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Abstract—The field of machine learning strives to develop
algorithms that, through learning, lead to generalization; that is,
the ability of a machine to perform a task that it was not explicitly
trained for. An added challenge arises when the problem domain
is dynamic or non-stationary with the data distributions or
categorizations changing over time. This phenomenon is known
as concept drift. Game-theoretic algorithms are often iterative
by nature, consisting of repeated game play rather than a single
interaction. Effectively, rather than requiring extensive retraining
to update a learning model, a game-theoretic approach can adjust
strategies as a novel approach to concept drift. In this paper we
present a variant of our Support Vector Machine (SVM) Game
classifier which may be used in an adaptive manner with repeated
play to address concept drift, and show results of applying this
algorithm to synthetic as well as real data.

I. INTRODUCTION

Machine learning was originally defined in 1959 by Arthur
Samuel as a “field of study that gives computers the ability
to learn without being explicitly programmed [1].” With this
goal in mind, a wide variety of techniques have been developed
such as artificial neural networks, clustering algorithms, and
statistical techniques. Many of these approaches are analogous
to the subfield of mathematics that is differential equations.
Unlike calculus in which the properties of a known function
are analyzed to find regions of interest such as extrema, with
differential equations the function relating the variables of
interest is unknown and various techniques are employed to
find a function which describes the dynamics of the problem
domain. Machine learning algorithms likewise seek to infer
a solution, whether that be neural network weights or distri-
bution priors, such that the algorithm can perform tasks like
classification for example, without having been given the fully
known (and thus explicitly programmable) algorithm up front.
Machine learning has had great success in a wide variety of
applications such as voice recognition, computer vision, and
signal processing.

A key limitation to these approaches arises when the data
provided for the machine learning algorithm to learn from
is dynamic or non-stationary. There are numerous scenarios
under which the data generating process a machine learning
algorithm is attempting to learn is non-stationary. This may be
due to changes in the data over time, known as concept drift
[2]. There are two primary categories of concept drift, virtual

and real. In a virtual concept drift setting, changes occur in the
underlying data distribution feature space (which may drive a
need to update the model) [3]. This is also termed sampling
shift [4]. For example, in comparing automobile statistics over
time fuel efficiency and weight are two metrics which have
changed historically with advances in technologies, variability
in materials used, as well as consumer interest at a given time
period (i.e., whether sport utility vehicles or sports cars are in
demand). In the presence of virtual concept drift, it is possible
for the learned decision boundary to change over time even
though labeling of previously seen samples do not change. It
may also be the case that not all of the data is available a priori
(whether due to recording limitations or other availability
constraints). Several examples of virtual concept drift will be
used to demonstrate the utility of the game theoretic classifier
described in this paper. Semi-Supervised Learning (SSL) al-
gorithms are another approach for addressing data availability
constraints where unlabeled data is used in conjunction with
labeled data for training a classifier [5]. The limited labeled
data available a priori is used to make inferences about the
additional unlabeled data, and both are subsequently used to
train a classifier. SSL algorithms are similar to incremental
learning in the sense that through iterations data is refined
as the classification model is updated. Alternatively, in the
real concept drift paradigm (also known as concept shift), the
concepts themselves are changing and this may be irrespective
of the underlying data distribution [3]. Or in other words,
real concept drift is a change in the class space where data
points may change their class membership over time. As an
example, buyer preference models evolve as consumers watch
more media or attain more products. Furthermore, the rate at
which concept drift occurs may be characterized broadly as
sudden or gradual.

There are three general approaches to addressing concept
drift: instance selection, instance weighting, and ensemble
learning [6]. Instance selection approaches define a window
over which the model is applicable. Instance weighting ap-
proaches assign significance to data by various means, and take
this significance into account regarding how or if models are
updated. And finally, ensemble learning approaches construct
multiple models which are combined (typically by weighting
or voting) to yield the model output [6]. Depending upon
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the problem at hand and the approach employed, it may not
always be feasible to generate a new machine learning model
as the data is updated or changed. Doing so may necessitate re-
training a neural network and may be a slow, computationally
intensive procedure. Rather, it is desirable to be able to adapt
and update models so they may be continued to be used.

