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Motivation: Science/Technology and Mathematical / Computational

Science / Technology Motivation:
Resistive and extended MHD models are used to
study important plasma physics systems

= Astrophysics: Magnetic reconnection, solar flares, ..

» Planetary-physics: Earth’s magnetospheric sub-
storms, Aurora, geo-dynamo, planetary-dynamos

= Fusion: Magnetic Confinement [MCF] (e.g. ITER),
Inertial Conf. [ICF] (e.g. NIF, Z-pinch)

Mathematical/Computational Motivation:

Achieving Scalable Predictive Simulations of Complex
Highly Nonlinear Multiphysics Systems to Enable Scientific
Discovery and Engineering Design/Optimization

Mathematical Approach - develop: N

= Stable and higher-order accurate fully-implicit formulations +Gore Gnfinement RegionBl, ~ . I %

= Stable and accurate spatial discretizations for complex +Magreticsands I (s )

geom., Options enforcing key mathematical properties +Edge Pedestal Regon— B S0 >ﬂ<

(e.g. positivity, div B = 0) + Scrape-offLayer 7 tubeee )

= Robust and efficient fully-coupled nonlinear/linear iterative e Antenna £ o
solution methods based on Newton-Krylov (NK) methods | -

‘Jm@ Y @vﬁi Heating

= Scalable and efficient preconditioners utilizjng multi-level i b w/@/w
(AMG) methods (Fu”y_cou pled AMG’ phySICS_based, approxl Fig. 2: Tllustration of the mteracting physical processes within a tokamak discharge.
block factorization)

=> Also enables beyond forward simulation & integrated UQ NN g
e AT

MHD Equilibrium Instability



What are multi-physics systems? (A multiple-time-scale perspective)

These systems are characterized by a myriad of complex, interacting, nonlinear multiple
time- and length-scale physical mechanisms.

These mechanisms:

- can be dominated by one, or a few processes, that drive a short dynamical time-scale
consistent with these dominating modes,

- consist of a set of widely separated time-scales that produce a stiff system response,

- nearly balance to evolve a solution on a dynamical time-scale that is long relative to
the component time scales,

- or balance to produce steady-state behavior.
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Why Newton-Krylov Methods?

/ Newton-Krylov \

Direct-to-steady-state Fully-implicit / IMEX transient

Stability, Accuracy and Efficiency

Robustness, Convergence and Flexibility

- Stable (stiff systems)
* Strongly coupled multi-physics often
requires a strongly coupled nonlinear

solver

- High order methods

- Variable order techniques with error-control

* Quadratic convergence near solutions - Can be stable, accurate and efficient run at
the dynamical time-scale of interest in

multiple-time-scale systems

stability analysis, etc.
(See e.g. Knoll et. al., Brown & Woodward., Chacon
and Knoll, S. and Ober, S. and Ropp)

- Enables continuation, bifurcation,
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Why Newton-Krylov Methods?

Fully-implicit / IMEX transient

/1 N\

Stability || Accuracy ||Efficiency

Direct-to-steady-state

i .
Convergence Optimization,
Properties J UQ
Characterization \
Complex Soln. Spaces




One Fluid Resistive MHD Equations

Resistive MHD Model in Residual Notation
dpu Lo 2 T
R, = v + V- lpu@u— (T +Ty) +2p2xu—pg=0; T=- <P+ g#(v'u))l‘l'ltwu*'vu ]
1 1 0
R + V- =0
P ot (pa)
O(pe 1
R. = ('0)—|—V [pve+q] — T :Vv|-1n||—V xB|]?|=0
ot 1o
Reduced From of Maxwell’s Equations
0B
ot
J =1V xB;
HO
d; d2 dJ
E=—-uxB+ 77J + — (J><B VP,)+ —=—
N~ n , n dt
Ideal Resmtwe Hvl 1 e?e’r-t;
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Resistive MHD Equations

