SAND2015-3287C

Training neural hardware with noisy components

Fred Rothganger, Brian R. Evans, James B. Aimone, Erik P. DeBenedictis
Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract—Some next generation computing devices may consist
of resistive memory arranged as a crossbar. Currently, the
dominant approach is to use crossbars as the weight matrix of
a neural network, and to use learning algorithms that require
small incremental weight updates, such as gradient descent (for
example Backpropagation). Using real-world measurements, we
demonstrate that resistive memory devices are unlikely to support
such learning methods. As an alternative, we offer a random
search algorithm tailored to the measured characteristics of our
devices.

I. INTRODUCTION

Future applications can no longer rely on the various
types of CMOS scaling to gain more computing power [1].
The industry is actively seeking other paths to go “Beyond
Moore”. One such path is neuromorphic computing, where
the hardware is specialized to run neural networks of some
variety.

An attractive approach is to arrange memristors in a cross-
bar to do analog matrix-vector multiplication. The DARPA
SyNAPSE project invested in such an approach [2], [3], though
several of their performers moved away from analog compu-
tation. The IBM TrueNorth chip is in fact entirely digital [4],
[5]. Hewlett-Packard focused on a software architecture that
runs on conventional CMOS [6]. This suggests how difficult
it is to implement a neural algorithm using memristors. We
show below that some of this difficulty stems from the limited
precision of analog computation.

The emphasis in the field has been on devices that perform
efficiently, as opposed to devices that learn. For example,
TrueNorth packs 10 integrate-and-fire units on a chip in part
because it does not include the hardware support for online
learning. All training must be done in a conventional com-
puter. Resistive memory devices (“memristors™) are attractive
because of their potential for low-cost online learning.

Highly adaptive behaviors—that which we call “intelligence”
in humans-require online learning by definition. New appli-
cations which communicate more naturally with humans and
help them solve problems will need to be adaptive rather than
static [7]. Certainly conventional computers can do this, but
to scale up will require new generations of efficient hardware.

At present no such hardware is in hand, and there should be
a clear advantage before developing it. We explored whether
neural learning methods would indeed benefit from memristor
crossbars, and which algorithms would work best. Below
we detail the journey. We first characterized the devices
(Section II), then developed a simulation to train them using
conventional methods (Section III). When this proved im-

possible (Section IV) we developed a random-walk approach
(Section V).

II. MEMRISTOR MODELING

A simulation of neural algorithm running on a memristor
crossbar consists of three levels: the device, the crossbar, and
the algorithm. We detail the latter two in Section III. Here we
focus on modeling the memristor itself.

Analytic models of memristors based on first principles are
an active area of research [8], [9]. This difficult problem is
not yet fully solved. In particular, analytic models tend to
underestimate the variability of a given device’s behavior.
Thus we opted for a data-driven approach: collect enough
measurements in a table and use nearest-neighbor lookup and
interpolation to emulate the physical device.

We have several tantalum oxide (TaOy) test chips produced
by HP and Sandia. HP also developed a programmable test
board, which they kindly provided to us. (Only a small number
of these boards have been produced, primarily for internal use.)
The board consists of a PIC microcontroller, digital-to-analog
and analog-to-digital converters, and an array of electronic
switches to select row and column on the chip.

Barring any hidden state, a memristor can be viewed as a
function f(Ro,V) — Rj, where Ry is pre-pulse resistance,
R, is post-pulse resistance, and V is the pulse voltage. All
pulses in our tests were 2us wide. The goal of the data
collection was to sample this function.

A. Controlled start values

The first challenge was to move the device into a known
initial resistance Ry. Memristors are quite noisy, both in to
read and to write. It is generally not possible to set one
within a small enough tolerance in a single pulse. Closed-
loop control is necessary. We programmed the HP board to
apply a series of pulses, measuring the resistance after each
one and adjusting the sign and magnitude to track toward the
target K. Our naive implementation used four cycles with
a maximum of 30 pulses each. All the voltage pulses in a
given cycle used the same sign, which was determined by the
sign of the difference between measured resistance and Ry. At
the start of the cycle the magnitude of the voltage was small,
then gradually increased until the measured resistance passed
Ry, or 30 pulses were completed. The standard deviation of
resistance error with this procedure was 6.2€).

