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Motivation: Science/Technology and Mathematical / Computational  

Science / Technology Motivation:   
Resistive and extended MHD models are used to 
study important plasma physics systems 
§  Astrophysics: Magnetic reconnection, solar flares, ..  
§  Planetary-physics: Earth’s magnetospheric sub-

storms, Aurora, geo-dynamo, planetary-dynamos"
§  Fusion: Magnetic Confinement [MCF] (e.g. ITER), 

Inertial Conf. [ICF] (e.g. NIF, Z-pinch)"

 MHD Tokamak Equilibrium 

 NASA Magnetic Reconnection Animation (https://www.youtube.com/watch?v=i_x3s8ODaKg) 

Magnetic Reconnection: S = 1e+9 (left), Reconn. Rate vs. SP theory (right)  

Mathematical/Computational Motivation:   
Achieving Scalable Predictive Simulations of Complex 
Highly Nonlinear Multiphysics Systems to Enable Scientific 
Discovery and Engineering Design/Optimization "

Mathematical Approach - develop:  
§  Stable and higher-order accurate fully-implicit formulations 
§  Stable and accurate spatial discretizations for complex 

geom., Options enforcing key mathematical  properties                       
(e.g. positivity, div B = 0) 

§  Robust and efficient fully-coupled nonlinear/linear iterative 
solution methods based on Newton-Krylov (NK) methods 

§  Scalable and efficient preconditioners utilizing multi-level 
(AMG) methods (Fully-coupled AMG, physics-based, approx. 
block factorization) 

      => Also enables beyond forward simulation & integrated UQ 

 MHD Equilibrium Instability 



What are multi-physics systems? (A multiple-time-scale perspective)!
These systems are characterized by a myriad of complex, interacting, nonlinear multiple 
time- and length-scale physical mechanisms.!
!
These mechanisms:!

!

•  can be dominated by one, or a few processes, that drive a short dynamical time-scale 
consistent with these dominating modes,!
•  consist of a set of widely separated time-scales that produce a stiff system response,!

•  nearly balance to evolve a solution on a dynamical time-scale that is long relative to 
the component time scales, !
•  or balance to produce steady-state behavior. !



Why Newton-Krylov Methods? 
"

Newton-Krylov"

Fully-implicit / IMEX transient"

Stability, Accuracy and Efficiency!
•  Stable (stiff systems)!

•  High order methods!

•  Variable order techniques with error-control!

•  Can be stable, accurate and efficient run at 
the dynamical time-scale of interest in 
multiple-time-scale systems "
(See e.g. Knoll et. al., Brown & Woodward., Chacon 
and Knoll, S. and Ober, S. and Ropp)"

Robustness, Convergence and Flexibility!

•  Strongly coupled multi-physics often 
requires a strongly coupled nonlinear 
solver!

•  Quadratic convergence near solutions!

•  Enables continuation, bifurcation, 
stability analysis, etc.!

Direct-to-steady-state"



Why Newton-Krylov Methods? 
"

Newton-Krylov"

Direct-to-steady-state" Fully-implicit / IMEX transient"

Convergence"
Properties"

Characterization "
Complex Soln. Spaces"

Optimization, "
U Q" Stability" Accuracy" Efficiency"

Very Large Problems -> Parallel Iterative Solution of Sub-problems"
"
Krylov Methods - Robust, Scalable and Efficient Parallel Preconditioners"

•  Approximate Block Factorizations"
•  Physics-based Preconditioners"
•  Multi-level solvers for systems and scalar equations "



One Fluid Resistive MHD Equations 

  

Resistive MHD Model in Residual Notation 
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Reduced From of Maxwell’s Equations 

r ·B = 0



Resistive MHD Equations 

  

Resistive MHD Model in Residual Notation 

RP =
⇥�

⇥t
+� · (�u) = 0

RB =
⇥B
⇥t
�⇤⇥ (u⇥B) +⇤⇥ (

�

µ0
⇤⇥B) = 0.

