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Abstract. This paper presents a new nonlinear programming formulation for the solution of
inverse problems. First, a general inverse problem formulation based on the compliance error
functional is presented. The proposed error functional enables the computation of the Lagrange
multipliers, and thus the first order derivative information, at the expense of just one model
evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution
of the computationally intensive adjoint problem. This leads to significant speedups for large-
scale, gradient-based inverse problems.

Second, if second order optimization algorithms are available, Newton’s method can be ap-
plied to the first order necessary optimality conditions. Newton’s method relies on accurate
second order derivative information to compute descent directions during optimization. This
paper presents two Hessian formulations for inverse problems based on the compliance er-
ror functional. The first approach relies on the mathematical properties of the compliance error
functional to compute the nonlinear Hessian operator by performing one additional model eval-
uation. This yields substantial speedups during the Newton iterations. The second approach
relies on a linear programming Hessian formulation based on the compliance error functional.
This Hessian formulation further speedups the analysis since the first and second order deriva-
tive information are computed at the expense of one model evaluation during each optimization
iteration.

Third, examples in heat transfer are presented to demonstrate the effectiveness of the com-
pliance error functional. The compliance error minimization formulation is compared to the
data misfit formulation for inverse problems. Results will show that the compliance error mini-
mization formulation outperforms the data misfit formulation.
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1 INTRODUCTION

This paper investigates the problem of large-scale parameter estimation, i.e. inverse prob-
lem, in the context of a particular problem: determining the thermal conductivity properties
of a region of interest given an ‘observed’ temperature field. Specifically, a new inverse prob-
lem formulation based on the compliance error functional is presented. A general framework
for the application of first and second order optimization algorithms and the compliance er-
ror functional is presented, This general inverse problem framework enables application of the
compliance error minimization formulation to multiple problem of interests in engineering.

Multiple inverse problem techniques have been proposed in the literature for the solution of
inverse problems. For instance, many researchers have applied data misfit error functionals for
the solution of inverse problems in multiple physics settings [2, 16, 26, 34]. The objective of
data misfit based inverse problems is to characterize the parameter of interest by minimizing the
discrepancy between the simulation and the experimental data (target/observed data). An alter-
native to data misfit functionals is the modified error in the constitutive equation (MECE) func-
tional. The objective of MECE based inverse problems is to characterize the parameter of inter-
ests by minimizing the discrepancy in the constitutive equations [9, 10, 19, 20, 21, 22, 23, 24].
This formulation leads to a coupled system of equations that is solved for every new set of
materiel parameters. Allix et al. [4] performed several numerical studies that showed that
the MECE functional improved the convexity of the objective function. Gockenbach et al.
[12, 13, 14] showed that the energy norm term of the MECE functional is convex for elliptic
boundary value problems when full field measurements are available. However, in a subsequent
study, Gockenbach [15] showed that inverse problem formulations based on energy norm min-
imization can lead to inaccurate estimates if the ‘observed’ data is noisy. Moreover, he showed
that the data misfit functional was less sensitive to noisy data than the energy norm functional.
Lastly, the virtual field method (VFM) is a recent inverse problem approach developed for ex-
tracting constitutive parameters from full-field measurements [32]. The VFM is based on the
principle of virtual work and a kinematically admissible virtual field that is computed a-priori.
The choice of the kinematically admissible virtual field is key in order to improve the perfor-
mance of the VFM. Thus, most research is focus on improving the predictive capabilities of the
kinematically admissible virtual field [17].

The main advantage of the compliance error functional is that it enables the computation of
the Lagrange multipliers, and thus the first order derivative information, at the expense of just
one model evaluation. Thus, the calculation of the Lagrange multipliers does not require the
solution of the computationally intensive adjoint problem. This leads to significant speedups
for large-scale, gradient-based inverse problems since the adjoint problem is not necessary to
compute the gradient operator at each optimization iteration. Furthermore, the compliance error
formulation simplifies implementation in production software libraries since it only relies on
forward model evaluations during optimization.

If second order optimization algorithms are available, Newton’s method can be applied to
the first order necessary optimality conditions. Newton’s method requires reliable second order
derivative information to compute accurate descent directions during optimization. If the data
misfit functional is applied, at least 4 model evaluations are required at every optimization it-
eration to compute the first and second order derivative information. This paper presents two
Hessian formulations based on the compliance error functional that are tailored for second order
optimization algorithms. The first Hessian formulation relies on the mathematical properties of
the compliance error functional to reduce the number of model evaluations needed to compute

2



Miguel A. Aguiló

descent directions during optimization. This nonlinear Hessian formulation reduces the number
of model evaluations from two to one during each Newton iteration. Consequently, substantial
speedups are obtained. The second formulation relies on a linear programming Hessian for-
mulation to further speedup the Newton iterations. By using this linear Hessian formulation
based on the compliance error functional, the first and second order derivative information can
be computed at the expense of one model evaluation at each optimization iteration. Results will
show that the compliance error functional leads to substantial speedups over the the data misfit
functional.

This paper is organized as follows: Section 2 presents the general inverse problem formula-
tion based on the compliance error and data misfit functionals. Here, a general inverse problem
framework based on the compliance error functional is presented for first and second order
optimization algorithms. Section 3 presents an inverse problem example in heat transfer to
showcase the advantages associated with the compliance error functional. Finally, Section 4
provides conclusions.