The test consisted of a resistance read, a specific voltage
pulse, and a final read. We wrapped this in a pair of loops
that systematically explored a region of (R, V') space.

B. Random-pulse sampling

The above procedure is inefficient. Setting the pre-pulse
resistance involves a large number of reads and pulses in
itself. Those reads and pulses are also perfectly valid data. We
developed a simplified procedure that interleaved pulses and
reads: RV RV RV R... The resistance readings immediately
before and after a voltage pulse V provide the Ry and R;
values, respectively.

In order to cover a large portion of the parameter space
(R, V), the test program drew voltages from a uniform distri-
bution over [—7,4.3]. However, the domain of the distribution
changed when the resistance dipped too low or rose too high.
This was necessary to protect the device from damage and to
concentrate the samples within a useful ranges of resistances.

Using this method we collected several million samples
from a small handful of devices. The collect time per device
was under 24 hours. A 10 megasample collect from one device
forms the basis for the simulations below. The other devices
gave qualitatively similar results, thus we consider this data
representative. Figure 1 shows a subset of the collected data
points, decimated by a factor of 100 for ease of viewing.

C. Table construction

The primary use of the data is to emulate a memristor in
a non-parametric manner. One option is to find the nearest
neighbor in (Rp, V') space and use the third member of the
tuple as the resulting resistance. That approach would be slow
and overly sensitive to input values. A better approach is to
extract statistics from the data and store them in a table that
allows direct indexing.

We constructed a table that ranged from —10V to 10V in
0.1V increments. Resistance ranged from 02 to 20k€2 in 1002
increments. We distributed each sample to its four nearest bins
in (Rp, V) space with bilinear weighting. For each sample we
calculated A = Ry — Ry, and for each bin summed weight and
weight-A. From these we calculated the mean A in each cell.
In turn we used bilinear interpolation to compute the smoothed
mean value for every position in (Rg, V') space. From the
difference with A we computed the standard deviations for
each cell.

The resulting table still required a number of post-
processing steps to be useful for simulation. First we de-
termined the write voltage threshold to be +1.6V by ex-
amination. Voltages near zero showed a small amount of
resistance increase, even though in theory they should produce
no change at all. The cause of this is undetermined, but
possibilities include an actual increase in resistance due to
the read protocol of the HP board. The lower-level software
samples the resistance many times, and we have observed
some cumulative effect from sub-threshold pulses. We forced
these entries to be zero, and subtracted their average from
other entries in the same row (associated with a 100Q2-wide
bin), effectively removing the read drift. Figure 2 shows the
resulting table.

We applied a similar procedure to the standard deviation
values. There were nonzero entries in cells below the write

-4

-6

2 3 4 5 6 7 8
R, (kQ)

Fig. 1. A decimated subset (100,000 out of 10,000, 000) of the random-
pulse samples, plotted in (Ro, V, A) space. Rg is pre-pulse resistance. V' is
the random-pulse height. A is the change in resistance. Colors indicate A in
k. The 3D plot is shown from two viewpoints to give a better understanding
of coverage.

threshold, which we interpreted as read noise. We subtracted
the average read noise on a per-row basis, and recorded it
in another table for use during simulation. We interpreted the
remaining standard deviation values as write noise. Figure 3
shows the resulting table.

Note that these two tables (uA, oA) do not fully capture
the behavior of the device. We subjected the data to several
analyses outside the scope of this paper (see [9] for related
work). We observed that R; is not strictly a function of Ry
and V, but also the history of previous voltage pulses. That is,
the memristor contains hidden state. The table-based approach
treats the hidden state as noise, which is sufficient for this
work.

