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The problem ) Joues,

= Detect sophisticated threats to national security
= Space / airborne: size, weight, power constrained
= Cyber: time constrained, rapidly evolving

= Current techniques

= Require human analysts to scale with the data
= Rely on ever-increasing computation time and power

= Evolutionary improvements in current performance are
not sufficient!
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There is a strong need for data-driven computing

= Data is fed into the system and classifications, regressions, etc. are
produced to “understand” data

= No need to develop equation-based numerical models;
» Train instead of explicitly program

= Robust to variability and outliers, adaptable to dynamic data

C. Lampert, VRML 2013 Quatch, SNL 2014
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Machine learning approaches are data-driven

= Equation-driven approaches are used when the fundamental
principles are well-understood — not always the case

= |ssues: require large amounts of labeled data, difficult to instantiate
in hardware, slow to train, have difficulty handling “spontaneity”
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A resurgence in neural machine learning research has addressed many problems...




Incorporation of neural-inspired concepts

has shown promise...

Receptive fields and convolutional nets:
Hubel & Wiesel 1962, Fukushima 1980
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Deep learning networks: Hinton lab,
NIPS 2009, ICML 2012

Table 4: Reported results on TIMIT core test set
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Moore’s law has enabled many advances in neural machine learning approaches...




Neural-inspired algorithms are well-suited )
for detecting intelligent threats

» Multi-sensor data fusion is directly incorporated into neural computation
» Historical and contextual information are inherently integrated
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Mante et al., Nature 2013, 503, 78:




Long history of hardware innovation A e

National

Laboratories
targeting neural-inspired computing
SNARC; Minsky 1951: Neural chip (Graf 1990); DARPA , IBM TrueNorth (2014):
k.4 : s Scheduler ' '
Controller Mamory
5

Router : Neuron
www.cyberneticzoo.com; Gregory Loan : { 1.2 million
E transistors

Mark | Perceptron (Rosenblatt 1960): Electronic cochlea
(Lyons and Mead 1988);

vanced Téchnology Center; Hecht-Nielsen, R. Neurocomputing
(Reading, Mass.: Addison-Wesley, 1990); Cornell Library;
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Competitive landscape
of neuro-inspired computing efforts
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Limitations of the current state-of-the-art ) e,

= Current hardware tends to be... i s
= Highly specialized for specific problems z;s':::“;"nl?.::g:es

5.4 billion transistors

= General purpose and relatively inefficient

Merolla (IBM), Science 2014

= Current algorithms tend to rely on... o/ Toenpmabe
= |Large amounts of labeled training data e \
= Static decision boundaries i

S— Observation
W_u Probabilities

= Rapidly evolving, evasive threats are

) [ 0|
not the focus of academic or ME‘W\&
commercial research o [ L

Dabhl, IEEE Trans Aud Speech Lang Proc 2012
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A different approach is needed
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volume is increasing 35,000
30,000
= Algorithm development is needed S
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HAANA’s Hypothesis and Objective ) e,

= Hypothesis: There exists a class of machine-learning
methods, used in conjunction with neural-inspired
algorithms and learning hardware, that will reduce
computation time and power consumption by orders of
magnitude in national-security applications.

= Objective: Leverage Sandia’s unique capabilities to
build and deploy the first versatile neural-inspired
computing system that addresses Sandia’s core Mission
Challenges




The need for HAANA LA

= We need to transition machine learning from the quasi-static time
domain into highly dynamical and multi-modal domains

= We need algorithms that leverage recent neuroscience developments

= \We need hardware that can handle the temporal complexity of neural
algorithms
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Real-time, low-power, small footprint, ) s
embedded threat-detection system

Algorithms Learning Hardware
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HAANA project structure rh) i,




Updated competitive landscape e,
of neuro-inspired computing efforts
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Full Team ) .

Algorithms: Brad Aimone, Ojas Parekh, Nadine Miner, Sandra
Faust, Steve Verzi, Fred Rothganger, Frances Chance, Tu-Thach
Quach, Chris Lamb

Architecture: John Naegle, Alex Hsia, Eric Debenedictis, Craig
Vineyard, John Donaldson

Hardware: Matt Marinella, Tom Beechem, John lhlefeld, Alec Talin,
Paul Kotula, Jim Stevens, Stephen Howell, David Hughart, Patrick
Mickel, Andy Armstrong, David Henry, Gaadi Haase, Steve Wolfley
Modeling: Steve Plimpton, Richard Schiek, Christy Warrender,
Robert Bondi, Fred Rothganger

Application areas: Tim Draelos, Justin Doak, Jonathan Cox

Strateqgic partnerships:

Algorithms: Mark McLean — Laboratory for Physical Sciences, U. MD
Architecture: David Follett — Lewis Rhodes Labs

Hardware: Tarek Taha — U. of Dayton, R. Stanley Williams (HP)




SNL Facilities — Microelectronics ()
and High Performance Computing

Laboratories

Microsystems and Engineering Red Sky Supercomputer

Science Applications (MESA) - 264 Tflop Linux cluster with Infiniband, 2.93 GHz Intel
- Trusted ASIC design foundry (350,180,130, 90nm) Nehalum processors, 2846 nodes—22584 cores
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HAANA project structure
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Algorithms Core Objective - Theory ) e,