2 FORMULATION

2.1 Preliminaries

Let Z, U , and Y be Banach spaces, where both Z and U are reflexive, i.e. z ∼ z ∀ z ∈ Z
and u ∼ u ∀ u ∈ U . Furthermore, let J : U × Z → R and g : U × Z → Y . Lets now consider
the optimization problem

minimize
(u,z) ∈ U×Z

J(u, z) s.t. g(u, z) = 0, (1)

where u ∈ Uad ⊂ U and z ∈ Zad ⊂ Z. Uad and Zad denote admissible subsets of the state and
control spaces, respectively. If the following conditions are met:

1. Zad ⊂ Z is convex, bounded and closed;

2. Uad ⊂ U is convex, closed, and contains a feasible point; i.e. g(u, z) = 0 has a bounded
solution operator, û(z) : Z → U ;

3. the mapping (u, z) 7→ g(u, z) is continuous under weak convergence; and

4. J is sequentially lower semicontinuous;

there exists a solution to the optimization problem defined in Equation 1 [6, 28]. However, the
uniqueness of the solution is problem dependent.

First order necessary optimality conditions are necessary to solve Equation 1 using first order
optimization algorithms. However, if Newton’s method is applied for the solution of Equation 1,
first order necessary optimality conditions and second order sufficient conditions are necessary
to find an optimal solution. These conditions involve the gradient of the objective function being
zero at the optimal solution and the Hessian operator being positive semidefinite at the optimal
solution. These conditions can be derived from Lagrangian multiplier theory [33].

2.2 Inverse problem

Let Ω ⊆ Rd, d ∈ {1, 2, 3} denote the computational domain with boundary ∂Ω. Lets now
define the Lebesgue space H = L2(Ω;Rn) of measurable and square intregrable functions en-
dowed with inner product 〈φ, ψ〉H =

∫
Ω
φψ for φ, ψ ∈ H and norm ‖φ‖H = 〈φ, φ〉1/2H . Lets also
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define finite dimensional spaces U = {span{φa}Aa=1 |φ ∈ H} ⊂ U , Z = {span{ψb}Bb=1 |ψ ∈
H} ⊂ Z, and Y = {span{χc}Cc=1 |χ ∈ H} ⊂ Y . This enables the following finite dimen-
sional approximations for the state, control, and Lagrange multipliers u =

∑A
a ũ

aφa | ũ ∈ R,
z =

∑B
b z̃

bψb | z̃ ∈ R, and v =
∑C

c ṽ
cχc | ṽ ∈ R, respectively.

Lets now define a general parameter estimation (inverse) problem as

min
(u,z)∈U×Z

J(u, z)

s.t.
g(u, z) = 0,

(2)

where u and z respectively denote the state and control variables, J(u, z) : U×Z→ R denotes
the objective function and g(u, z) : U×Z→ Y denotes the equality constraint (physics model).

The implicit function theorem admits the definition of a solution operator u : Z → U such
that {(u(z), z) | z ∈ Z} = {(u, z) ∈ U× Z | J(u, z) = 0}. This enables the redefinition of the
general inverse problem in Equation 2 as

min
z∈Z

J(u(z), z), (3)

where the solution operator u(z) is obtained by solving g(u(z), z) = 0. This formulation
is known as the reduced-space formulation for partial differential equation (PDE) constrained
optimization.

Lets also assume that the objective function and equality constraint in Equation 3 are given
by

J(u(z), z) =
β

2
‖〈u(z),A(z)u(z)〉H − 〈û,A(z)û〉H‖2

H + R(z), (4)

and

g(u(z), z) = A(z)u− f = 0. (5)

Here, A(z) : Z → U × U is a non-singular, self-adjoint linear operator, R(z) : Z → R is a
regularization functional, f ∈ Y is an external force and û ∈ Ω̂ ⊂ Ω denotes measured data.
This formulation will be denoted as the compliance error minimization (CEM) formulation for
inverse problems.

2.3 First order formulation

2.3.1 Data misfit functional

Lets define the Lagrangian functional L : U × Z × Y → R for the general inverse problem
defined in Equation 3 as

L(u(z), z,v) = J(u(z), z) + 〈v, g(u(z), z)〉Y∗,Y, (6)

where v denotes the Lagrange multipliers and Y∗ is the dual space of Y. The objective function
is given by

J(u(z), z) =
1

2
‖u(z)− û‖2

H. (7)
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and the equality constraint g(u(z), z) is given by Equation 5. If z? ∈ Z is a local solution of
Equation 3; then, there exists a set of Lagrange multipliers v? ∈ Y such that the first order
necessary optimality conditions are satisfied at z?.

The first order necessary optimality conditions are given by

Lu(u(z), z,v) = Ju(u(z), z) + gu(u(z), z)∗v = 0 (8)

Lz(u(z), z,v) = Jz(u(z), z) + gz(u(z), z)∗v = 0, (9)

where the subscripts u and z respectively denote derivatives with respect to the state and control
variables. The Lagrange multipliers are computed by solving

v = −(gu(u(z), z)∗)−1Ju(u(z), z). (10)

Substituting Equation 10 into Equation 9 yields a reduced gradient operator of the form

∇J(u(z), z) = Jz(u(z), z) + gz(u(z), z)∗[−(gu(u(z), z)∗)−1Ju(u(z), z)]. (11)

At each optimization iteration, the following sequence of steps are done to compute the
reduced gradient operator and minimize the objective function

1. Solve equality g(u(z), z) = 0 for u ∈ U;

2. Solve gu(u(z), z)∗v = −Ju(u(z), z) for v ∈ Y;

3. Compute the reduced gradient operator defined in Equation 11;

4. Compute descent direction s ∈ Z and set zk+1 = zk + γsk, γ ∈ R.

This sequence of steps are often necessary to solve an inverse problem based on the data misfit
functional [3].

