SAND2015- 3238C

An Investigation of Compiler Vectorization on Current and Next-generation Intel
Processors using Benchmarks and Sandia’s SIERRA Applications

Mahesh Rajan’, Doug Doerfler?, Mike Tupek®, Si Hammond*
!Sandia National Laboratories, ?Lawrence Berkeley National Laboratory
mrajan@sandia.gov, dwdoerf@Ibl.gov, mrtupek@sandia.gov, sdhammo@sandia.gov

Abstract— Trinity, a Cray XC40, with over 19,000 nodes
utilizing Intel Haswell and Intel Knights Landing (KNL)
processors is the first of NNSA’s new Advanced Technology
Systems (ATS-1) procured by ACES, the partnership between
Los Alamos National Laboratories (LANL) and Sandia
National Laboratories (SNL). Phase-1 of Trinity with only the
Haswell nodes is anticipated to be installed in mid-2015 and
Phase-2 with KNL nodes in the spring of 2016. Effective
vectorization of our applications, to take full advantage of the
AVX2 vector units on each core of Haswell and the two 512-bit
vector SIMD units on each core of KNL, is an important
performance goal on Trinity. We carry out a systematic study
of vectorization using Cray, Intel and GNU, compilers. The
study includes micro-benchmark mini-applications and a set of
important kernel operations from Sandia’s SIERRA
Mechanics applications suite. Cray compilers on Haswell give
the lowest value for the total (sum) time of the 151 loops in the
TSVC vectorization benchmarks, achieving on the average
close to 3X gain in performance. For the LCALS benchmark
Intel compiler out performs Cray and GNU in similar
measures. For the SNL SIERRA Mechanics complex compute
kernels like eigenvalue and material model computations, we
present approaches to achieve significant (up to 50%b)
performance improvement. This study highlights the benefits
and limitations of different compilers and the alternate
approaches we may need to take full advantage of the
promised performance with newer SIMD vector units on Intel
processors.

Keywords; KNC, KNL, Haswell, Vectorization, performance
optimization

. INTRODUCTION

An important element in extracting optimal performance
out of the current generation of CPU architectures and
systems requires us to take advantage of the wide SIMD
registers. Approaches to achieving effective vectorization
can vary in effort and complexity starting from simple use of
compiler switches, calls to optimized library functions,
writing assembly code or calling intrinsic functions that
mimic assembly instructions. For HPC systems the effort in
tuning for the CPU typically benefits performance on hybrid
systems with accelerators like the Xeon Phi or NVIDIA GP-
GPUs. For complex multiphysics codes suites like the SNL
SIERRA Mechanics package, efficient vectorization of the
compute intensive kernels can be quite involved. A good
understanding of the kernels and data structures goes a long
way when faced with this task for applications with
thousands of source code files and functions. Getting
compilers to recognize opportunities for vectorization with
and without some assistance from the code developer (in the

form of directives) is a high priority for our applications.
From this perspective a comparative evaluation of the three
compilers that are likely to be used by ACES code
developers, namely: Intel, GNU and Cray, is of benefit to our
user base. Towards this objective we evaluate the three
compilers using the TSVC benchmark [1] and the Livermore
Kernels benchmark LCALS [2] on Intel processors: Ivy
Bridge, Haswell and Knights Corner (KNC). The
performance gain seen with these processor architectures,
with different SIMD units (AVX, AV X2 and MIC-AV X512
respectively) are investigated.

If the compiler provides good auto-vectorization for
important kernels it allows effective optimization of a wide
range of codes without requiring a large effort or in depth
understanding of the microarchitecture. Compiler unrolling
and peeling of compute intensive loops combined with the
generation of packed SIMD instructions is our preference.
We attempt to identify situations where a programmer may
be able to help the compiler vectorize more loops through
simple modifications to the program and by explicit help
through compiler directives.