Resistive MHD Model in Residual Notation
dpu Lo 2 T
RUIWJrV l[pu®@u — (T + Ty)] +2pQ2 x u — pg = 0; T_—(P+§u(Vou))I+y[Vu+Vu]
1 1,
R V - =0
P= 5 + (pu)
0 1
R. = (pe) +V-[pve+q —T:Vv—1|—V xB|*=0
ot Mo
B
RB:%—t—Vx(uxB)+Vx(iVxB):O. V-B=0
Ho

Complex coupled multiphysics system
* Highly nonlinear
» multiple-time and -length scales
« Elliptic, parabolic and hyperbolic character in different parameter ranges

* Involution on magnetic induction. If V-Bl;—o =0 then V-B=0 Vt >0
Sandia
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3D Resistive MHD Equations

Resistive MHD Model in Residual Notation
dpv T=—-[P— g,u(v V)L + pu[Vv + Vv
Ry=—+4+V-[pvv—(T+Ty)]+202xVv—pg=0 ] 1
ot Tm = —BeB-—|B|I
o 210
_9p
R V- =0
d(pe 1
R. = (pe) +V-[pve+q —T:Vv—1|—VxB|*=0
ot o
0B T
Rp=— +V:|Bov-veB- L (VB—(VB)")+yI
ot o
Ry=V-B=0
R(u)=L(u)—f=0

* Divergence free involution enforced as elliptic constraint with a Lagrange multiplier.

(Dedner et. al. 2002; Codina et. al. 2006, 2011)
- Only weakly divergence free in FE implementation (stabilization of B -/ coupling )

» Can show relationship with projection (e.g. Brackbill and Barnes 1980) when 1st order-splitting is used.

* Issue for using C° FE for domains with re-entrant corners / soln singularities
Sandia
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Approaches to Deal with Evolution Equation for B and Involution V-B =0

« Transform to Potential Form (e.g.B =V x A)
» See e.g. Evans, Hawley 1988; Jardin et. al. 2010; Rossmanith et. al. 2006; Chacon etf.
al 2002; Robinson et. al. 2008; S. et. al. 2010, 2014, ......

* Projection / Divergence Cleaning
* See e,g. Brackbill and Barnes 1980, Powell et. al. 1994, Dai and Woodward 1998;
Toth et. al. 2000; Munz et. al 2000, Dedner et. al. 2002, Balsara and Kim 2004; ....

* Regularization / Augmentation of Saddle Point System
« Exact- / Weighted Exact- Penalty: See e.g. Gunzburger et. al. 1991; Costable 2000;

« Lagrange Multiplier/Stabilized Methods: See e.g. Salah et. al. 1999; Dedner 2002;
Schotzau 2004; Codina et. al. 2006,2011; Badia et. al. 2013; S. and Cyret. al. 2014;
Phillips et. al. 2014;....

» Structure Preserving / Physics Compatible
» Constrained Transport and Staggered Grids
« See e.g. Yee for Maxwell1966, Evans and Hawley 1988; Dai and Woodward
1988; Toth et. al. 2000; Balsara and Kim 2004; Chacon 2004, 2008; ....

« De Rham Sequence
» See e.g. Nedelec 1980; Bossavit 1998; Bochev et. al. Xu et. al. 2014
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Preconditioning
Three variants of preconditioning

1. Domain Decomposition (Trilinos/Aztec & IFPack)

* 1 —level Additive Schwarz DD

* ILU(k) Factorization on each processor (with

variable levels of overlap) : ‘%Eigg-:iti::‘?"
L1

» High parallel efficiency, non-optimal algorithmic Tokamak Parallel
9 p . Y, P 9 Partition (64 Procs.)
scalability v

RN OSSR

‘-..uo‘v;..

