the correction increased with l 
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Be tamper experiments eliminate possible tamper 
effects on inferred iron transmission / opacity 
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The Be tamper experiments confirm CH-tamped data accuracy at l <10.5 Angstroms 
AND 
the need for a CH tamper correction at longer wavelengths 
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The Be-tamped iron opacity measurement re-affirm 
the need for significant opacity model revisions 
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The Be-tamped iron opacity measurement re-affirm 
the need for significant opacity model revisions 
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Z; 35 mm Be tamper 
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The measured pure iron Rosseland mean opacity is 
~1.6x higher than calculated with OP 
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A solar mixture plasma using Z iron data has ~ 6% 
higher Rosseland mean opacity than using OP iron 

• A 6% Rosseland increase partially resolves the solar problem, but the 

measured iron opacity by itself cannot account for the entire discrepancy 

• Other elements and regions deeper in the sun could contribute 

• As we refine the analysis the conclusion could still change 
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2-3 transition arrays - Ni 
Bound free quasi continuum – Cr 
Line broadening 
Higher densities – thicker Be tamper 
Plasma composition – Fe mixed with low Z 

52 

Future opacity experiments will examine opacity model 
physics issues 



Hypotheses: 
 
1) Despite all our effort, iron measurement is flawed somehow 
2) Photon absorption is shifted from long l to short l by a process that is 
as yet undetermined 
3) Models have difficulty predicting opacity for open L-shell configurations 
4) Models have difficulty predicting highly excited configurations 
 
Tests: 
A) Z experiments with lower and higher atomic number elements 
B) Experiments on a different platform (NIF) 
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What are the hypotheses for the discrepancy and how 
can we test them? 



Experiments with different elements also can help identify possible experiment 
peculiarities with the iron measurements (e.g., unknown contaminants) 

54 

Experiments with different elements shift different spectral 
regions into the highest accuracy experiment range 
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Opacity from transitions with an open L-shell may be more complex to model 
55 

The number of L shell vacancies changes with the sample 
element 
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The fractional excited state population increases as the 
atomic number decreases 
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fewer L-shell vacancies, lower excited state populations 
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Z iron plasma opacity experiments refine our 
understanding of solar interior structure 

• Solar interior predictions don’t match helioseismology 

• Z experiments have measured iron plasma opacity at 

nearly solar convection zone base conditions 

 Arbitrary opacity increase of 10-30% would fix 

the problem, but is this the correct explanation?  

• Opacity models disagree with measurements at 

near-solar-interior conditions 

The Rosseland mean opacity for solar matter is ~ 6 % higher using 

Z iron data instead of OP model calculations 

 Experiment temperature is the same as in sun, 

density within a factor of 2 
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