In the following sections we will give an overview of how
the mathematics of game theory addresses the problem of
dynamic opponent strategies and changing preferences through
repeated games. We then present our Support Vector Machine
(SVM) Game classifier and describe how a variant may be
used in an adaptive manner with repeated play to address
virtual concept drift as an instance weighting approach. We
then show results of applying this adaptive algorithm to
synthetic as well as real data.

II. REPEATED PLAY IN GAME THEORY

Game theory is a branch of applied mathematics used to
formally analyze the strategic interactions between competing
players [7][8][9]. As such, game theory has been applied to
a wide variety of real world domains such as international
relations, business and military tactics, as well as auctions
and elections [8]. Machine learning problems encapsulate
various forms of conflicting interactions. Classification tasks,
for example, are based upon the premise that a decision must
be made to choose how a given input should be classified.
While to many this may not seem like a canonical domain
for game theory, it is quite amenable in the sense that a
strategic decision must be made, and data points or classifiers
(depending upon how the problem is cast) can be shown to
behave rationally. Decision boundaries are often optimized to
minimize classification error and in that sense are competing
against one another to be the resulting discriminant. Data
points which provide the basis upon which a classifier is
trained influence the shape, orientation, or position of discrim-
inant boundaries.

Consequently, in a concept drift situation this implies the
classifier must be able to adapt accordingly. In game theory,
this is analogous to players adjusting their strategies over
time. Rather than repeatedly playing a losing, or suboptimal,
strategy it is often the case that players will adjust their play
(assuming they are not in an equilibrium setting where unilat-
erally changing their behavior cannot improve their expected
payoff). Rather than a single shot game in which the players
interact only once, repeated games examine long term interac-
tions. In this sense, players take into account the effect their
actions may have on opponent’s future behavior. Repeated
games may be finitely repeated or infinitely repeated. The
notion of taking into account long term interactions applies
to machine learning classifiers also because it is desirable to
have a classifier which generalizes well (as opposed to any
arbitrary discriminant which correctly classifies the data used
for training). And so, as follows we will describe our game-
theoretic SVM Game classifier first as a finitely repeated game,
and then discuss how as an infinitely repeated game it applies
to the concept drift paradigm.

III. SVM GAME

The SVM approach to learning, seeks to find the separating
hyperplane that maximizes the margin between the patterns
in the classes it is separating, and these patterns serve as
the support vectors [10][11]. Conceptually, this is similar to
taking into account the long term classification goal as opposed
to settling for the first discriminant which yields no training
error. Furthermore, Bennett et al. proved there is a geometric
interpretation which is equivalent to the dual of the canonical
quadratic optimization approach to SVM [12]. This approach
first constructs the convex hulls, the smallest convex set of
points which fully encompass the set, around each of the
data classes. Next it finds the closest points to each-other
on each respective convex hull. The resulting discriminant
is the perpendicular bisector of the line segment formed by
these points. Figure 1 illustrates both the fundamental SVM
principle as well as the geometric SVM approach. In the top
half of the figure, the green rectangle represents the margin
between the classes and the resulting discriminant is the black
line central to this region. The bottom half of the figure
depicts the identical discriminant resulting from the geometric
approach.

With a desired outcome or a goal in mind, game theo-
retic mechanism design develops a framework defining player
actions and the effect of these actions in efforts to attain
the desired goal [13]. Using the geometric SVM learning
paradigm as a desired goal, we have developed an iterated
game to identify which data patterns are closest to the op-
posing class and thus define the position and shape of the
resulting discriminant. Our SVM Game is a two player iterated
game where the data patterns are the players. The Condorcet
Method is a technique for aggregating the preferences of
multiple voters and determining a resulting decision by taking
into account pairwise comparisons. A Condorcet winner beats
every other candidate in pairwise comparison [14]. As a
Condorcet method, our game evaluates pairwise interactions
between data points. Each iteration of the game randomly
selects two players from the same class and one data pattern
from the opposing class. The pattern from the opposing class
is not a player in the game, but rather provides a reference to
determine which player is closer to the opposing class [15].
In canonical SVM, an alpha value (α) is a scalar multiplier
of the support vectors. All data points initially start with the
same finite amount of α, and through optimization the α is
redistributed to the support vectors in amounts corresponding
to their influence on the discriminant. Likewise, in our game,
each player (data point) starts with an initial (equal) quantity
of α. For each iteration of the game, competing players pass or
hold a percentage of their α. Individual players do not choose
which action to take (pass or hold), but rather their actions
are dictated by their proximity to the reference point from the
opposing class. In this sense, rather than players choosing a
strategy, their actions correspond to innate properties of the
players [16]. Fig. 2 shows the basic SVM Game algorithm
just described.