TM =
1
µ0

B⇥B� 1
2µ0

⇤B⇤2I

Re =
⇤(⇥e)

⇤t
+⌅ · [⇥ve + q]�T : ⌅v � �⇤ 1

µ0
⌅⇥B⇤2 = 0

Ru =
@⇢u
@t

+r · [⇢u⌦ u� (T + TM )] + 2⇢⌦⇥ u� ⇢g = 0

"

Complex coupled multiphysics system"

•  Highly nonlinear"

•  multiple-time and -length scales"

•  Elliptic, parabolic and hyperbolic character in different parameter ranges"

•  Involution on magnetic induction.  If  "
"

R = r ·B = 0

r ·B|t=0 = 0 then r ·B = 0 8t > 0



3D Resistive MHD Equations 

  

Resistive MHD Model in Residual Notation 

"

•  Divergence free involution enforced as elliptic constraint with a Lagrange multiplier.                                   
(Dedner et. al. 2002; Codina et. al. 2006, 2011)"

•  Only weakly divergence free in FE implementation (stabilization of B -    coupling )"

•  Can show relationship with projection (e.g. Brackbill and Barnes 1980) when 1st order-splitting is used."
"

•  Issue for using C0 FE for domains with re-entrant corners / soln singularities "
  (Costabel et. al. 2000, 2002, Codina, 2011, Badia et. al. 2013)"
"
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Approaches to Deal with Evolution Equation for  B and Involution  

  

R = r ·B = 0

•  Transform to Potential Form (e.g.                   ) 
•  See e.g. Evans, Hawley 1988; Jardin et. al. 2010; Rossmanith et. al. 2006; Chacon et. 

al 2002; Robinson et. al. 2008; S. et. al. 2010, 2014; …… 
  
•  Projection / Divergence Cleaning 

•  See e,g. Brackbill and Barnes 1980, Powell et. al. 1994, Dai and Woodward 1998; 
Toth et. al. 2000;  Munz et. al 2000, Dedner et. al. 2002, Balsara and Kim 2004; …. 

 
•  Regularization / Augmentation of Saddle Point System 

•  Exact- / Weighted Exact- Penalty: See e.g. Gunzburger et. al. 1991; Costable 2000; 

•  Lagrange Multiplier/Stabilized Methods: See e.g. Salah et. al. 1999; Dedner 2002; 
Schotzau 2004; Codina et. al. 2006,2011; Badia et. al. 2013; S. and Cyr et. al. 2014; 
Phillips et. al. 2014;…. 

•  Structure Preserving / Physics Compatible  
•  Constrained Transport and Staggered Grids 

•  See e.g. Yee for Maxwell1966, Evans and Hawley 1988; Dai and Woodward 
1988; Toth et. al. 2000; Balsara and Kim 2004; Chacon 2004, 2008; …. 

•  De Rham Sequence 
•  See e.g. Nedelec 1980; Bossavit 1998; Bochev et. al. 2003; Xu et. al. 2014; S. 

et. al. 2015;  

•  Other ……… 

  

B = r⇥A



Preconditioning 
Three variants of preconditioning 

1. Domain Decomposition (Trilinos/Aztec & IFPack)  

2. Multilevel Methods for Systems: ML pkg (Tuminaro, Sala, Hu, Siefert, Gee) 

3. Approximate Block Factorization / Physics-based (Teko package)    

•  1 –level Additive Schwarz DD 
•  ILU(k)  Factorization on each processor   (with 
variable levels of overlap) 
•  High parallel efficiency, non-optimal algorithmic 
scalability  

Fully-coupled Algebraic Multilevel methods 
•  Consistent set of DOF-ordered blocks at each node (e.g. stabilized FE) 
•  Uses block non-zero structure of Jacobian  
•  Aggregation techniques and rates can be chosen 
•  Jacobi, GS, ILU(k) as smoothers 
•  Can provide optimal algorithmic scalability 

•  Applies to mixed interpolation (FE), staggered (FV), physics compatible 
discretization approaches using segregated unknown blocking 
•  Applied to systems where coupled AMG is difficult or might fail 
•  Can provide optimal algorithmic scalability 
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Summary of Structure of Linear Systems Generated in 
Newton’s Method 

x = [v, P,B, r]T

Stabilized Q1/Q1 V-P elements, SUPG like terms, stabilizing 
terms for inf-sup condition, cross-coupling terms and 
discontinuity Capturing type operators 
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SFE Initial Scaling Studies for Cray XK7 AND BG/Q.   
3D MHD Generator [Re = 500, Rem = 1, Ha = 2.5] 

~20x 

Titan: 128K 

BG/Q: 256K 

1.8 Billion max unknowns 
14K unknowns per core (Titan) 1.8 Billion max unknowns 

4096x increase in prb. size 
 

MHD Recently run on ½ M cores of BG/Q 

[Preliminary strong scaling of Krylov linear solver + preconditioner 
(ML: FC – AMG), Tuminaro, Hu, Siefert et. al.] 