D. Results

The A (resistance change) values showed some noteworthy
patterns. Unlike the typical model of a memristor as a sym-

8 10 12

0 2 4 6
R, (kQ)

Fig. 2. Two views of the uA table. These are the average amounts of change
in resistance for each combination of pre-pulse resistance and pulse voltage.
The band between —1.6V" and 1.6V has been moved by the data cleaning
process. These are read as zero.

metric pair of exponentials, we found significant asymmetry.
Figure 4 plots a row of the pA table at 4k(), showing A
in response to pulse voltage. Note the “cliff” in response
to positive voltages. We expect this from a circuit-based
argument. When a memristor is subject to a voltage sufficient
to cause a decrease in resistance, the current will increase
according to Ohm’s law, creating a feedback loop that drives
resistance down even faster.

Read and write noise varied across the space. Focusing on
the regions that were useful for our simulations, read noise
(one cycle) was about 1.5% of the resistance value. Write noise
for positive pulses (decreasing resistance) was about 10% of
Ry. Write noise for negative pulses was about 0.5% of Rjg.

With the finished table, we simulated a pulse to the mem-
ristor by retrieving the four cells closest to (Rg,V) and
interpolating between them. The new resistance resulting from
the pulse was R; = Ro+ A+ G(ow - Nw), where G(-) is the
Gaussian distribution with norm zero, oy is the interpolated
standard deviation, and Ny is an optional scaling for write
noise. Similarly, we simulated a noisy read as Ry+G(or-Ng),
where Ny is an optional scaling for read noise.

This model approximates the function f(Ry, V) — R; with
a piecewise linear (ruled) surface. In rapidly changing regions

, i
) e

i

il

0 2 4 8 10 12

6
R, (kQ)

Fig. 3. Two views of the oA table. These are the standard deviation in
resistance change for each combination of pre-pulse resistance and pulse
voltage. The band between —1.6V" and 1.6V has been moved by the data
cleaning process. These are read as zero.

2000
1500
1000

500

-500

BARERRIRERRRERRaRRtRaneeRyaa]
4.8

-1000
-1500
-2000

-2500

Fig. 4. Resistance change in response to voltage, given a fixed starting
resistance of 4k€2. This is effectively a slice through the data in Figure 2.

such as near the “cliff”’, the model introduces systematic error
due to large differences between the actual slope and straight-
line fit. Sometimes this difference exceeds 100€). One solution
would be to use finer binning.

I 0« f(WI) 0
P < Eof'(WI
W «W + aPI”

D D« WTp E

Fig. 5. One stage of a multi-layer perceptron. This module performs thee
key functions: 1) compute the output O of the layer based on input I, 2)
update weights WV based on error feedback E, 3) send error feedback D to
preceding layers.

III. TRAINING A MULTI-LAYER PERCEPTRON WITH
BACKPROPAGATION

For clarity, we give a very brief summary of multi-layer per-
ceptrons (MLPs) and the Backpropagation algorithm (Back-
prop). One stage of an MLP has the form of a matrix-vector
multiply followed by a differentiable squashing function:
O = f(WI), where I is the input vector, W is the weight
matrix, O is the output vector, and typically f(z) = 1 é,m
(the logistic sigmoid function). Simple function composition
expresses multiple layers: O = f(W, f(WW:I)). The venerable
Backprop algorithm is an application of gradient descent to the
weights WW; where the derivatives are determined by the chain
rule. Specifically:

O, = f(WlI)
0, = f(W201)
E;, =T -0
i)
Gy BE2) = ~Ba o [/ (W,01)07
9

(AE3) = — (B30 f/W:01))"Wao f'OII"
=—E o'W, DI"

oWy

where T is the “truth” or “target” vector for the network
output, E; is the error feedback to a given layer, and o is
elementwise multiplication. Each layer is updated using a step
size a: 5
W+ W-—a-——(sE?). 1

The step size is typically a positive constant much smaller than
1. Alternately, a line search can find the step size that gives
the largest improvement in each cycle. We used a constant
o = 0.01 in all the tests reported below.

A. Crossbar implementation

A memristor crossbar (abbreviated “xbar”) could be part of
an electronic module that does all the work of one perceptron
layer (Figure 5). These modules could be chained together to
form an MLP (Figure 6).