2.3.2 Compliance error functional

Assume that the objective function and equality constraint for the parameter estimation prob-
lem defined in Equation 3 are given by Equations 4 and 5, respectively. Then, the first order
derivative operators gu(u, z)∗ and Ju(u, z) are given by

gu(u(z), z)∗ = A(z)∗ (12)

and

Ju(u(z), z) = αA(z)u, (13)

where

α = 2(〈u(z),A(z)u(z)〉H − 〈û,A(z)û〉H). (14)

Recall that A(z) is assumed to be a non-singular, self-adjoint linear operator. Thus, an
explicit expression for the Lagrange multipliers can be derived by substituting Equations 12
and 37 into Equation 10. This expression is given by

v = −αβA(z)−1(A(z)u(z)) = −αβIu(z) = −αβu(z), (15)
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where I denotes an identity linear operator. By substituting Equation 15 into Equation 11, the
reduced gradient operator is defined as

∇zJ(u(z), z) = Jz(u(z), z)− αβ〈u(z), gz(u(z), z)∗〉. (16)

Notice that the adjoint problem defined in Equation 10 is not solved to compute the Lagrange
multipliers, which should speedup the optimization problem.

At each optimization iteration, the following sequence of steps are done to compute the
reduced gradient operator and minimize the objective function

1. Solve equality g(u(z), z) = 0 for u ∈ U;

2. Compute Lagrange multipliers v = −αβu(z);

3. Compute the reduced gradient operator given by Equation 16.

4. Compute descent direction s ∈ Z and set zk+1 = zk + γsk, γ ∈ R.

The first order CEM formulation omits the adjoint model evaluations during optimization and
thus facilitates implementation and enables significant speedups.

2.4 Second order formulation

2.4.1 Data misfit functional

If second order derivative information is available, Newton’s method can be applied to the
first order necessary optimality conditions. Then, let κ ∈ R∗+ and δz ∈ Z. If z? ∈ Z satisfy the
first order necessary optimality conditions and

〈δz,∇2J(u(z?)z?)δz〉 ≥ κ‖δz‖2
H ∀ δz ∈ ker gz(u(z?), z?),

the second-order sufficient condition is satisfied at z?. Furthermore, z? is a strict local minimum
of Equation 3.

The application of the trial step δz to the nonlinear Hessian operator is given by

∇2J(u(z), z)δz = Lzu(u(z), z,v)δu + Lzz(u(z), z,v)δz + Lzv(u(z), z,v)δv, (17)

for δu ∈ U and δv ∈ Y. Notice that δu and δv are necessary to compute the application of
the trial step to the nonlinear Hessian operator. Thus, explicit expressions for δu and δv are
necessary to effectively calculate Equation 17.

Let g(u(z), z) = 0 ∀ z ∈ Z. Then, gz(u(z), z)δz = 0 ∀ (z, δz) ∈ Z× Z, where

gz(u(z), z)δz = gu(u(z), z)δu + gz(u(z), z)δz = 0. (18)

Here, δu ≡ uz(z)δz. Solving Equation 18 for δu gives

δu = −gu(u(z), z)−1gz(u(z), z)δz. (19)

Next, an explicit expression is derived for δv. By definition, Lu(û(z), z,v) = 0 ∀ (u, z,v) ∈
U× Z× Y; thus, the derivative of Lu(û(z), z,v) in the direction of δz gives

Luu(u(z), z,v)δu + Luz(u(z), z,v)δz + Luv(u(z), z,v)δv = 0, (20)
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∀ (z, δu, δz, δv) ∈ Z× U× Z× Y. Solving Equation 20 for δv gives

δv = −Luv(u(z), z,v)−1[Luu(u(z), z,v)δu + Luz(u(z), z,v)δz], (21)

where

Luv(u(z), z,v) = gu(u(z), z)∗ (22)

Luu(u(z), z,v) = Juu(u(z), z) + guu(u(z), z)∗v (23)

Luz(u(z), z,v) = Juz(u(z), z) + guz(u(z), z)∗v. (24)

The following sequence of steps are performed to compute the application of the trial step
δz to the reduced Hessian operator at each Newton iteration

1. Solve gu(u(z), z)δu = −gz(u(z), z)δz for δu ∈ U

2. Solve gu(u(z), z)∗δv = −[Luu(u(z), z,v)δu + Luz(u(z), z,v)δz] for δv ∈ Y

3. Compute the application of the trial step to the reduced Hessian operator

∇2J(u(z), z)δz = Lzu(u(z), z,v)δu + Lzz(u(z), z,v)δz + Lzv(u(z), z,v)δv, (25)

where Lzv(u(z), z,v) = gz(û(z), z)∗.

Notice that the data misfit functional requires two model evaluations per Newton iteration to
accurately compute the application of the trial step to the reduced Hessian operator

2.4.2 Compliance error functional: nonlinear programming formulation

Assume that the objective function and equality constraint are given by Equations 4 and 5,
respectively. Then, the second order derivative operators Luv(u(z), z,v), Luu(u(z), z,v), and
Luz(u(z), z,v) are given by

Luv(u(z), z,v) = A(z)∗ (26)

Luu(u(z), z,v) = 2β[αA(z)δu + 2A(z)u(z)〈u(z),A(z)δu〉H] (27)

Luz(u(z), z,v) = 2β[α(Az(z)δz)u(z) + γA(z)u(z)] + (A(z)∗v)δu, (28)

where

γ = 〈u(z), (Az(z)δz)u(z)〉H − 〈û, (Az(z)δz)û〉H (29)