T
A2

2. Multilevel Methods for Systems: ML pkg (Tuminaro, Sala, Hu, Siefert, Gee)
Fully-coupled Algebraic Multilevel methods

* Consistent set of DOF-ordered blocks at each node (e.g. stabilized FE)
* Uses block non-zero structure of Jacobian

* Aggregation techniques and rates can be chosen

» Jacobi, GS, ILU(k) as smoothers

» Can provide optimal algorithmic scalability

3. Approximate Block Factorization / Physics-based (Teko package)
* Applies to mixed interpolation (FE), staggered (FV), physics compatible
discretization approaches using segregated unknown blocking
» Applied to systems where coupled AMG is difficult or might fail
« Can provide optimal algorithmic scalability

Sandia
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Summary of Structure of Linear Systems Generated in
Newton’s Method
JAx = —F

Stabilized Q1/Q1 V-P elements, SUPG like terms, stabilizing
terms for inf-sup condition, cross-coupling terms and

discontinuity Capturing type operators

F Bg / X = [V,P,B,”I“]T

7 =|Bp Cu F =[Py, Fp,Fp, F]"
Y D BT
i B, Cp

Cy, = / Tm VP - VO df2
Z ep u P B r

CB:Z/ VD - VP d
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SFE Initial Scaling Studies for Cray XK7 AND BG/Q.
3D MHD Generator [Re = 500, Re,, =1, Ha = 2.5]

Weak Scaling: Linear Iterations (Ha=2.5)

u
o
[=]

Linear Iterations/Newton Step

400

= FC AMG (BG/Q)
L === DD ILU(1),ov=1 (Titan)
= -« FC AMG (Titan)

1.8 Billion max unknowns

16k —

1
1

14K unknowns per core (Titan) ,’

= =
o N
o o

Linear Solve Time/Newton Step
®
o

!
(2Kk)—s.
4
4
300} e 60
I',
200 \»(,’ 40
100} -7 |
32— 64 cores)(512 (32K z 20
4 W

10° 10° 10’ 108 10° 10%° 0

8

~

=)}
T

Speedup

I
T

50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

u
T

Number of Unknowns

MHD Recently run on > M cores of BG/Q

Strong Scaling: 1.8 Billion Unknowns (Ha=2.5)

[ — 1deal|
r 1.8 Billion unknowns

Core Count

Largest fully-coupled solves demonstrated to date:
10B DoF, 1.25B elem, on 128K cores
« CFD (Transient): 40B DoF, 10B elem, on 128K cores

 MHD (steady):

[Preliminary strong scaling of Krylov linear solver + preconditioner
(ML: FC - AMG), Tuminaro, Hu, Siefert et. al.]

.

Weak Scaling: Linear Solve Time (Ha=2.5)

| ==+ DD ILU(1),ov=1 (Titan)

—+ FC AMG (BG/Q)

*+ —« FC AMG (Titan)

1.8 Billion max unknowns
4096x increase in prb. size

U
4

*
1
A
4
U
4
1

~20x

BG/Q: 256K

-
-
-
o

10’

108

Number of Unknowns

10°

(DOE/ORNL Titan Cray XK7: Joule Metric)

1010



Initial Scaling Study for Cray XK7.
3D Hydromagnetic Kelvin-Helmholtz Instability
[Re =104, Re,, =104 M, =3; CFL,_, ~51]

.500e+00
5.000e+00
2.500e+00
0.000e+00

Weak Scaling: Linear Iterations (Re =10* ,Re,, =10* ,M, =3) Weak Scaling: Linear Solve Time (Re=10* ,Re,, =10* ,M, =3)

200 25
+— FC AMG(0),0v=1 — FC AMG(0),ov=1
+— DD ILU(1),0v=1 s DD ILU(1),0v=1 N

150, 170 Million max unknowns ] #°l' 170 Million max unknowns 1
10K unknowns per core @
U; i:

) g 15 1
5 S
£ 100} — L
- ©
o 2

z 3 10t |
IS4
<<

50| R
5, ,
.
0 ‘ ‘ : 0 : : :
10° 10° 10’ 108 10° 10° 10° 10’ 108 10°
Number of Unknowns Number of Unknowns



Scaling for Lagrange Multiplier Formulation.
3D Island Coalescence [S = 103, dt = 0.1], SFE

(Scaling of total time with I/O included)

Weak Scaling Study: 3D Island Coalescence / ‘ _
Driven Magnetic Reconnection Problem , ) ourrent