1.8 Billion unknowns 

(DOE/ORNL Titan Cray XK7: Joule Metric) 

Largest fully-coupled solves demonstrated to date: 
•  MHD (steady):      10B DoF, 1.25B elem, on 128K cores 
•  CFD (Transient):  40B DoF, 10B    elem, on 128K cores 



Initial Scaling Study for Cray XK7.   
3D Hydromagnetic Kelvin-Helmholtz Instability 

[Re = 104, Rem = 104, MA = 3; CFLmax ~5 ] 

170 Million max unknowns 
10K unknowns per core 

170 Million max unknowns 



Scaling for Lagrange Multiplier Formulation.  
3D Island Coalescence [S = 103, dt = 0.1], SFE 

BDF2 NK FC-AMG ILU(fill=0,ov=1), V(3,3) 
SNL Capacity Cluster: Chama 

Lundquist	
  No.	
  S	
   Newt.	
  Steps	
  /	
  dt	
   Gmres	
  Steps	
  /	
  dt	
  
1.0E+03	
   1.36	
   5.2	
  
5.0E+03	
   1.43	
   5.7	
  
1.0E+04	
   1.51	
   6	
  
5.0E+04	
   2	
   9.8	
  
1.0E+05	
   2	
   12	
  
5.0E+05	
   2	
   8.4	
  
1.0E+06	
   2	
   8.4	
  

Scaling with Lundquist No. 

Mesh: 128x128x128, dt = 0.0333. 

256x256x256 

(Scaling of total time with I/O included) 

32K  unknowns per core 



u  P  B  r  

Stabilized FE Methods , Q1 interpolation; Cu and CB weighted Laplacian matrix; 

Exact Penalty Formulation: (Q2/Q1 Navier-Stokes, Q2 B field; see e.g. Gunzburger et. al. 1991, Phillips et. al.)  

u  P  

Mixed basis*: 

B  

Shotzau Formulation: (Q2/Q1 Navier-Stokes, B -edge, Q1 Lagrange Multiplier, see e.g. Shotzau 2004 )  

u  P  B  r  

Mixed basis*: 

Drekar – Element types implemented with 
*Intrepid (PI-Bochev, Ridzal, Peterson) 
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Physics-based (Parabolization): 

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The Schur complement is then 

Schur Complement, (Approximate) Block Factorization: 

Result: Stiff (large-magnitude) off-diagonal hyperbolic type operators (blocks) 
are now combined onto diagonal parabolic operator (block).  

 
Scalar equation multigrid can now be used effectively on this operator  

Our General Approach:  
   
   ABF: Understand stiff physics, consider spectral properties of operators,  
  develop approximate block factorization(s) to simplified system(s) while approximating critical   
  operators  to maintain  stiff coupling in approximate Schur complement(s) 

Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off- 
Diagonal Physics / Disparate Discretizations and Scalable Multigrid to play well together  

Knoll, Chacon et. al. JFNK Methods for accurate time integration of stiff-wave systems, Journal of Scientific Computing, 2005 
L. Chacon, ``An optimal, parallel, fully implicit Newton-Krylov solver for three-dimensional visco-resistive magnetohydrodynamics,'' Phys. Plasmas, 2008 
Elman, Howle, Shadid, and Tuminaro, “A Parallel Block Multi-level Preconditioner for the Three-Dimensional Incompressible Navier-Stokes”, JCP, 2003 
Elman, Howle, Shadid, Shuttleworth, Tuminaro,”A Taxonomy of Parallel Mulit-level Block Preconditioners for the Incompressible Navier-Stokes”, JCP, 2008 
Cyr, Shadid, Tuminaro, Pawlowski, Chacon, “A new approximate block factorization preconditioner for 2D incompressible (reduced) resistive MHD,” SISC, 2013  