Recall that A(z) is a non-singular, self-adjoint linear operator. This enables the derivation
of an explicit expression for δv by substituting Equations 15, 26, 27 and 28 into Equation 21,
which is given by

δv = −2β[αδu + 2u(z)〈u(z),A(z)δu)〉H + γu(z)]. (30)
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Here, δu is given by Equation 19.
To compute the application of the trial step to the reduced Hessian operator, the second order

derivative operators Lzu(u(z), z,v), Lzz(u(z), z,v), and Lzv(u(z), z,v) are required. These
second order derivative operators are explicitly given by

Lzu(u(z), z,v) = 2β[(Az(z)u(z))u(z)− (Az(z)û)û] (31)

Lzz(u(z), z,v) = βγ[(Az(z)u(z))u(z)− (Az(z)û)û] + Rzz(z) (32)

Lzv(u(z), z,v) = −2β[α(Az(z)u(z))δu + 2(Az(z)u(z))u(z)〈u(z),A(z)δu〉H
+ γ(Az(z)u(z))u(z)].

(33)

Here, Equations 15 and 30 were used to derived and simplified Equations 31 and 33.
The application of the trial step to the reduced Hessian operator is then obtained by substi-

tuting Equations 31-33 into Equation 25. After some simplifications, the application of the trial
step to the reduced Hessian operator is given by

∇2J(u(z), z)δz = −2β[(Az(z)u(z))u(z) + (Az(z)û)û]〈u(z),A(z)δu〉
− βγ[(Az(z)u(z))u(z) + (Az(z)û)û] + Rzz(z)δz

− 2βα(Az(z)u(z))δu.

(34)

Thus, the following sequence of steps are applied to compute the application of the trial step δz
to the reduced Hessian operator at each Newton iteration

1. Solve gu(u(z), z)δu = −gz(u(z), z)δz for δu ∈ U

2. Compute∇2J(u(z), z)δz as defined by Equation 34.

The proposed compliance error minimization formulation enables the calculation of the second
order derivative information at the expense of one model evaluation per Newton iteration. Con-
trary, the data misfit formulation presented in Section 2.4.1 requires two FEM evaluations per
Newton iteration. Thus, significant computational savings are attained during optimization.

2.4.3 Compliance error functional: linear programming formulation

To circumvent the computational demands associated with the calculation of second order
derivative information, quasi-Newton methods have been innovated to effectively approximate
this information during optimization [6, 8, 28]. These methods have been successfully applied
to many applications [29, 30]. In this work, a different approach to quasi-Newton methods is
explored by applying a linear Hessian formulation based on the compliance error functional.

Lets define the application of the trial step to the reduced linear Hessian operator as

∇2J(u(z), z)δz ≡ Lzz(u(z), z,v)δz = [Jzz(u(z), z) + gzz(u(z), z)∗v]δz. (35)

Notice that the derivative operators Lzu(u(z), z,v)δu and Lzv(u(z), z,v)δv are omitted in
Equation 35 since these nonlinear terms vanishe. Thus, the solution of Equation 19 is not
required to compute the application of the trail step to the reduced linear Hessian operator
during the Newton iterations. Results will demonstrate that the linear Hessian formulation
leads to significant speedups while preserving solution accuracy.
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3 EXAMPLE IN HEAT TRANSFER

The Intrepid PDE discretization package from Trilinos [18] was used to build the finite el-
ement models. The direct solver routine from MATLAB [27] scientific package were used in
the numerical studies performed herein. The optimization algorithms in this work were im-
plemented in C++ and used to generate the results presented herein. Readers are encourage
to explore any optimization library of their preference [1, 11, 18, 37]. Finally, all calculations
were performed on a Linux workstation with a 2.93 GHz Intel(R) Core Xeon(R) processor and
24 GB of RAM.

To synthesize the ‘observed’ temperature field, a finer grid with 80,000 triangles was used
to generate the experimental temperature field. The experimental temperature field was then
projected onto a computational grid 20,000. This was done to avoid using the same compu-
tational mesh used to generate the ‘observed’ temperature field during optimization. Different
levels of random Gaussian noise were also considered, ∆ ∼ N(0, σ̂), to test the tolerance of the
proposed formulation to corrupt data. A Gaussian distributed set of random numbers has 65%,
95%, and 99.7% certainty of respectively being within one, two, and three standard deviations
from the mean. Lets thus assume that the Gaussian random noise generated to test the compli-
ance error minimization formulation is 95% certain of being within θ% of the actual data. Then,
the perturbation applied to the ‘observed’ temperature field is scaled from interval (−2σ̂, 2σ̂)
to (−θ%, θ%). This produces a perturbation parameter of the form εθ = 1

2
( θ

100
) [5]. Therefore,

the corrupt data can then be generated as follows

ûθi = ui(1 + εθi ), for i = 1, . . . , nu (36)

where θ ∈ Θ = {1%, 3%, 5%} and nu denotes the number of states.
Finally, the compliance error minimization formulation was compared to the data misfit for-

mulation. The objective was to highlight the effectiveness of the CEM formulation against
common formulation strategies for inverse problems. For completeness, the corresponding first
and second order derivative operators for the data misfit functional are defined herein

Ju(u(z), z) = β(u(z)− û) (37)

Juu(u(z), z)δu = βδu (38)

Jz(u(z), z) = Jzu(u(z), z)δu = Juz(u(z), z)δz = Jzz(u(z), z)δz = 0 (39)