3 ' 1.000e+01
® , B
-=Avg. Time (sec.) / Time Step / / : 2800210
35 “Avg. Gmres Steps / Time Step ) '/
30 32K unknowns per core __——""
25 — Scaling with Lundquist No.
5 20 Lundquist No. S Newt. Steps / dt Gmres Steps / dt
= 1.0E+03 1.36 5.2
15 5.0E+03 1.43 5.7
10 1.0E+04 1.51 6
512 cores 4096 cores
1 core 8 co_r—e_s—_”(_siiores R - 5.0E+04 2 9.8
> — 256x256x256 Lzits 2 i
0 ! 5.0E+05 2 8.4
1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+06 2 8.4
Number of Unknowns BDF2 NK FC-AMG ILU(fill=0,0ov=1), V(3,3)

SNL Capacity Cluster: Chama
Mesh: 128x128x128, dt = 0.0333.
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General Structure of Newton System:

' F B! Z
JAx=—-F J =B o 0
Y O [‘O

Stabilized FE Methods , Q1 interpolation; C, and C; weighted Laplacian matrix;

u P B r

Shotzau Formulation: (@2/Q1 Navier-Stokes, B -edge, Q1 Lagrange Multiplier, see e.g. Shotzau 2004 )

Mixed basis*:

163

P B r

[

C o o

Exact Penalty Formulation: (Q2/Q1 Navier-Stokes, Q2 B field; see e.g. Gunzburger et. al. 1991, Phillips et. al.)

Mixed basis*:

SR

— i i Sandia
Drekar — Element types implemented with s

*Intrepid (PIl-Bocheyv, Ridzal, Peterson) Laboratories



Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off-
Diagonal Physics / Disparate Discretizations and Scalable Multigrid to play well together

Physics-based (Parabolization): Schur Complement, (Approximate) Block Factorization:
Ol = 0,V , 040 = Jyll. I —AtC, | Jumt!] u" — AtC v™
”u+1 —u" 4 Ataﬂ?”+l ,Uu—f—l — " 4+ At&)tu”“. —Ath 1 Un+1_ o™ — Atcmun
: ] Dy U I upy' | [ Dy—up,'L o I o0
(1 LY s o ‘\ll”+ =u" + .At()x'(’” L D, - 0 I i 0 D, Dz—lL I

The Schur complement is then
D, —UD;'L = (I — At*C,C,) = (I — At*0,,)

Result: Stiff (large-magnitude) off-diagonal hyperbolic type operators (blocks)
are now combined onto diagonal parabolic operator (block).

Scalar equation multigrid can now be used effectively on this operator

Our General Approach:

ABF: Understand stiff physics, consider spectral properties of operators,

develop approximate block factorization(s) to simplified system(s) while approximating critical
operators to maintain stiff coupling in approximate Schur complement(s)

Knoll, Chacon et. al. JENK Methods for accurate time integration of stiff-wave systems, Journal of Scientific Computing, 2005

L. Chacon, “'An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional visco-resistive magnetohydrodynamics," Phys. Plasmas, 2008

Elman, Howle, Shadid, and Tuminaro, “A Parallel Block Multi-level Preconditioner for the Three-Dimensional Incompressible Navier-Stokes”, JCP, 2003

Elman, Howle, Shadid, Shuttleworth, Tuminaro,”A Taxonomy of Parallel Mulit-level Block Preconditioners for the Incompressible Navier-Stokes”, JCP, 2008

Cyr, Shadid, Tuminaro, Pawlowski, Chacon, “A new approximate block factorization preconditioner for 2D incompressible (reduced) resistive MHD,” SISC, 2013
Sandia
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Step back to CFD for a moment to

Introduce block approximate factorization (physics-based) preconditioners
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Brief Overview of Block Preconditioning Methods for Navier-Stokes:
(A Taxonomy based on Approximate Block Factorizations, JCP — 2008)