Fig. 1. Support Vector Machine Maximum Margin Principle and Equivalent
Geometric SVM

Fig. 2. Basic SVM Game Algorithm

Additionally, as an extension to the basic SVM Game,
a coalitional SVM Game provides stability as well as a
means of addressing non-linear problems. In this game variant,
each player (data point) has a coalition partner which is an

Fig. 3. Coalitional SVM Game Algorithm

affiliation of a data point with a single member of the opposite
class believed to be the closest member of the opposing class.
Coalition partners are one-way pairings which may be many
to one. Effectively, this builds coalitions within a given class
of the grouping of like-minded players who all agree upon the
preferred (closest) player of the opposing class. Every iteration
of the coalitional SVM game allows each interacting player
to consider the relative distance to both the reference point
from the opposing class as well as their coalition partner.
When all players in a given class form the same coalition,
they are in agreement as to which player is the closest point
amongst the opposing class and this unanimous Condorcet
winner allows a linear discriminant to be constructed if both
classes form single coalitions. If a unanimous decision cannot
be reached this illustrates that a Condorcet winner does not
exist and rather a non-linear solution is needed. In lieu of an
unanimous Condorcet winner, rather the irreducible coalitions
constitute Smith Sets which are a partitioning of the global
problem such that within each of the Smith sets there is a
local Condorcet winner [17]. Since each Smith Set consists
of a local unanimous Condorcet winner, a global non-linear
solution may be constructed by the composition of these local
solutions. The coalitional SVM Game algorithm is shown in
Fig. 3, and for more details regarding the SVM Game see [18].

The SVM Game is a class of algorithms, and we have
presented two versions (Basic and Coalitional) here. The
training phase consists of the selection of players and reference
point for a game iteration. The SVM Game class of algorithms
employs online learning since it only evaluates a single player-
player-reference triple at a time (as opposed to taking into con-
sideration all interactions simultaneously). For a static data set,
a batch training variant of the SVM Game may be used such
that an epoch comprised of desired player-player-reference
triples is selected a priori. The SVM Game would still iterate
upon a single player-player-reference triple at a time, but the
set of triples would be fixed. Doing so allows bounds to be
placed on the number of game iterations needed to converge to



a solution. Namely, in the worst case all players evaluate every
opposing class point as a reference. Such a Brute-Force SVM
Game requires O(n2) game iterations. A fixed epoch approach
is analogous to a finitely repeated game. However, just as
infinitely repeated games allow for the emergence of different
game dynamics than finitely repeated games, by playing the
SVM Game in an online training manner allows the SVM
Game to address non-static data. Rather than formulating a
fixed epoch of all triples to iterate over, by selecting these one
at a time the SVM Game employs online training. As follows
we present results with an online training paradigm.

IV. RESULTS

To demonstrate the merits of repeatedly playing the SVM
Game in a concept drift paradigm we have applied the Coali-
tional SVM Game on two sets of synthetic data as well as a
real world dataset. For our experiments using synthetic data
we started with initial Gaussian data distributions comprised of
two classes of separable data, each consisting of 25 data points.
We first ran the Coalitional SVM Game on this initial data
in an online training manner randomly selecting the player-
player-reference triple each iteration of game play. Next, to
simulate virtual concept drift, we added an additional 25 data
points to each class shifting the means of the data distributions
and resumed game play using the now larger datasets. Fig.
4 depicts the results of the dynamically changing concept
drift data rotating a linear discriminant. The top half of the
figure illustrates the initial data classes as well as the resulting
discriminant for the initial data. The lower half of the figure
illustrates the expanded data classes where each distribution
has drifted laterally. The original discriminant is shown as a
light gray dashed line with the updated discriminant depicted
as the horizontal black line shown.

As a second example of a more challenging virtual concept
drift scenario, we once again started with 2 Gaussian separable
distributions of 25 data points per class and ran the Coalitional
SVM Game. As we updated the distributions to simulate
concept drift, while one of the classes simply expanded about
its mean, we made the other distribution bimodal. Fig. 5
illustrates the original linearly separable data in the top half
of the figure as well as the updated data in the bottom half.
As shown, the original discriminant is not simply rotated as
before, but rather is updated to become a piecewise linear
discriminant.