3.1 Problem formulation

Lets consider the following parameter estimation (inverse) problem in heat transfer

min
z∈Ẑ

β

2
‖〈u,A(z)u〉H − 〈û,A(z)û〉H‖2

H + R(z)

s.t.
A(z)u = f(x) in Ω

u = 0 on ∂Ω,

(40)

where Ẑ = {z ∈ Z : L ≤ z ≤ U }. Here, L denotes the control lower bounds and U
denotes the control upper bounds. For a steady-state heat equation, z is the coefficient of thermal
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conductivity, u is the temperature field, û ∈ Ωm ⊆ Ω are the temperature measurements. f(x)
is a heat source given by

f(x) = A ∗ sin(ωx) cos(ωx), (41)

where A ∈ R is a given amplitude, ω ∈ R denotes angular frequency and x ∈ Ω denotes a posi-
tion is space. A(z) : Z→ U× U is a linear operator that depends on the coefficient of thermal
conductivity and β ∈ R+ denotes a penalty parameter. The finite dimensional approximations
for the state, control, and Lagrange multipliers were previously defined in Section 2.2.

3.1.1 Regularization

The regularization functional R(z) : Z→ R in Equation 40 is given by

R(z) =
ζ

2θ

∫
Ω

(〈∇z,∇z〉H + ν)θ dΩ. (42)

This expression gives the flexibility to employ total variation regularization when (θ = 1, ν = 0)
and a modified form of the total variation regularization when (θ = 1/2, 0 < ν ≤ 1). The
parameter 0 < ζ ≤ 1 is a penalty coefficient. In this work, the modified form of the total
variation regularization functional was preferred over Tikhonov regularization due to its ability
to capture sharp discontinuities in inverse problems settings. The interested reader is referred to
[36] to explore other regularization methodologies that could be employed for inverse problems.

3.1.2 Helmholtz filter

The aim of this section is to present the Helmholtz filter as an alternative to regulariza-
tion methods, e.g. Equation 42. Regularization functionals are often (if not always) explicitly
incorporated into objective functions to solve ill-posed inverse problems. The function of reg-
ularization functionals is to penalize the objective function and enhance the smoothness of the
control field. Thus, regularization functionals aim to bound the objective function and prevent
undesired data overfitting.

Instead of just applying a regularization functional, e.g. Equation 42, to solve the inverse
problem in Equation 40, a Helmholtz PDE filter is also employed to filter the optimal control
computed using the CEM methodology. Helmholtz PDE filters have been successfully used in
topology optimization to avoid numerical artifacts and to enhance the design’s smoothness and
boundary description [25]. The filtered control is computed by applying a convolution operator
to the optimal control. However, instead of explicitly defining the convolution integral, the
filtered control can be defined implicitly as the solution of the following Helmholtz PDE

−r2∇2z̃ + z̃ = z, (43)

with Neumann boundary conditions

∂z̃

∂n
= 0. (44)

The parameter r denotes a given filter length scale and z̃ is the filtered control, which was set
to 1/3× 103 for this study. As x/r →∞, the filtering effect on the optimal control is reduced.
Thus, larger values of r minimize the filtering effect on the optimal control.
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In this work, the discretized Helmholtz PDE is solved after optimization. Contrary, we
could have eliminated the regularization functional from Equation 40 and solved the discretized
Helmholtz PDE every time a new set of trial controls was computed by the optimization algo-
rithm. However, this would have increased the computational time. Furthermore, preliminary
results performed as part of this study did not justify this approach. The quality of the solu-
tion obtained by applying the filter during optimization did not substantially compared to the
solution obtained by applying the filter after optimization.

3.2 Optimality conditions

The Lagrangian functional L : U× Ẑ×Y→ R for the inverse problem defined in Equation
40 is given by

L(u, z,v) =
β

2
‖〈u,A(z)u〉H − 〈û,A(z)û〉H‖2

H + R(z) + 〈v,A(z)u− f〉Y∗,Y. (45)

The first order necessary optimality conditions for Equation 45 are given by

Lu(u, z,v) = αβA(z)u + A(z)v = 0 (46)

Lz(u, z,v) = αβ[(Az(z)u)u + (Az(z)û)û] + Rz(z) + (Az(z)u)v = 0, (47)

where α is given by Equation 14. The first order derivative operator Rz(z) : Ẑ→ Z is given by

Rz(z) =
ζ

2
(θ − 1)(〈∇z,∇z〉H + ν2)θ−1Bz, (48)

where

B =

∫
Ω

∇ψ∇ψ dΩ. (49)

If A(z) is a non-singular, self-adjoint linear operator, the Lagrange multipliers for an inverse
problem in heat transfer are given by Equation 15. Substituting Equation 15 into Equation 47
yields the following reduced gradient operator

∇J(u(z), z) = −αβ[(Az(z)u)u + (Az(z)û)û] + Rz(z). (50)

Notice, as previously demonstrated in Section 2, that the reduced gradient operator is computed
without solving the adjoint system of equations defined in Equation 10.