Discrete N-S Exact LDU Factorization Approx. LDU -
F BT\ [ Ay (g ( I 0) (F 0) (1 F1gT ) I 0 V‘ 0 (1 H,B*
B -c)\dp )T\ g )| \BE 1){0 =S)\0 I BH, I1/|0 =80 I
S=C+BF'B"
P d. T A
recond. Type H, H, g References
i Chorin(1967);T: 1969);
Pres. Proj; | 1 A Chiore(1967) aman 1500),
1st Term F (At]:)_ C + AtBBT (2000) as solvers.
Neumann Series
SIMPLEC 1 R LT Patankar et. al. (1980) as
- : -1 |1C + B(di F'|))” "B | solvers; Pernice and Tocci
F (dlag(z |F|)) * ( lag<z ‘ ’)) (2001) as smothers/MG
Pressure Kay, Loghin, Wathan,
: —1 — Silvester, El 1999 -
Convection / 0 F F, 1A-p 2006); Envean, Howlo, Shadid,
Diffusion Shuttleworth, Tuminaro

(2003,2008)

Now use AMG type methods on sub-problems.
Momentum transient convection-diffusion: F'Au = r

Pressure — Poisson type:

—SAp = r'p

Sandia
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3D Plane Jet; Kelvin-Helmholtz Unstable with Secondary Cross-stream Instability;
VMS LES Model; Re =108

Time = 3.93929

1.000e+00
5.000e-01
0.000e+00
-5.000e-01
-1.000e+00




Kelvin-Helmholtz

Linear lterations: Re=‘5000 with SUPG-PSPG

Transient

140 — AggC

e—e DD
1200 m—a PCD |

4—¢ SIMPLEC

U;lOO*
—
L
— 80,
—
O
()
£ 60f
—

1024 cofes
40r1 1 core \
N
0 I I I
10* 10° 10° 10’

Number of unknowns

G'Eime/NonIinear step: Re=5000 with SUPG-PSPG

— AggC
e—e DD
50| m—m PCD
¢—¢ SIMPLEC
o
@ 40
d
wn
c
= 30
=
S~
()
S 20}
= 1024 cores
\
1 core N\
10
\ = —b
0 4 ‘5 ‘6 ‘7 8
10 10 10 10 10

Number of unknowns

Kelvin Helmholtz: Re=5000, Weak scaling at CFL=2.5
* Run on 1 to 1024 cores
* Pressure - PSPG, Velocity - SUPG(residual and Jacobian)
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Now Return to MHD

Block approximate factorization (physics-based) preconditioners
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Incompressible Resistive MHD a New Nested Schur Complement Approach

Block LU factorization gives

Fr BT 7 I I BT YA

B C 0| =|BF! 1 S —BF 17

Y 0 D YF-1 _YFp-1BTg-1 T P
where

S=C—-BF BT
P=D-YF 'I+B'S'BF1Hz
- 3x3 system leads to embedded Schur complements
« Embedding is independent of ordering (C' doesn’ t need to exist!)

 How is P approximated?
« Chacon & Knoll (2004,..) explored compressible flow

( 92 included in C) and incompressible flow using

ot
stream-function vorticity to simplify factors (i,e, eliminate
V-v=20 elliptic constraint).

« Can we simplify nested structure? E.g. Operator split prec.
Sandia
b



Operator split / Residual-based Defect-Correction ABF Preconditioner

1) Residual defect-correction factorization procedure strongly couples operators producing the
Alfven wave and reduces to two 2x2 blocks for the ABF:

MiZi=b; My&—%)=(b— J%) ;leads to this ABF &= M, (M, + My — J)M{'b

F BT Z F z] [F-? F BT F BT Z
B C of = I I B C _ |B c
Y 0 D Y D I I v |yF!'BT| D

2) 3x3 -> two 2x2 sub-systems

S=0C,— BF'BT P=D_-YF 7

Consider NS Schur complement methods (e.g. Pressure Proj., SIMPLE(R)), Press-Conv-Diff
(PCD) and Least Squares comutator (LSC) type approaches)

Spectrum of preconditioned system for defect-correction MHD Preconditioner.

F BT z1[F BT 17'[F F z17* I 0 0
B C 0o||B C I I =0 I 0
Y 0 D I I| |Y D K. K, I-YF'B'S 'BF-lzp~!