In addition to synthetic data, we have also applied the SVM
Game algorithm to real world data showing concept drift over
imbalanced sets with the drift occurring across a temporal
progression. The Auto MPG Data Set provides automotive
statistics for 398 vehicles from 1970 to 1982 [19]. From this
dataset we extracted the four and eight cylinder vehicles as
our data classes. For illustrative purposes we also reduced
the dimensionality of the problem to two, focusing upon the
vehicle weight and fuel economy as our features. Partitioning
the data temporally allows us to use this data in a concept
drift setting such that over time technological advances have
led to increased fuel economy and changes to vehicle weight.

Fig. 4. Dynamically Changing Data Rotating a Linear Discriminant

We have divided the data into three temporal segments: 1970-
1974, 1970-1979, and 1970-1982 where each partition extends
the prior partition with the addition of the data from the
ensuing years. Fig. 6 depicts the three temporal segments as
well as the resulting non-linear discriminants.

V. DISCUSSION

In the results we have shown here, operating the SVM Game
in an online learning paradigm through repeated game play
allowed the algorithm to update the classification discriminant
without needing to discard the current solution and start anew
with the addition of the concept drift data. This is not neces-
sarily the case for some learning algorithms. In its canonical
form, the fundamental SVM algorithm would need to re-run
its quadratic optimization problem on the expanded dataset.
Our SVM Game algorithm however, is able to update and
continue learning without discarding prior information. Some
learning algorithms, such as backpropagation, may lose for-
merly learned memories as they are updated to incorporate new
data. This ability to continue learning while retaining existing
information is known as the stability-plasticity dilemma. Since



Fig. 5. Dynamically Changing Data Curving a Discriminant

all individual game iterations are independent, the inclusion
of new data points does not invalidate the results of existing
games. Depending upon the placement of the new data points,
the preference orderings of players may change, and in effect
by playing future game iterations which involve the added
data points the players may update their coalition preferences
accordingly.

In a concept drift setting, the transformation of the data
dictates the resulting change, if any, to the SVM Game
discriminant. If the respective distributions of two classes
being differentiated drifted in a manner such that the boundary
between them does not change, then the new data may be
incorporated into the overall dataset without yielding any
new coalitions and effectively causing the discriminant to
change. However, when the updated data distributions cause a
change to the set of coalitions, this represents a change to the
boundary between the classes. As a result, the discriminant
yielded by the SVM Game changes accordingly. As our first
example illustrated (Fig. 4) the resulting effect simply rotated
the linear discriminant. It is also possible that the resulting

Fig. 6. Real World Automobile Data Example

transformation could reposition a linear discriminant. In either
case, a linear discriminant is generated when each class yields
a single coalition.

In more complex adaptations, a linear discriminant may
be adapted into a non-linear discriminant, or the shape of a



non-linear discriminant may change. A non-linear discriminant
arises from the presence of more than one coalition in at least
one of the classes. As our second example shows (Fig. 5),
what was originally a linear solution becomes a piecewise
linear curved discriminant as new coalitions are formed to
account for the emergence of a bimodal distribution through
concept drift. Specifically, in this example, classes C+ and
C− both expanded from one to three coalitions each. Our third
example on real world data (Fig. 6), illustrates a scenario in
which multiple coalitions already exist, yielding a non-linear
solution, however as the coalitions change likewise so does
the non-linear solution. New coalitions may emerge and/or
existing coalitions may be subsumed to change the curvature
of the non-linear discriminant. In the automotive example,
across the temporal segments the number of coaltions for four
cylinder and eight cylinder automotive classes respectively was
{2,1}, {3,3}, and {4,5}. In transitioning from the first temporal
segment to the second, the original two coalitions for the four
cylinder class are both subsumed by a new coalition closer
to the boundary between the classes, and two new coalitions
are added entirely. From the perspective of the eight cylinder
class, one of the newly formed coalitions is an already existent
data point in the first temporal segment. However, while the
topological configuration in the original data distributions did
not result in it being a coalition originally, with the changes
to the distributions arising from concept drift it became a
coalition in the second solution. The additional two coalitions
are a newly formed coalition from the new data as well as
the continued presence of the original coalition in the first
temporal segment.