 
Step back to CFD for a moment to  

 
Introduce block approximate factorization (physics-based) preconditioners 



Discrete N-S Exact LDU Factorization Approx. LDU 

Brief Overview of Block Preconditioning Methods for  Navier-Stokes:  
(A Taxonomy based on Approximate Block Factorizations, JCP – 2008) 

Now use AMG type methods on sub-problems.  
  Momentum transient convection-diffusion:  

 

  Pressure – Poisson type: 

Precond. Type References 

Pres. Proj;   
1st Term 
Neumann Series  

Chorin(1967);Temam (1969); 
Perot (1993): Quateroni et. al. 
(2000) as solvers. 

SIMPLEC Patankar et. al. (1980) as 
solvers; Pernice and Tocci 
(2001) as smothers/MG  

Pressure 
Convection / 
Diffusion 

Kay, Loghin, Wathan, 
Silvester, Elman (1999 - 
2006); Elman, Howle, Shadid, 
Shuttleworth, Tuminaro 
(2003,2008) 

F�1

F�1

(�tI)�1F�1 C + �tB̂BT

C + B̂(diag(
�

|F|))�1BT(diag(
�

|F|))�1

F�1
p Ap



3D Plane Jet; Kelvin-Helmholtz Unstable with Secondary Cross-stream Instability; 
 VMS LES Model; Re = 108 



1 core 
1024 cores 

1 core 
1024 cores 

Transient  
Kelvin-Helmholtz 



Now Return to MHD 
 

Block approximate factorization (physics-based) preconditioners 



Incompressible Resistive MHD a New Nested Schur Complement Approach  

�
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P = D � Y F�1(I + BT S�1BF�1)Z

Block LU factorization gives  

•  3x3 system leads to embedded Schur complements 
•  Embedding is independent of ordering (C-1 doesn’t need to exist!)  
•  How is P approximated? 
•  Chacon & Knoll (2004,..) explored compressible flow   
      
    (         included in C)  and incompressible flow using  
 
     stream-function vorticity to simplify factors  (i,e, eliminate                      
                                  elliptic constraint).  
•  Can we simplify nested structure? E.g. Operator split prec. 

⇥�

⇥t

r · v = 0



Operator split / Residual-based Defect-Correction ABF Preconditioner   

1)  Residual defect-correction factorization procedure strongly couples operators producing the 
Alfven wave and reduces to two 2x2 blocks for the ABF:  

 
 

2)  3x3 -> two 2x2 sub-systems 

 

See e.g. Elman, Howle, S., Shuttleworth, Tuminaro,”A Taxonomy of Parallel Mulit-level Block Preconditioners 
for the Incompressible Navier-Stokes Equations”, JCP, v. 227, 3, pp 1790 - 1808, 2008  

S = Cu �BF̂�1BT P = D � Y F̂�1Z

Consider NS Schur complement methods (e.g. Pressure Proj., SIMPLE(R)), Press-Conv-Diff 
(PCD) and Least Squares comutator (LSC) type approaches) 

Spectrum of preconditioned system for defect-correction MHD Preconditioner. 

Cyr, S., Tuminaro, Pawlowski, and Chacon, “A new approximate block factorization preconditioner for 2D 
incompressible (reduced) resistive mhd,” SIAM Journal on Scientific Computing, 35:B701-B730, 2013 



3D Hydromagnetic Kelvin-Helmholtz Instability. Re = Rem = 104, MaA = 3.0 
Lagrange Multiplier Formulation  



Transient 2D Hydromagnetic  
Kelvin-Helmholtz Problem, SFE 

Re = 5e+3, S = 1e+3; MA = 1.5; CFLmax ~ 10 

Quad-core Nehalems with Infini-band  SNL Red Sky 

1024 cores 
6400X3200 mesh 
80 M unknowns 

1 core 
200X100 mesh 
80K unknowns 

Cyr, S., Tuminaro, Pawlowski, and Chacon, “A new approximate block factorization preconditioner for 2D incompressible (reduced) resistive 
mhd,” SIAM Journal on Scientific Computing, 35:B701-B730, 2013 
 Cyr,  S., and Tuminaro, “Teko an abstract block preconditioning capability with concrete 
example applications to Navier-Stokes and resistive MHD,” in preparation , 2014. 