A module may be implemented in several different ways.
Figure 7 shows a highly abbreviated xbar. In addition to a
dense 2D array of memristors, a certain amount of peripheral

I-> | > 0
e <« T-0

Fig. 6. An example of how two blocks might be wired together. It would
also be possible to route wiring to several different blocks.

Column drivers

s

oL
@/ Row drivers
(Roue)

Rbias

=

]

Fig. 7. How an xbar might implement a perceptron block. Column and row
drivers link into previous and subsequent stages. Conventional bias resistors
enable signed weights. Memristors represent the weights themselves.

circuity would be needed to drive the devices and perform the
functions described in Figure 5. In the design shown here, each
perceptron weight is represented by one memristor device.
In order to have signed weights, there is an additional row
of conventional (non-programmable, low noise) bias resistors.
These produce a bias current which is fed to each row circuit.
The rows and columns also have driver circuits which pulse
the array to program the memristors.

Omitting the electronic details, an output circuit contains
two key resistors that determine the operating range of the
memristor devices. Ry;qs 1S the fixed conventional resistor that
determines the value of a “zero” weight. R, is an output
resistor that scales current to voltage. A weight w translates
to a conductance (inverse of resistance) in this system, which
has the following relationship with its associated memristor
value R:

1 1
= Rou > = 2
v ! (R Rbias) ()

Ultimately, R contributes to a voltage that represents the
linear (non-squashed) output of the perceptron. This passes
through some electronic implementation of the sigmoid func-
tion. In our simulations Rp;,s = 4k, as this is roughly in
the center of the cleanest data in the table. The scale factor
was R,y; = 40kS), which gives us weights in —3.3 to 10
for resistances in 6k€) to 2k respectively. We observed that

conventional MLPs trained on the problems presented here
typically had weights in [—3,3], so this configuration was
sufficient.

B. Learning on an xbar

Each training cycle produces a set of weight changes (Equa-
tion 1). Learning would be most efficient if there existed a set
of row and column voltages that could fully update the xbar
in a single pulse. Unfortunately, the asymmetry in memristor
response (Figure 4) prevents a single pulse that correctly
delivers both positive and negative changes. Furthermore, the
shape of the response curve does not allow the set of column
voltages suitable for one row to work with a different row.
Thus, the best we can do is pulse the array row-by-row.

Alternately, it may be possible to pulse the whole array
using voltages right at the programming threshold (in our case
+1.6V) as described in [10]. The idea is to rely on a large
number of small pulses that add up in the correct direction for
each weight. Unfortunately, this approach failed to converge
in our test setup.

As a consequence of Backprop itself, both pulsing methods
are forced to change the resistances by amounts that are orders
of magnitude smaller than the observed noise in memristor
devices. We explore this in Section IV.

We developed software that implemented weights in a
modular way, so that the table-lookup memristor emulation
could easily replace conventional floating-point weights. This
allowed us to validate network structure and performance
before testing memristor behavior. The software was not
intended to be a full electrical simulation, simply a means to
explore the feasibility of these algorithms on potential future
hardware.

C. Datasets and Results

We tested using the following datasets:

1) The MNIST handwritten digit set, as preprocessed by
LeCun et al. [11]. This set has 28 x 28 pixel input cells.
The pre-selected training set has 60, 000 items, and the
test set has 10,000 items.

2) The “Optical Recognition of Handwritten Digits” dataset
from the UCI repository [12]. This set has 8 x 8 pixel
input cells. The pre-selected training set has 3,823
items, and the test set has 1,797 items.

3) A Boolean function with 4 bits of input and one output
bit. The Boolean data consisted of all 16 possible inputs
plus their ground-truth output. We used the full set for
both training and testing, and required that the resulting
network achieve 100% accuracy.

Training had three possible stop conditions. Define an
“epoch” as one pass through all the training data. We could
set a limit T}, on the number of epochs. We could limit the
maximum error on any element of the output vector, that is,
H < Tpae- Finally, we could limit the average error,
< T4ug, where n is the number of elements in E.
Note that F is different than the actual classification, and that
classification accuracy is measured on the test set, which may

0.8
0.6
0.4

0.2

Fig. 8. Accuracy of a converted xbar on dataset 1 as N (multiple of observed
noise) varied between O and 3. Based on three trials per noise level.