Not only may concept drift shift, rotate, or transform a
discriminant based upon the resulting impact on the under-
lying coalitions, but additionally the dynamic behavior of the
distributions may introduce noise or cause the distributions to
overlap. We can address this issue with the SVM Game using
preprocessing approaches such as the Kernel trick and Wilson
edits. The Kernel trick is a method commonly employed by
SVM to address both non-linear and non-separable problems
[20]. Developed by Vapnik et al., the Kernel trick casts the
data from input space to a higher-dimensional feature space
[10]. The goal of this dimensionality increase is to transform
the data, using an appropriate kernel, to a domain such that the
data is linearly separable in the higher-dimensional space and
can be addressed using the standard SVM algorithm. Impor-
tantly, kernel functions are posed such that the dimensionality
of the problem itself is not increased (effectively increasing
the computational complexity as well as incurring the curse of
dimensionality) but rather a distance metric is computed (via
dot products) in the higher dimensional space. Consequently,
this same approach may be employed in the SVM Game
to compute distances between data points as a fundamental
operation of the game play.

The Wilson edits method operates upon labelled data and
uses an unsupervised clustering method such as k-Nearest-
Neighbor (kNN) or k-Means to identify irregularities in the
data [21]. By running the desired clustering algorithm on

the data distribution a classification is generated for each
data point. The points whose labelled classification contra-
dicts the unsupervised clustering classification are identified
as extraneous (whether they are noise, overlapping points,
inconsistent data, or simply misclassified) and are removed
from the data set for subsequent processing by the SVM Game.
By applying techniques such as these, the SVM Game may
then address noisy and overlapping data introduced through
concept drift. For example, in the real world automotive data,
the second temporal segment introduced a few overlapping
points between the four and eight cylinder classes. By applying
the Wilson edits approach using k-Nearest-Neighbor these
overlapping boundary points were removed and the coalitional
SVM Game was run on the subsequent separable data.

The examples we have shown in this paper are only in two
dimensions for visualization sake. The SVM Game algorithm
however simply relies upon a distance function and may be
applied to higher dimensional problems as desired.

VI. CONCLUSION & FUTURE WORK

In game theory, repeated games provide a means of as-
sessing long term interactions. By extending game play to
include potential future interactions players must take into
account more than just the immediate consequence of their
chosen actions. The question thus arises, at what point should
a player change their strategy? In many cases this is driven
by trigger effects, threats, and reciprocity [8]. In the context
of the concept drift paradigm one must likewise address at
what point should a classifier or model be updated. Much like
a trigger effect may cause a player to switch their strategy
in response to the play of an opponent, one technique is to
use an existing classifier until an acceptable error tolerance is
exceeded at which point the classifier must be updated.

Or alternatively, rather than basing the trigger upon clas-
sification accuracy, one may also view the addition of data
points (unbeknownst of whether they further consolidate or
alter the existing data distributions) as a trigger. It is this later
approach we have presented in this paper although the first
approach could be employed with the SVM Game as well.
In all of our results shown here, having received the first
set of data, the coalitional SVM Game is able to run until
the coalitions stabilize as a heuristic based stopping criteria.
Upon receiving the subsequent data, the algorithm resumes
and once again is run until the coalitions stabilize to yield the
updated discriminant. Although the coalition partners learned
in a prior phase of data are retained in the subsequent phases,
for these examples, we have re-initialized all alpha when
adding subsequent data sets. Alternatively, the existing alpha
values could be re-normalized to allow alpha to be distributed
to the new points while maintaining the relative alpha scaling
already learned.