See e.g. EIman, Howle, S., Shuttleworth, Tuminaro,” A Taxonomy of Parallel Mulit-level Block Preconditioners
for the Incompressible Navier-Stokes Equations”, JCP, v. 227, 3, pp 1790 - 1808, 2008

Cyr, S., Tuminaro, Pawlowski, and Chacon, “A new approximate block factorization preconditioner for 2D mSaLmdia
incompressible (reduced) resistive mhd,” SIAM Journal on Scientific Computing, 35:B701-B730, 2013 Laboratories



3D Hydromagnetic Kelvin-Helmholtz Instability. Re = Re, = 104, Ma, = 3.0
Lagrange Multiplier Formulation

Time =-3.02850




Transient 2D Hydromagnetic
Kelvin-Helmholtz Problem, SFE
Re = 5e+3, S =1e+3; M, =1.5; CFL_, ~ 10

Linear lterations: At=2.50e-03

Time/Nonlinear Step: At=2.50e-03

200

K 60
— AggC-ILU,, , —  AggC-ILUj,
-- DD / -- DD
Y4
50f -
*— SIMPLEC 1024 cores /' *— SIMPLEC
150} == BlkUp 6400X3200 mesh R 1 i =—=a BlkUp
+—¢ Split Comm 80 M unknowns 8‘ +— Split Comm
N — Split CSC T 401 — Split CSC 1
g — Split Diag , E v Split Diag
“ 100r . {1 2 30} ]
© ’ =
g /, w0
’ N—
= ]
— 1 core ,', € 20f |
200X100 mesh e =
50} 80K unknowns R —
\ 10t —_— h
0 4 !—T ‘ 6 ‘ 7 8 0 4 ‘ 5 ‘ 6 ‘ 7 8
10 10 10 10 10 10 10 10 10 10
Number of Unknowns Number of Unknowns
Comm — comutator; CSC — continuous Schur comp.; Quad-core Nehalems with Infini-band SNL Red Sky

Diag. — diagonal approx of inverse in Schur comp.

Cyr, S., Tuminaro, Pawlowski, and Chacon, “A new approximate block factorization preconditioner for 2D incompressible (reduced) resistive
mhd,” SIAM Journal on Scientific Computing, 35:B701-B730, 2013 Sandi

Cyr, S., and Tuminaro, “Teko an abstract block preconditioning capability with concrete National
example applications to Navier-Stokes and resistive MHD,” in preparation , 2014. Laboratories



Extensions to 3D: Initial Approximate Block Preconditioning
3D MHD Generator [Re = 500, Re,, =1, Ha = 2.5], SFE

5.0006-02
2500e-02
0.000e+00

-2.500e-02
-5.000e-02

F BI Zz o5
F BT Z
g= |5 O =|B, C
Y D BT s
B, Cg F o Z][F F BT S=C—-BF BT
~ Mspiit = I I B C > A —
TR Mepa =] L ; | P=D-vFz
300 Iterations vs Unknown Count (B=3.3540) 180 Solve Time vs Processor Count (B=3.3540)
+—+ Block Split +—+ Block Split
~ FC AMG 160| +=—+ FC AMG
250 +— |LU(0) ov=1 #=— |LU(0) ov=1
140
2
2200 120}
o
2
= » 100
3 150 v
£ £
€ E 80f
>
£ 6ol
é 100 (2 cores) 1
1024 cores a0k
0 | ) ) 0 M |
10* 10° 10° 10’ 108 10* 10° 10° 107 108
Number of Unknowns Number of Unknowns

Weak scaling of FC-AMG and block preconditioners reasonable to 1024 cores
Both suffer some performance degradation on this capacity machine (Redsky)
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New residual defect-correction ABF strongly couples Alfven wave operators and

reduces to three 2x2 blocks

Mz =b; My@Z—2)=(b—JZ) ;leads to this ABF & = M, (M, + M, — J)M;'b

F, BT 0

B Cp 0 0] _
0o Fg BT|7

0 0 B Cy,

0 0

I 0 O

0 I

0 0 I
BT
Cp

YF,nTLlBT

0

F—l

0

0 0
0

F, BT 0 0
B Cp 0 0

0 Fg BT
0 B Cy

* Order-of-magnitude analysis of structural error terms for ABF and previous work
on 2D and 3x3 systems suggests diagonal, and comutator approaches should be
workable in appropriate parameter regimes.