0.8
0.6
0.4

0.2

Fig. 9. Accuracy of a converted xbar on dataset 2. Based on 100 trials per
noise level.

be different than the train set. Thus, 74,4 and T}, 4, are indirect
predictors of classification accuracy.

We trained conventional (float) MLPs with 300 hidden units
on dataset 1. It took 695 epochs to satisfy T},,; = 0.1, resulting
in an accuracy of 96.5%. See Table I for a full listing of results
and their statistics. Note that when a o column is blank, the
column to its left is exact.

We did not attempt to fine-tune the network for better
accuracy, because the goal was to test the feasibility of
a memristor-based network, not to set a new classification
record. We converted this network to resistance values using
Equation 2. Without any noise, the resulting memristor simu-
lation achieved the same level of accuracy as the float version.
As noise increased, the accuracy dropped off (Figure 8). At a
realistic level (Nr = 1) it fell to 37.8%.

We trained conventional MLPs with 36 hidden units on
dataset 2. The only stop condition was Tepoer, = 1,000.
The resulting network achieved 96.6% accuracy. A memristor
simulation with converted weights and no noise achieved the
same level of accuracy as the float version. With Ny = 1 the
accuracy of the converted network dropped to 90% (Figure 9).

Because of the higher cost of simulation (about 10X to 20x
the cost of the float version, depending on the noise model),
we only attempted xbar training on the smaller datasets. We
trained on dataset 2 using the row-by-row pulsing method,
Ngr =1 and Ny = 1. The network achieved 80.9% accuracy
after 1,000 epochs.

TABLE I
SUMMARY OF SIMULATIONS.

Dataset | Method Runs Epochs o Accuracy (%) o Time (s) o
1 | Backprop/float 4 695 24 96.5 0.29 14143.2 | 595.7
2 | Backprop/float 4 1000 96.6 1.48 108.8 2.1
2 | Backprop/xbar (Nyy =1, Ngp = 1) 5 1000 80.9 222 2077.4 20.8
3 | Backprop/float 10 11310 1046 100 1.97 0.23
3 | Backprop/xbar (Nyy =1, Ngp = 1) 4 100000 79.7 5.98 45.6 0.66
3 | Backprop/xbar (Ny =0, Np = 0) 4 100000 60.9 9.38 27.9 0.62
3 | LOTTO/xbar (Ny = 1, Nr = 0, converged) 22 14162 16840 100 1.51 1.83
3 | LOTTO/xbar (Nyw = 1, Nr = 0, not converged) 11 101851 457 83 | 10.49 11.5 0.61
3 | LOTTO/xbar (Ny = 1, Nr = 1, 100 reads, converged) 4 36006 | 28312 100 337.6 | 260.4
3 | LOTTO/xbar (Nyw = 1, Ng = 1, 100 reads, not converged) 8 101116 166 76.6 4.42 972.2 70

Fig. 10. Accuracy of a converted xbar on dataset 3. Based on 1000 trials per
noise level.

Dataset 3 was more difficult. An MLP with one hidden layer
of sufficient size should be able to learn any Boolean function
perfectly. One way to enforce this is to train until all output
errors fall below the binary decision threshold (which in this
case is 0.5). We trained a conventional network with T},,,, =
0.4. Tt converged in 11,405 epochs, with 100% accuracy. We
converted the learned network to an xbar. Without noise it
attained 100% accuracy. With Nr = 1 it only fell to 99.6%
(Figure 10).

We attempted to train the network directly on an xbar
with zero noise, and it repeatedly failed to reach the required
100% accuracy. When trained with the observed level of noise
(Ngr 1 and Ny = 1) it did about 20% better. This is
consistent with the observation that some noise in neural-
network training can improve the result (for example [13]).

IV. THE PROBLEM OF PRECISION

Our tests showed that the emulated memristor crossbar with
a realistic level of noise trained to a lower level of performance
than the equivalent conventional (“float”) network. In partic-
ular, they were incapable of reaching 100% accuracy on the
simple Boolean function of dataset 3.