If second order derivative information is available, Newton’s method can be applied to the
first order necessary optimality conditions. The following derivative operators are then required
to compute the application of the trial step to the reduced nonlinear Hessian operator

gz(u(z), z)δz = (Az(z)δz)u (51)

gu(u(z), z)δu = A(z)δu (52)

gz(u(z), z)∗δz = (Az(z)∗v)u (53)

11
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gu(u(z), z)∗δu = A(z)∗v (54)

guu(u(z), z)∗δu = 0 (55)

guz(u(z), z)∗δz = (Az(z)∗δz)v (56)

gzz(u(z), z)∗δu = 0 (57)

gzu(u(z), z)∗δu = (Az(z)∗v)δu (58)

Juu(u(z), z)δu = 2β[αA(z)δu + 2〈u,A(z)δu〉HA(z)u] (59)

Juz(u(z), z)δz = 2β[α(Az(z)δz)u + γA(z)u] (60)

Jzz(u(z), z)δz = γβ[(Az(z)u)u− (Az(z)û)û] + Rzz(z)δz (61)

Jzu(u(z), z)δu = 2β[α(Az(z)u)δu + ((Az(z)u)u− (Az(z)û)û)〈u,A(z)δu〉H], (62)

where γ is given by Equation 29 and the Lagrange multipliers v are given by Equation 15.
Finally, the second order derivative operator Rzz(z) is given by

Rzz(z) =
ζ

2
((θ − 1)(〈∇z,∇z〉H + ν2)θ−2)〈∇z,∇z〉HB + (〈∇z,∇z〉H + ν2)θ−1B. (63)

Substituting Equations 51-62 into Equation 25 yields the application of the trial step to the
reduced nonlinear Hessian operator, defined in Equation 34. However, if the reduced linear
Hessian formulation based on the compliance error functional is applied, the application of the
trial step to the reduced linear Hessian operator is given by

∇2J(u(z), z)δz = γβ[(Az(z)u)u− (Az(z)û)û] + Rzz(z)δz, (64)

where Rzz(z) is defined in Equation 63.
Finally, the discretized Helmholtz equation is given by

rBẑ + Mẑ = z, (65)

where

M =

∫
Ω

ψψ dΩ. (66)

and B is defined by Equation 49.
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Figure 1: Target thermal conductivity field.

3.3 Results: full-field temperature field

The compliance error minimization and the data misfit formulations were applied to the
inverse problem defined in Equation 40. The amplitude for the heat source was set to 1 × 102

and the angular frequency was set to 4π and 16π for the numerical studies performed with
the data misfit and compliance error functionals, respectively. The target thermal conductivity
field is shown in Figure 1. The thermal conductivity coefficients lower and upper bounds were
respectively set to 0.01 and 1.0 during optimization. The regularization parameter ζ was set to
1.0 for all the numerical studies performed herein. To quantify the computational efficacy of
the compliance error functional, the corresponding speedups, S, are computed.

3.3.1 First order formulation

The Perry-Shanno nonlinear conjugate gradient was used to solve the inverse problem in
heat transfer [31, 35]. The optimization algorithm stopped when J(u(z), z)k, ‖∇zJ(u(z), z)k‖
or ‖sk‖ was below a predefined tolerance of 1 × 10−4. A backtracking line search with cubic
step interpolation was applied to enhance the global convergence capability of the nonlinear
conjugate gradient algorithm. The line search contraction parameter was set to 0.5 and the step
lower bound was set to 1 × 10−5. Furthermore, the maximum number of line search iterations
was set to 5.

The regularization parameters used for the numerical studies based on the data misfit func-
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Noise DMF CEM S
0% 132.7 1.08 122.87
1% 132.25 1.15 119.35
3% 103.18 1.07 96.43
5% 63.2 1.19 53.11

Table 1: CPU time (seconds) and corresponding speedups obtained using the first order formu-
lation strategy based on the compliance error minimization formulation. Here DMF denotes
data misfit functional, CEM denotes compliance error minimization and S denotes speedup.

tional were (ζ, ν) = (5× 10−4, 1× 10−4) for θ = {0%, 1%} and (ζ, ν) = (5× 10−3, 1× 10−4)
for θ = {3%, 5%}. Contrary, the regularization parameters used for all the numerical studies
based on the CEM formulation were (ζ, ν) = (1× 10−8, 1× 10−8).

Table 1 shows the central processing unit (CPU) time obtained for the numerical studies
based on first order formulation strategies. Notice that the compliance error formulation pro-
duced noticeable speedups over the data misfit formulation (DMF), regardless of the noise level.
Clearly, the CEM strategy computationally outperformed the data misfit formulation strategy.
Figure 2 shows that the CEM strategy required less than 10 optimization iterations to converged
to an optimal solution in all the numerical studies. Contrary, the data misfit formulation strategy
needed over 1000 iterations to meet one of the required convergence criterion. Figure 2 also
shows the objective function values computed for the first order formulation strategies. Here,
the reader can appreciate that the compliance error functional lead to faster convergence rates.
Contrary, the data misfit functional displayed produced slower convergence rates for all the
noise levels.

Figure 3 shows the optimal thermal conductivity field computed using the data misfit first
order formulation strategy. Figure 3 shows the optimal thermal conductivity field was computed
for all the noise level. However, the optimal solution was sensitive to the noise level, which was
expected. Figure 4 shows the optimal thermal conductivity field computed using the CEM first
order formulation strategy. The compliance error minimization formulation produced optimal
results regardless of the noise level. However, the CEM strategy produced non-optimal thermal
conductivity fields were the Dirichlet and Neumann boundary conditions were applied. More
research is needed to understand why these inaccuracies are obtained in areas were Dirichlet or
Neumann boundary conditions are applied.

Finally, it was noticed in this case study that the compliance error functional was less sen-
sitive to corruption in the experimental data. Although the Helmholtz filter could also be em-
ployed with the data misfit formulation strategy, the computational efficacy of the CEM strategy
was less impacted/hindered by the corruption in the data. However, more research is required
to fully understand the outcomes produce by this case study. Regardless, these results are en-
couraging.