* Reduction to 2 problem types that are similar to what we have studied and
developed Schur complement approaches for

- Saddle pointsystems S = —= (Cp — Bﬁ’;leT

SB =C¢ —BﬁElBT

« Momentum-magnetics coupling P = Fg — Yﬁ’ﬂ_,blZ

Sandia
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Extensions to 3D: Initial Approximate Block Preconditioning
3D HMKH [Re =104, Rem=104, M, = 3; CFL ~0.125], SFE

FC-AMG - ILU(0), V(3,3); 3x3, 4x4 SIMPLEC and Gauss-Seidel

lterations vs Unknown Solve Time vs Unknown Count
200 ‘ ‘ 2048 cores 20 ‘ ‘ ‘

»—x ML x ML

— LU — LU
n »—  Split-3x3 »—+  Split-3x3
S 150|| = Split-4x4 1s|| = Split-4x4
o
g
= @
-g 100} GgJ 10}
— = (256 cores]
;.5
GLJ 50+ 5k
Z

—-;é ///
0 = : ‘ : 0 4 ‘5 ‘6 ‘7 8
10* 10° 108 10’ 108 10 10 10 10 10
Number of Unknowns Number of Unknowns
Fully coupled Algebraic Block Preconditioners
ML: Uncoupled AMG with repartitioning Split-3x3: 3x3 (SIMPLEC everywhere)
DD: Additive Schwarz Domain Decomposition Preliminary Split-4x4: 4x4

ABF preconditioners scale algorithmically, more relevant for mixed and physics-
compatible discretizations

CBD (Ghoratories



Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off-
Diagonal Physics / Disparate Discretizations and Scalable Multigrid to play well together

(w/ H. ElIman, UMD)

Mixed basis*:
Exact Penalty Formulation: (Q2/Q1 Navier-Stokes, Q2 B field; see e.g. Gunzburger) [ *

F Bt Z 250 — G 5 é
Ap = B 0 0 ) R
_Zt O A § 1501
A —zt 0 £ -
‘Pp = 0 X’ Bt X=F+ ZA_th, 50r
0 0 Ya Y = -BX~'B". o 10° 10° 107 10°

Number of Unknowns

Phillips, Elman, Cyr, S., Pawlowski, A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD, Accepted in SISC
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Shotzau Formulation: (@2/Q1 Navier-Stokes, B -edge, Q1 Lagrange Multiplier)
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Structure of preconditioner and Maxwell ABF
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Conclusions

* Initial results for 3D Stabilized/VMS FE Lagrange multiplier formulation for low-flow
Mach number resistive MHD system is very encouraging (e.g. MHD generator, HMKH, geo-
dynamo physics, isotropic decay of MHD turbulence, soon a tokamak model..)

* Robustness, efficiency and scalability of parallel Newton-Krylov solvers is very good.
Preconditioning critical:
* FC-AMG (ML) for new 3D MHD systems continues to work very well (stabilized FE)

» Approx. block factorization results are encouraging for Lagrange multiplier
system. Applies to more general discretizations (mixed interp., [edge, face, ..])

* Initial scaling of NK/FC-AMG linear solver to near extreme-scale (256K, 2 Million
cores) is encouraging, still more work for preconditioner setup.

* Preliminary results for integrated adjoint based error-estimation and sensitivity
capabilities for resistive MHD is very encouraging.
* Next consider complex systems (e.g. tokamak, geo-dynamo, plasmoids)

 Explore application for laboratory experiments for dynamo studies.

* MHD turbulence modeling with full VMS 3D resistive MHD formulation appears very
promising. Need to apply to more challenging plasma physics (e.g. planetary-dynamos)
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