It is well known that noise places a lower bound on preci-
sion. We argue here that the precision necessary for Backprop
to converge is finer than that allowed by the observed noise
of the device. First we examine the precision used by the
conventional network.

An IEEE 754 single-precision float has a 23-bit mantissa,
the equivalent of about 6 decimal digits. A cursory analysis of

Backprop shows that this is just enough. Specifically, suppose
a=0.01,I=1,and WI =0so f'(WI) = f'(0) = 0.25.
Substituting these into Equation 1 gives:

W W+aEo f/WNHIT
w+—w—+001-e-0.25-1
w <+ w+ 0.0025 - e

Since the typical range of network weights is [—3,3], we
assume no more than 5 significant digits after the decimal
point. This implies that e < 0.001 will be lost in the addition
operation. Late in training, observed values of e are on the
order of 0.1 to 0.01, so single-precision floats are sufficient
for our purposes. See [14] for a more detailed analysis of
precision required by Backprop.

However, the xbar emulation brings more loss of precision.
Weights are represented by resistances. From Equation 2 it
is easy to derive the relationship between weight change and
resistance change:

1 1

Ra Rb)

If we let R, = R, — 10092 and R, = 4k}, we get a weight
change of 0.244 per 100€2. This amount varies between 0.11
and 0.95 depending on where we set R, but that does not
change this order-of-magnitude argument. Given the observed
values of e, we can expect resistance changes as small as
0.0025 - 0.01 - (1).02704% ~ 0.012. Our resistance values are on
the order of 10%, so such updates are right at the limit of
single-precision floats. Furthermore, they evaluate to voltage
pulses that are only a few microvolts above threshold, again
straining the limits of single-precision. We could improve
the simulation by increasing to double-precision, but all this
would accomplish is to more accurately compute the noise
that overwhelms the algorithm.

It is extremely unlikely that a practical electronic imple-
mentation of an xbar will support microvolt pulses or sub-
Ohm resistance changes. Even under closed-loop control, the
smallest step is on the order of 102, two orders of magnitude
larger than the needed value. The fact that Backprop leads
naturally to such absurd scales suggests that it is not the
appropriate algorithm.

Consider that we observed oy ~ 40012 in the “cliff” area,
four orders of magnitude larger than the needed resistance step

Wq — Wy = Rout (

size. If the goal were simply to train the network offline and
then burn it to an xbar, then this would be acceptable, as we
could use closed-loop control to set the resistances. The only
barrier to practical use would be read noise. The observed
or =~ 6082 degraded the performance in our simulations by
various degrees. It may be possible to mitigate this with more
redundant network structures. This is the subject of ongoing
work.

V. TRAINING WITH LOTTO

However, the goal is to use an xbar to learn directly and
efficiently. We may rely on the CPU for some tasks, but the
sum of the work done by the xbar+CPU should be substantially
less than the equivalent algorithm done entirely on the CPU.
Otherwise there is no value in hardware-based learning.

We look at the characteristics of the system, and try to take
advantage of them. We should minimize expensive operations,
and make cheap operations do as much work as possible. The
xbar operations, in descending order of time cost, are:

o Load data from CPU. — Assume the use of direct memory
access (DMA) to cycle through blocks of training or
test data in conventional memory. This will be slightly
more efficient than fetching them to the CPU core, but
similar enough that we should ignore the difference. The
key constraint is that the xbar-based learning algorithm
not use substantially more fetches than a CPU-based
algorithm.

o Set a resistance with closed-loop control. — The number
of iterations, and thus the cost, scales inversely with the
accuracy bound e.

o Matrix-Vector multiply.

o Write pulse to entire xbar.

Memristors have an asymmetric response to voltage pulses.
Raising the resistance involves low noise and low slope, and
thus is easy to control. Lowering resistance involves high
noise and high slope. It makes sense to think of the device
as controllable in one direction, with reset in the other [15].