Comm – comutator; CSC – continuous Schur comp.; 
Diag. – diagonal approx of inverse in Schur comp. 



Weak scaling of FC-AMG and block preconditioners reasonable to 1024 cores 
Both suffer some performance degradation on this capacity machine (Redsky) 
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Extensions to 3D: Initial Approximate Block Preconditioning 
3D MHD Generator [Re = 500, Rem = 1, Ha = 2.5], SFE 

P̂ = D̂ � Y F�1Z

S = C �BF�1BT



New residual defect-correction ABF strongly couples Alfven wave operators and 
reduces to three 2x2 blocks  

•  Order-of-magnitude analysis of structural error terms for ABF and previous work 
on 2D and 3x3 systems suggests diagonal, and comutator approaches should be 

workable in appropriate parameter regimes.  

•  Reduction to 2 problem types that are similar to what we have studied and 
developed Schur complement approaches for 

•  Saddle point systems 

•  Momentum-magnetics coupling P = FB � Y F̂�1
m Z



Extensions to 3D: Initial Approximate Block Preconditioning 
3D HMKH [Re =104, Rem=104, MA = 3; CFL ~0.125], SFE 

Block Preconditioners 
Split-3x3: 3x3  (SIMPLEC everywhere) 

Preliminary Split-4x4: 4x4 
 

Fully coupled Algebraic 
ML: Uncoupled AMG with repartitioning 

DD: Additive Schwarz Domain Decomposition 

ABF preconditioners scale algorithmically, more relevant for mixed and physics-
compatible discretizations  

FC-AMG – ILU(0), V(3,3); 3x3, 4x4 SIMPLEC and Gauss-Seidel 



Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off- 
Diagonal Physics / Disparate Discretizations and Scalable Multigrid to play well together  

(w/ H. Elman, UMD)  

Drekar – Element types implemented with 
*Intrepid (PI-Bochev, Ridzal, Peterson) 

u  P  

Mixed basis*: 

B  

Exact Penalty Formulation: (Q2/Q1 Navier-Stokes, Q2 B field; see e.g. Gunzburger)  

Phillips, Elman, Cyr, S., Pawlowski, A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD, Accepted in SISC  

u  P  B  r  

Mixed basis*: 
Shotzau Formulation: (Q2/Q1 Navier-Stokes, B -edge, Q1 Lagrange Multiplier)  

Structure of preconditioner and Maxwell ABF   



u  P  B  r  

Mixed basis*: 
Shotzau Formulation: (Q2/Q1 Navier-Stokes, B -edge, Q1 Lagrange Multiplier)  

Structure of preconditioner and Maxwell ABF   

(w/ H. Elman, UMD)  

Drekar – Element types implemented with 
*Intrepid (Bochev, Ridzal, Peterson) 



 
 
 

Conclusions 
•  Initial results for 3D Stabilized/VMS  FE Lagrange multiplier formulation for low-flow 
Mach number resistive MHD system is very encouraging (e.g. MHD generator, HMKH, geo-
dynamo physics, isotropic decay of MHD turbulence, soon a tokamak model..) 

•  Robustness, efficiency and scalability of parallel Newton-Krylov solvers is very good.    
  Preconditioning critical: 

•  FC-AMG (ML) for new 3D MHD systems continues to work very well (stabilized FE) 

•  Approx. block factorization results are encouraging for Lagrange multiplier 
system. Applies to more general discretizations (mixed interp., [edge, face, ..]) 

•  Initial scaling of NK/FC-AMG linear solver to near extreme-scale (256K, ½ Million 
cores) is encouraging, still more work for preconditioner setup.  

 

•  Preliminary results for integrated adjoint based error-estimation and sensitivity 
capabilities for resistive MHD is very encouraging. 

•  Next consider complex systems (e.g. tokamak, geo-dynamo, plasmoids) 

•  Explore application for laboratory experiments for dynamo studies. 

•  MHD turbulence modeling with full VMS  3D resistive MHD formulation appears very 
promising. Need to apply to more challenging  plasma physics (e.g. planetary-dynamos) 