3.3.2 Second order formulation

A dogleg trust region inexact Newton algorithm [7] was used to solve the inverse problem
defined in Equation 40 when second order derivative information was available. The optimiza-
tion algorithm once more stopped when one of the following stopping criterion was satisfied:
J(u(z), z)k < 1 × 10−4, ‖∇zJ(u(z), z)k‖ < 1 × 10−4 or ‖sk‖ < 1 × 10−4. The trust region
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Figure 2: Objective function values computed using the first order formulation strategies.
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(a) 0% Noise (b) 1% Noise

(c) 3% Noise (d) 5% Noise

Figure 3: Optimal thermal conductivity field computed using the first order data misfit formu-
lation strategy and the Perry-Shanno nonlinear conjugate gradient algorithm.
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(a) 0% Noise (b) 1% Noise

(c) 3% Noise (d) 5% Noise

Figure 4: Optimal thermal conductivity field computed using the first order compliance error
minimization formulation and the Perry-Shanno nonlinear conjugate gradient algorithm.
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Noise DMF CEM-NLP CEM-LP S-NLP S-LP
0% 123.64 8.18 5.37 15.11 23.02
1% 192.42 7.98 4.61 24.11 41.74
3% 211.29 8.06 6.07 26.21 34.81
5% 91.76 8.08 5.06 11.36 18.13

Table 2: CPU time (seconds) and corresponding speedups obtained with the second order com-
pliance error minimization formulations. Here, NLP and LP respectively denote nonlinear and
linear programming Hessian formulation and S denotes speedup.

contraction and expansion parameters were respectively set to 0.5 and 2. The maximum number
of trust region sub-problem iterations was set to 5 and the minimum ratio between the actual
and predicted reduction was set to 0.2.

The regularization parameters used for the numerical studies based on the data misfit formu-
lation were (ζ, ν) = (1×10−3, 1×10−3) for θ = {0%, 1%, 3%} and (ζ, ν) = (5×10−3, 1×10−3)
for θ = 5%. Once more, the regularization parameters used for all the numerical studies based
on the compliance error minimization formulation were (ζ, ν) = (1× 10−8, 1× 10−8).

Table 2 shows the CPU times for the numerical studies based on the second order formu-
lations. The results on Table 2 show that the compliance error minimization formulation once
more produced significant speedups. However, the CPU times gathered for the first order com-
pliance error minimization formulations were larger than the CPU times gathered for the sec-
ond order CEM formulation. Therefore, the CEM formulation based on second order derivative
information did not outperform the first order CEM formulation. However, these results are
specific to the parameter estimation problem in heat transfer considered herein. Thus, more
studies are necessary to further understand the benefits of the compliance error minimization
formulation based on second order derivative information. Lets recall that an effective precon-
ditioning strategy could have been used to improve the performance of the Newton algorithm,
which was outside the scope of the present study.

Figure 5 displays the objective function values computed using the second order formula-
tions. Notice that the compliance error minimization formulations once more needed less than
10 optimization iterations to converged to an optimal solution. Contrary, the data misfit formu-
lation required over 50 optimization iterations (in some cases over 100 iterations) to meet one of
the convergence criterion. Why the CPU times gathered for the second order data misfit formu-
lation are greater (for 3 out of the 4 noise levels) than the CPU times gathered for the first order
data misfit formulations? This results can be counterintuitive to the reader since the numerical
studies based on the first order data misfit formulation required more optimization iterations to
converge. The reader should recall that second order optimization algorithms require at least 4
model evaluations (2 for the gradient and 2 for the Hessian calculation) per optimization iter-
ation to compute a trial control. Furthermore, in every Newton iteration, 2 model evaluations
are necessary to compute a descent direction. Hence, regardless of the fact that the trust region
Newton algorithm converged in less optimization iterations, the number of model evaluations
will always dictate the CPU times.

The same argument can be applied to the second order CEM formulation based on a non-
linear Hessian formulation. At every optimization iteration, at least 2 model evaluations (1 for
the gradient and 1 for the Hessian calculation) are performed per iteration to compute a new
set of control parameters. This fact can explained why the CPU times gathered for the CEM
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Figure 5: Objective function values computed using the second order formulation strategies.

formulation based on a nonlinear Hessian were greater than the CPU times gathered for the first
order CEM strategy. Next, lets consider the CEM formulation based on a linear Hessian formu-
lation. The second order compliance error minimization formulation based on a linear Hessian
formulation only needs one model evaluation per optimization iteration. Therefore, why the
CPU times are not closer/similar to the CPU times observed for the first order CEM formula-
tion? In all the numerical studies done herein, the optimization algorithm required several trust
region sub-problem iterations to compute an optimal trial control that met the ratio between the
actual and the predicted reduction. Contrary, the first order CEM formulation did not need addi-
tional line search iterations to compute a descent direction that yielded an optimal/feasible trial
control at each optimization iteration. Therefore, less model evaluations were required during
optimization; thus, reducing computational effort.

Figure 5 also shows the convergence rates for the second order formulations. Notice that
the CEM formulations displayed faster convergence rates than the second order data misfit
formulation, similar to the results shown in Section 3.3.1. However, the convergence rates
for the second order data misfit formulation displayed faster convergence rates near the opti-
mal/feasible point. This was expected since Newton algorithms should converge quadratically
near the optimal/feasible point.