A. Algorithm

The learning method presented here (Algorithm 1) is whim-
sically named “Lazy Optimization Through Targeted Over-
sampling” (LOTTO). It is a variant of random search [16]
specifically adapted to the characteristics of memristors. The
key idea is to incorporate write noise as a central part of
the algorithm. The “targeted” aspect refers to the fact that
sometimes it is necessary to use closed-loop control to set
weights, but if we relax ¢ we reduce the cost and also get
random sampling around the desired weight.

The algorithm alternates exploration and exploitation steps
until convergence. An exploration step picks a new random
point in the weight space. An exploitation step goes back to
the best point seen so far and samples a random location near
it. In either case, LOTTO then iterates through the training data
(a full epoch) to measure the goodness of the new point. If it is
an improvement, LOTTO accepts the new point, then takes a
small random step in the direction of increasing resistance. As

Algorithm 1 LOTTO
repeat
{Alternate explore and exploit steps}
if explore then
Random (low cost) initialization
else
Set to best point, using e-bounded precision
end if
{Random search}
loop
for all data do
Test classification accuracy
end for
if accuracy is better than current best point then
Set new best point
else
Break inner loop
end if
Apply small negative pulse to whole xbar
end loop
until convergence

[]
Random
Random Walk Best
Points Known
1 / Point
rn =—
1723 True
Local
Optimum
[]
[]
1
n= w;

Fig. 11. A random search in the parameter space involves setting the
current point with limited precision, along with small steps in the controllable
direction.

long as each new point is an improvement, LOTTO continues
the random walk (Figure 11).

A random set of weights (exploration step) can be created
in a manner similar to the random-pulse sampling method
described in Section II-B. The small steps of the random walk
are made by pulsing the entire xbar with a negative voltage
at the write threshold. Due to the inherent randomness, all
resistances will increase by small but varying amounts.

B. Results

We implemented LOTTO within the same framework de-
scribed earlier and tested it on dataset 3. We set Typocn, =
100,000 and T},,, = 0.4. Table I separates runs that con-
verged due T,,, from those that used up the full allotment
of epochs. The latter are labeled “not converged”.

LOTTO is sensitive to read noise, as it needs to accurately
measure the quality of points in weight-space. This becomes
more problematic with small numbers of data, such as the
16 items in dataset 3. We trained using full write noise
(Nw = 1), but relaxed the read noise in two different ways.
First, we trained with Np = 0. The average number of
epochs (14, 162) was competitive with conventional Backprop
(11, 310). Second, we tested with Nr = 1 but oversampled
by 100x. This approach was substantially more expensive and
less accurate. However, even in the cases where it did not
converge, its average accuracy (76.6%) was competitive with
Backprop running on an xbar with full noise (79.7%). Note
that the reported number of epochs for the “not converged”
case is slightly greater than 100,000 due implementation
details.

C. Discussion

Clearly, LOTTO is not a satisfactory algorithm. A random
search provides no guarantee of time bound. In fact, it provides
no guarantee of convergence, even to a local minimum.
Its chances are improved with lower-dimensional or highly-
degenerate parameter spaces. Thus, LOTTO is less likely to
be useful for larger networks. A simple improvement in the
current scheme would be to run Backprop until it stalls, then
switch to LOTTO to finish converging.

The ideal memristor learning algorithm would work with
resistance changes that are no smaller than the device noise
levels, and it would measure its fitness online (that is, using
only one or a few current data). There is plenty of space to
explore for better algorithms. Categorically these are likely to
be non-gradient-based and non-supervised. Examples include
self-organizing maps [17], winner-take-all networks [18] and
sparse-code learners [19].

VI. CONCLUSION

We explored the feasibility of direct training of shallow
MLP networks using memristor crossbars. We characterized
several real memristors and used a non-parametric model of
one as an emulator. This demonstrated some promise for
hardware-accelerated neural networks. However, noise and
asymmetry in the device’s response to programming make
direct training problematic. We offered a random search
approach that, while not ideal in many respects, shows the
possibility that hardware accelerators may eventually compete
with CPU-based learning.

