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The problem

 Detect sophisticated threats to national security
 Space / airborne: size, weight, power constrained

 Cyber: time constrained, rapidly evolving

 Current techniques
 Require human analysts to scale with the data

 Rely on ever-increasing computation time and power

 Evolutionary improvements in current performance are 
not sufficient!
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 Data is fed into the system and classifications, regressions, etc. are
produced to “understand” data

 No need to develop equation-based numerical models;

 Train instead of explicitly program

 Robust to variability and outliers, adaptable to dynamic data

Object recognition problem:

C. Lampert, VRML 2013

There is a strong need for data-driven computing

Quatch, SNL 2014
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 Equation-driven approaches are used when the fundamental
principles are well-understood → not always the case

 Issues: require large amounts of labeled data, difficult to instantiate
in hardware, slow to train, have difficulty handling “spontaneity”

Hu et al., Env Manag
Health, 1995 U. East Anglia Speech Group, 

www.uea.ac.uk/computing

Machine learning approaches are data-driven

A resurgence in neural machine learning research has addressed many problems…
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Deep learning networks: Hinton lab,
NIPS 2009, ICML 2012

Moore’s law has enabled many advances in neural machine learning approaches…

Incorporation of neural-inspired concepts 
has shown promise…

Receptive fields and convolutional nets:
Hubel & Wiesel 1962, Fukushima 1980
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Neural-inspired algorithms are well-suited 
for detecting intelligent threats

 Multi-sensor data fusion is directly incorporated into neural computation
 Historical and contextual information are inherently integrated

Mante et al., Nature 2013, 503, 78: 
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Long history of hardware innovation 
targeting neural-inspired computing

Arvin Calspan Advanced Technology Center; Hecht-Nielsen, R. Neurocomputing
(Reading, Mass.: Addison-Wesley, 1990); Cornell Library;

Mark I Perceptron (Rosenblatt 1960):

www.cyberneticzoo.com; Gregory Loan

SNARC; Minsky 1951: Neural chip (Graf 1990); DARPA , IBM TrueNorth (2014):

EU HBP, SpiNNaker (2014):
Electronic cochlea
(Lyons and Mead 1988); 
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Limitations of the current state-of-the-art

 Current hardware tends to be…
 Highly specialized for specific problems

 General purpose and relatively inefficient

 Current algorithms tend to rely on…
 Large amounts of labeled training data 

 Static decision boundaries

 Rapidly evolving, evasive threats are 
not the focus of academic or 
commercial research

Dahl, IEEE Trans Aud Speech Lang Proc 2012

Merolla (IBM), Science 2014
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A different approach is needed

 Moore’s law is ending and data 
volume is increasing

 Algorithm development is needed

 e.g. statistical learning theory → 
support vector machines

 Novel hardware development is 
needed
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HAANA’s Hypothesis and Objective

 Hypothesis: There exists a class of machine-learning
methods, used in conjunction with neural-inspired
algorithms and learning hardware, that will reduce
computation time and power consumption by orders of
magnitude in national-security applications.

 Objective: Leverage Sandia’s unique capabilities to
build and deploy the first versatile neural-inspired
computing system that addresses Sandia’s core Mission
Challenges
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The need for HAANA

 We need to transition machine learning from the quasi-static time 
domain into highly dynamical and multi-modal domains

 We need algorithms that leverage recent neuroscience developments 

 We need hardware that can handle the temporal complexity of neural 
algorithms
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Real-time, low-power, small footprint, 
embedded threat-detection system

Neural architecture emulations: ≥ 3 orders of magnitude 
improvements in speed, $, power consumption 
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HAANA project structure
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Full Team

Strategic partnerships:
Algorithms: Mark McLean – Laboratory for Physical Sciences, U. MD
Architecture: David Follett – Lewis Rhodes Labs
Hardware: Tarek Taha – U. of Dayton, R. Stanley Williams (HP)
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Microsystems and Engineering

Science Applications (MESA)
- Trusted ASIC design foundry (350,180,130, 90nm)

SNL Facilities – Microelectronics 
and High Performance Computing

Red Sky Supercomputer
- 264 Tflop Linux cluster with Infiniband, 2.93 GHz Intel

Nehalum processors, 2846 nodes→22584 cores
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Algorithms Core Objective - Theory

1. Devise machine learning algorithms with functional neural concepts

 SpikeSort: trade space for computational complexity (time domain); 

Threshold

t = 2

Spike
Threshold

t = 5

Spike

Threshold

t = 1

Spike

…
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Algorithms Core Objective - Design

2. Incorporate neuroscience concepts (e.g. structural plasticity) to provide 
machine learning methods with novel capabilities (e.g. evolving feature sets)
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Algorithms Core Objective - Model

3. Extract novel algorithms from neural circuit models

 multimodal integration and historical context referencing 
based on hippocampal circuit

Deng, Aimone, and Gage, 2010

Visual 
Sensor

Auditory 
Sensor

Olfactory 
Sensor
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Architecture Core Objective - Build

1. Demonstrate the extreme scaling potential of neural-inspired 
architectures

- leverage previously developed emulator for an FPGA implementation

Mapping/Efficacy Memory

Temporal/Spatial Memory

Integrators

Input

Memory

Control
Unit

Arithmetic
Logic Unit

Input Output

 Complex processor core

 Simple memory

• Simple processor core

• Complex memory

Temporal DPU (tDPU):Conventional CPU:
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2. Co-design novel neural-inspired algorithms and architectures that 
enable solutions for previously intractable problems
- matrix multiply and accumulate operations for weight updates, 
correlation calculations, etc.

30

Architecture Core Objective - Model



Architecture Core Objective - Design

3. Develop and demonstrate integrated processing 
and learning architectures; 

- feature extraction & learning; threat features for weight 
training; develop stDPU for multi-dimensional data 
processing

Data
Crossbar

classification

tDPU

known rules

add 
new rules

update 
weights

extracted
features

processing learning

adaptation
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 Simulations demonstrate significant power savings with a resistive 
switching-based HW accelerator  

 16x reduction in power, 6x improvement in performance/area 
over SRAM ASIC

T. Taha, R. Hasan, C. Yakopic, M. McLean, in Proc. IEEE Intl. Joint Conf. on Neural Networks, 2013.

Resistive switching device architecture
for algorithm performance improvement
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Mickel et al, Adv Mater 26 4486 2014

Learning Hardware Core Objective - Model

1. Capture the impact of thermal and e-field driven effects
on device switching, resiliency, and precision
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Learning Hardware Core Objective - Build

Mickel et al. A. Talin et al.

2. Leverage SNL's resources to design, fabricate, and characterize
resistive switching devices to assemble learning hardware

Au

LixCO2

Si
I/V
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3. Leverage SNL's resources to design, fabricate, and
characterize resistive switching devices to assemble
learning hardware

Au

LixCO2

Si

37

Pt

TaOx

Pt

Ta



Integration - learning algorithm accelerator

 Learning is computationally intensive 

 Crossbar architectures are well suited to accelerate 
multiply-and-accumulate operations and store 
weights - demonstrate with candidate algorithms

Xbar learning 
circuit:
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Conclusions

 Focus on novel algorithm development for data processing, feature 
extraction, data fusion, and dynamic context integration

 Leverage existing architectures and integrate capabilities to build a 
threat detection platform capable of online learning

 Model, design, and build hardware that maps onto the algorithm and 
architecture structures that have been developed, with a focus on 
accelerating data processing and learning computations, and on 
improving SWaP and time constraints
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