Figure 6 shows the optimal thermal conductivity field computed using the second order data
misfit formulation for all the noise levels. Results demonstrate that the second order data misfit
formulation produced an optimal thermal conductivity field. However, results also show that the
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(a) 0% Noise (b) 1% Noise

(c) 3% Noise (d) 5% Noise

Figure 6: Optimal thermal conductivity field computed using the second order data misfit for-
mulation and the inexact dogleg trust region Newton algorithm.

optimal solution was sensitive to corrupt data. Figures 7 and 8 show the optimal thermal conduc-
tivity field computed using the second order CEM formulations based on a nonlinear and linear
Hessian formulation, respectively. Both Hessian formulations accurately characterized the lo-
cation and the shape of the thermal conductivity field of interest. However, the magnitude of
the thermal conductivity field around the heterogeneous conductivity field were overestimated.
Furthermore, the compliance error minimization formulation once more produced non-optimal
thermal conductivity values near the regions were Dirichlet and Neumann boundary conditions
were applied. These results further highlight the need for more research to understand/correct
the numerical artifacts computed near the regions were Dirichlet or Neumann boundary condi-
tions were applied. However, the significant speedups observed with the second order, and first
order, compliance error minimization formulations motivate future research to further improve
the proposed inverse problem formulation.
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(a) 0% Noise (b) 1% Noise

(c) 3% Noise (d) 5% Noise

Figure 7: Optimal thermal conductivity field computed using the second order compliance error
minimization formulation based on a nonlinear Hessian formulation and the inexact dogleg trust
region Newton algorithm.
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(a) 0% Noise (b) 1% Noise

(c) 3% Noise (d) 5% Noise

Figure 8: Optimal thermal conductivity field computed using the second order compliance error
minimization formulation based on a linear Hessian formulation and the inexact dogleg trust
region Newton algorithm.
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4 CONCLUSIONS

This paper presented a new formulation for inverse problems based on the compliance error
functional. The compliance error functional enabled the computation of the Lagrange multipli-
ers at the expense of just one model evaluation. Thus, the calculation of the Lagrange multi-
pliers did not require the solution of the computationally intensive adjoint problem. This, leads
to significant speedups since the computation of the gradient operator only requires one model
evaluation per optimization iteration. Furthermore, the implementation of the CEM formula-
tion in production finite element software is greatly simplified since only the forward model
evaluation is needed to compute the gradient operator. Therefore, the implementation of the
adjoint system of equations is not necessary to solve the inverse problem, greatly simplifying
implementation. Likewise, computing the application of the trial step to the nonlinear Hessian
operator is greatly simplified since only one additional model evaluation is necessary. This also
leads to significant speedups when second order optimization algorithms and the second order
CEM formulation are applied to solve the inverse problem.

This paper also presented a linear Hessian formulation based on the compliance error func-
tional to approximate the nonlinear Hessian operator during the Newton iterations. By applying
the linear Hessian formulation, optimal results were recovered, while avoiding the additional
model evaluation needed to compute the nonlinear Hessian operator based on the compliance
error functional. Thus, the linear Hessian formulation further reduced the computational times
associated with the inverse problem in heat transfer. However, results suggested that the first
order CEM formulation is more computationally effective than the second order CEM formula-
tion. Therefore, the second order CEM formulations presented herein did not provide additional
computational benefits over the first order CEM formulation. However, more studies are needed
since the second order CEM formulations can be combined with an effective preconditioning
strategy to further expedite second order optimization algorithms.

Results also showed that the data misfit formulation produced better results near the regions
were Dirichlet and Neumann boundary conditions were applied. The compliance error func-
tional produce perceivable numerical artifacts near the regions were Dirichlet and Neumann
boundary conditions were applied. However, the interior thermal conductivity fields computed
with the first and second order CEM formulations were accurate. However, the second or-
der CEM formulations were inclined to overestimate the thermal conductivity field near the
heterogeneous thermal conductivity region. Future research will focus on exploring alternate
inverse problem formulations to improve the CEM strategy. For instance, the accuracy could
be improved by combining the data misfit functional, either as an inequality constraint or as an
objective term, with the CEM functional. The goal is to preserve the fast convergence prop-
erties of the compliance error minimization formulation and improve the accuracy through the
data misfit functional. Finally, the results produced with the compliance error minimization
formulation were less sensitive to corrupt data in the numerical studies performed herein.

Overall, the results obtained with the compliance error minimization formulation are en-
couraging since the compliance error minimization formulation produced significant speedups.
Furthermore, the first order CEM formulation effectively produce accurate thermal conductivity
fields. Regardless of the fact that the second order compliance error formulations were inclined
to overestimate the thermal conductivity field, the geometry of the heterogenous thermal con-
ductivity field was highly accurate. Although their is room for improvements, the gains in speed
obtained with the compliance error functional are substantial. Hence, this fact motivates further
investigation to continue improving the proposed inverse problem formulation.

23



Miguel A. Aguiló
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[2] M. Aguiló, W. Aquino, J.C. Brigham, and M. Fatemi. An inverse problem approach
for elasticity imaging through vibroacoustics. Medical Imaging, IEEE Transactions on,
29(4):1012–1021, 2010.
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[24] P. Ladevèze and D. Leguillon. Error estimates procedures in the finite element method
and applications. SIAM Journal on Numerical Analysis, 20(3):485–509, 1983.

[25] B.S. Lazarov and O. Sigmund. Filters in topology optimization based on helmholtz-
type differential equations. International Journal for Numerical Methods in Engineering,
86(6):765–781, 2011.

[26] H. L. Liew and P. M.. Pinsky. Recovery of shear modulus in elastography using an ad-
joint method with b-spline representation. Finite Elements in Analysis and Design, 41(7-
8):778–799, 2005.

[27] MATLAB 8.0 and Statistics Toolbox 8.1, The MathWorks, Inc., Natick, Massachusetts,
United States.

[28] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.

[29] A.A. Oberai, N.H. Gokhale, M.M. Doyley, and J.C. Bamber. Evaluation of the ad-
joint equation based algorithm for elasticity imaging. Physics in Medicine and Biology,
49(13):2955, 2004.

25



Miguel A. Aguiló
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