ACKNOWLEDGMENT

This research was possible in part by LDRD program
support from Sandia National Laboratories. Sandia National

Laboratories is a multi-program laboratory managed and op-
erated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

REFERENCES

[1] “International technology roadmap for semiconductors.” [Online].

Available: http://www.itrs.net

“DARPA SyNAPSE program.” [Online]. Available: http://www.darpa.

mil/Our_Work/DSO/Programs/Systems_of_Neuromorphic_Adaptive_

Plastic_Scalable_Electronics_(SYNAPSE).aspx

“SyNAPSE.” [Online]. Available: http://en.wikipedia.org/wiki/

SyNAPSE

[4] A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz, S. K.
Esser, A. Andreopoulos, T. M. Wong, M. Flickner, R. Alvarez-Icaza,
E. McQuinn, B. Shaw, N. Pass, and D. S. Modha, “Cognitive computing
programming paradigm: A corelet language for composing networks of
neurosynaptic cores,” in IJCNN, Aug 2013, pp. 1-10.

[5] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,

F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,

I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,

W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron

integrated circuit with a scalable communication network and interface,”

Science, vol. 345, no. 6197, pp. 668-673, 2014. [Online]. Available:

http://www.sciencemag.org/content/345/6197/668.abstract

A. Gorchetchnikov, M. Versace, H. Ames, B. Chandler, J. Lveill,

G. Livitz, E. Mingolla, G. Snider, R. Amerson, D. Carter, H. Abdalla,

and M. S. Qureshi, “Review and unification of learning framework in

cog ex machina platform for memristive neuromorphic hardware,” in

IJCNN, 2011.

D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,

V. Chaudhary, and M. Young, “Machine learning: The high interest

credit card of technical debt,” in SE4ML: Software Engineering for

Machine Learning (NIPS 2014 Workshop), 2014.

C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, “Memristor

spice model and crossbar simulation based on devices with nanosecond

switching time,” in IJCNN, 2013.

[9] P.R. Mickel, A. J. Lohn, C. D. James, and M. J. Marinella, “Isothermal

switching and detailed filament evolution in memristive systems,”

Advanced Materials, vol. 26, no. 26, pp. 4486-4490, 2014. [Online].

Available: http://dx.doi.org/10.1002/adma.201306182

M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman,

“Memristor crossbar-based neuromorphic computing system: A case

study,” IEEE Transactions on Neural Networks and Learning Systems,

2014.

Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of

handwritten digits,” 1998. [Online]. Available: http://yann.lecun.com/

exdb/mnist

K. Bache and M. Lichman, “UCI machine learning repository,” 2013.

[Online]. Available: http://archive.ics.uci.edu/ml

K. Audhkhasi, O. Osoba, and B. Kosko, “Noise benefits in backpropa-

gation and deep bidirectional pre-training,” in IJCNN, 2013.

J. L. Holt and J.-N. Hwang, “Finite precision error analysis of neural

network hardware implementations,” IEEE Transactions on Computers,

vol. 42, no. 3, March 1993.

G. W. Burr, R. M. Shelby, C. di Nolfo, J. W. Jang, R. S. Shenoy,

P. Narayanan, K. Virwani, E. U. Giacometti, B. Kurdi, and H. Hwang,

“Experimental demonstration and tolerancing of a large-scale neural

network (165,000 synapses), using phase-change memory as the synaptic

weight element,” in International Electron Devices Meeting, 2014.

J. C. Spall, Introduction to Stochastic Search and Optimization. Wiley,

2003.

T. Kohonen, “Self-organized formation of topologically correct feature

maps,” Biological Cybernetics, vol. 43, pp. 59-69, 1982.

P. Sheridan, W. Ma, and W. Lu, “Pattern recognition with memristor

networks,” in ISCAS, 2014, pp. 1078-1081.

R. P. N. Rao and D. H. Ballard, “Predictive coding in the visual cortex: a

functional interpretation of some extra-classical receptive-field effects,”

Nature Neuroscience, vol. 2, pp. 79-87, January 1999.

2

—

[3

[t

[6

—

[7

—

[8

—

(10]

[11]

[12]
[13]

[14]

[15]

[16]
[17]
(18]

(19]