In the work we have presented here, all data points are
equally likely to be selected as players in a given game
iteration. But while triggering effects in game theory result
in changes in strategy, it is not always the case that the
strategy change is indefinite. Rather, a temporal window



may be employed upon which the new strategy is applied.
Likewise, rather than including all data points in the SVM
Game whenever an update is triggered, it may be possible
to employ various approaches such that particular data points
are more likely to be selected based upon factors such as
a temporal component or their significance. The canonical
SVM algorithm fundamentally only relies upon a subset of
data (the namesake support vectors). These influential data
points are not known ahead of time or the solution would
not need to be computed. In the work by Klinkenberg, he
applied the canonical SVM algorithm to concept drift by using
an adaptive time window on training data and by weighting
training example importance to cut down the computational
cost of rerunning the SVM algorithm as the data drifts [22]. As
future work, we can apply similar approaches to the selection
of players involved in a game iteration as well as the retention
of coalitions. For example, just as Klinkenberg utilizes an
adaptive time window, the temporal recency of data points
may influence their selection in an iteration of the SVM
Game. And similarly, if only the most temporally recent data
points are included in the SVM Game, likewise a recency
component may be incorporated to drop old coalitions if they
do not pertain to the recent data. Furthermore, Klinkenberg
also employs example weighting approaches in which instead
of simply using a temporal weighting, data is evaluated based
upon other heuristics such as how representative they are of the
class. Applying such techniques in the SVM Game could be
based upon factors such as the amount of alpha players have
or the relative strength of their coalition. Ultimately, applying
these or related techniques would complement the Klinkenberg
work by applying their techniques to the SVM Game as an
alternative to the canonical SVM algorithm. Doing so has
potential benefits such as the distributed nature the SVM Game
confers as well as its innate approach to concept drift through
repeated game play. Approaches such as these which constrain
the availability of data are examples of stream classification
algorithms.

Additionally, the SVM Game could also be utilized as a base
classifier within general concept drift frameworks such as the
Learn++.NSE ensemble approach and the Just-in-time (JIT)
classifier [23][24]. The Learn++.NSE framework is a batch
learning ensemble approach that is incrementally trained. As
data is received, a new classifier is trained and incorporated
within the ensemble. The Learn++.NSE framework is not a
classifier itself, but allows for a desired base classifier to be
used. As such, the SVM Game may be utilized as the base
classifier within the Learn++.NSE framework. Likewise, the
JIT classifier is a general framework which in the absence
of detected concept drift (i.e. the world is stationary) uti-
lizes newly received information to improve upon its current
classification accuracy. Upon detecting concept drift through
change-detection tests (CDTs), a new concept representation
is created and incorporated within the overall classifier. Using
the SVM Game as the underlying base classifier confers the
possibility of relating the CDT with the intrinsic operation of
the SVM Game itself, such as based upon coalition related

trends. And furthermore, the SVM Game would provide addi-
tional techniques for updating, splitting, or merging concepts
based upon the SVM Game-play directly.

Besides experimenting with various means of constraining
data availability and using the SVM Game as the base classifier
for general concept drift frameworks, we would also like to
assess repeated play of the SVM Game on higher dimensional
data as well as standard concept drift datasets such as SEA
and RBF Generator with respect to synthetic datasets, and
the Email Spam real-world dataset [3]. The Random RBF
Generator dataset may be particularly interesting as Scholkopf
et al. have shown how the canonical SVM algorithm may
be used to train a Radial Basis Function (RBF) network by
relating support vectors to RBF centroids [25]. Consequently,
as an iterative and adaptive approach to SVM, the SVM Game
may be quite amenable to this dataset.

In essence, the ability for the SVM Game to operate upon
dynamic data is evident by the proof of convergence to the
geometric SVM linear solution when a unanimous Condorcet
winner exists given in [18]. This inductive proof iterates over
data set size, starting with two points in a data class as the base
case and showing the algorithm properly addresses all possible
placements of further data points. Just as the inductive proof is
based upon the premise of correctly handling the addition of
new data points in an agglomerative manner, given sufficient
game iterations, a non-stationary dynamic data set is simply an
extension of this notion. Since the SVM Game iterations are
independent of one another, while the SVM Game has not yet
converged, data points which have not been included in any
game iterations, but are known a priori to the algorithm are
fundamentally equivalent to new data. The use of the math-
ematics of game theory and mechanism design in relation to
machine learning problems such as classification provides de-
scriptive insight as well as functional benefit. Game-theoretic
algorithms are often iterative by nature, consisting of repeated
game play rather than a single interaction. Effectively, rather
than requiring extensive retraining to update a learning model,
a game-theoretic approach can adjust strategies as a novel
approach to the concept drift problem. As presented here, by
operating in an online learning and online training paradigm
the SVM Game algorithm through repeated game play is well
suited for adaptive classification such as virtual concept drift.
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