1. Devise machine learning algorithms with functional neural concepts
= SpikeSort: trade space for computational complexity (time domain);
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Algorithms Core Objective - Design ) e,

2. Incorporate neuroscience concepts (e.g. structural plasticity) to provide
machine learning methods with novel capabilities (e.g. evolving feature sets)

Neural computation: creation of new features
based on changes in context, Aimone et al. 2011
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Algorithms Core Objective - Model ) i,

3. Extract novel algorithms from neural circuit models

= multimodal integration and historical context referencing
based on hippocampal circuit
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Deng, Aimone, and Gage, 2010
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HAANA project structure
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Architecture
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Architecture Core Objective - Build rh) i

Laboratories

1.  Demonstrate the extreme scaling potential of neural-inspired

architectures

- leverage previously developed emulator for an FPGA implementation

Conventional CPU: Temporal DPU (tDPU):
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Architecture Core Objective - Model ) i,

2. Co-design novel neural-inspired algorithms and architectures that
enable solutions for previously intractable problems
- matrix multiply and accumulate operations for weight updates,
correlation calculations, etc.

matrix input
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Architecture Core Objective - Design ) e,

3. Develop and demonstrate integrated processing
and learning architectures; ke?_"'ftﬁb.‘)dcs L?!jf_
- feature extraction & learning; threat features for weight
training; develop stDPU for multi-dimensional data
processing
extracted
features
processing learning stDPU
Dat External Action Potential
ama, tDPU Crossbar —> Connection/Efficacy Maps
classification e z
|
dd dat Temporal 1
a update Integration
new rules weights »
adaptation
known rules

Leaky Integrate & Fire
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HAANA project structure ) i,




Resistive switching device architecture )
for algorithm performance improvement

= Simulations demonstrate significant power savings with a resistive
switching-based HW accelerator

= 16x reduction in power, 6x improvement in performance/area
over SRAM ASIC

Example 1: 25.600 neurons
100,000 iterations/s
Chip Power
# of area % Power eff. over

chips mm?) active Xeon

Configuration

Memristor Analog (config 4) 1 5.9 38.6% 0.07 234,859
Memristor Digital (config 5) 1 18.2 89.6% 0.62 16,968
SRAM (config 6) 1 29.1 89.6% 1.13 8,215
NVIDIA M2070 12 529.0 99.2%  2700.00 6
Intel Xeon X5650 179 240.0 99.9% 17005.00 1
T. Taha, R. Hasan, C. Yakopic, M. McLean, in Proc. IEEE Intl. Joint Conf. on Neural Networks, 2013. UNIVERSITY of

()q DI o)

The Laboratory for Physical Sciences DAYTON




Learning Hardware Core Obijective -

1. Capture the impact of thermal and e-field driven effects
on device switching, resiliency, and precision
a) s N
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Learning Hardware Core Objective - Build

2. Leverage SNL's resources to design, fabricate, and characterize
resistive switching devices to assemble learning hardware

&
Vil 3

Mickel et al. A. Talln et al.




Learning Hardware Core Objective - )
Measure

3. Leverage SNL's resources to design, fabricate, and
characterize resistive switching devices to assemble
learning hardware
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Mickel et al., Adv Mat 2014, in press
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Integration - learning algorithm accelerator rh) i,

= Learning is computationally intensive UNIVERSITY
= Crossbar architectures are well suited to accelerate :

multiply-and-accumulate operations and store DAYJON  'erevermenferrhscaisences
weights - demonstrate with candidate algorithms

e L ELEEEVELEEEEEEEELELEELEEELEL L ] NxM matrix input

Xbar learning ==
circuit: =— -

m— Single CMOS/Memristor

— Multiply Accumulate Cel DACs (optional)
| Tt T T T T T T T T T T T T T T T T T K — S
X . -2V ——— A N T 1

| |
I Ay : — | x .
: —.—"U"—*ﬂ. I — 2 \/Z/K‘ I —\,Z/l‘
| X oWy 20V | — l W2 | w2 Wax
I —0—1 B ! — | le
-4 o l NN W]
X T UHANHRHARERAN AN o
! nputs &t | Y LLLCLTEE LRI TET S | w,S w2 5 Wax
| X W :| v : N-dimetnsion DACs |X2 :
2 | . vector opt
: o— v 1] - Direction : input (opt) I W33 | Wa2 V-\::Z/l.
| 1] 1
I Ix .
l i & 2 ! N Wl
_______________________ 1 | Wy,) [ Wy 2 Wi x b
X we +0.2v | | I
=TT T s e " o—h I
»— | | | 1 I | 1 | 1
20v e : | |
' | | I
: I
I

£
§

i
%‘g l
i
H
5

~ 4
—— +02v
2

| output 'y

________________________




Outline

HAANA — hypothesis and objective
« Data-driven computing

* Neural-inspired computing
Landscape and differentiation
HAANA project structure

= Algorithms Core

= Architecture Core
= |Learning Hardware Core

Conclusions

Sandia
National
Laboratories




National

Conclusions i) faona

= Focus on novel algorithm development for data processing, feature
extraction, data fusion, and dynamic context integration

= Leverage existing architectures and integrate capabilities to build a
threat detection platform capable of online learning

= Model, design, and build hardware that maps onto the algorithm and
architecture structures that have been developed, with a focus on
accelerating data processing and learning computations, and on
improving SWaP and time constraints