This study also investigates a set of compute intensive
loops from Sandia’s SIERRA Mechanics application suite
[3]. An approach developed by the SIERRA Solid
Mechanics code team is the creation of an abstraction layer
called SimdLib which, by directly using SIMD intrinsics,
assures good performance for the loops on all compilers
independent of their ability to auto-vectorize. However, we
also show that when auto-vectorization is aided with
judicious insertion of pragmas it often leads to best possible
performance because the compiler is able to take full
advantage of loop optimizations and hardware features.

Il. TSVC AND LCALS BENCHAMRK

The TSVC (Test Suite for Vectorizing Compilers)
benchmark was originally developed by Callahan, Dongarra
and Levine [4]. The version used for this study is an
extended version developed by Maleki, Gao, Garzaran,
Wong and Padua [5]. The extended version took the
original version, converted it from Fortran to C and aligned
all arrays to 16 byte boundaries. In addition, 23 new loops
were added and 7 loops removed that the authors
determined were obsolete. The extended version has 151
loops. We chose this benchmark as it provides a somewhat
pathological collection of relatively simple loops that could
be found in many scientific C codes and forms a good basis
for compiler expectations as we explore more difficult code

mailto:mrajan@sandia.gov
mailto:dwdoerf@lbl.gov
mailto:mrtupek@sandia.gov

segments found in real applications. We modified the array
alignment parameter to 64 bytes in order to accommodate
512-bit SIMD units used in the Intel Knights Corner. This
same alignment was used for Ivy Bridge and Haswell (256-
bit SIMD units) for consistency.

The LCALS (Livermore Compiler Analysis Loop Suite)
benchmark suite was developed by Rich Hornung at
Lawrence Livermore National Laboratory. This suite was
chosen as one of our benchmarks because it represents loops
and “kernels” taken, or derived from, real codes. LCALS
consists of three variants for testing different programming
and execution constructs, and hence different aspects of a
compiler’s performance. The first variant employs
traditional C/C++ for-loop syntax and is referred to as
“Raw” variants. Other variants explore more complex C++
methods such as functors and lambda functions; these were
not explored because the Cray C compiler does not support
lambda functions at the time this work was performed. The
suite also contains loop variants implemented with
OpenMP; these were not explored, as we were only
interested in the vectorization aspects of the compiler and
not the interaction of OpenMP and vectors. For the “Raw”
variants, the suite is broken into three subsets. The subset
“A” represents loops representative of those found in
application codes. Subset “B” is a collection of basic loops
that help to illustrate compiler optimization issues. Subset
“C” is extracted from “Livermore Loops coded in C”
developed by Steve Langer, which was derived from the
original Fortran “Livermore Loops” by Frank McMahon.
Modifications to the original source code included: Setting
num_suite_passes to 3; setting run_loop_length to false for
LONG and MEDIUM test cases; commenting out all
references for lambda function and OpenMP variants; and
setting the cache size parameter to 30 MB. For the Intel
Knights Corner tests the value of LCALS_DATA_ALIGN
was set to 64 bytes to support the 512-bit SIMD unit. The
default value of 32 bytes was used for Ivy Bridge and
Haswell studies. For this initial study, we only performed
the SHORT loop length case because we feel this is the
most challenging case for the compiler.

It is a difficult and tedious task to examine the compiler
generated vectorization reports for all 151 loops found in the
TSVC suite to determine which loops vectorized and which
did not. So we used the method of the Maleki et. al. [5]
study and did runtime comparisons between timings of code
generated with and without vectorization. The baseline
timings are made with optimization turned on, but
vectorization turned off. Note that since optimization is
allowed the baseline timings may employ automatic
compiler techniques such as inlining and loop unrolling. A
second set of timings with the same optimization flags plus
the appropriate vectorization flag set is collected and the
ratio of without vectorization and with vectorization is
calculated and compared to a threshold. If the ratio is greater

than 1.15 we say that the loop vectorized. If the ratio is less
than 0.85 we say the loop vectorized, but it is labeled as a
slowdown.

The benchmarks are serial implementations and hence
were run on a single core of the target processors and are
not memory bandwidth limited. The footprint of both
benchmarks is very small and the variable arrays of each
test loop should fit in at least the last-level cache of the
processors evaluated. The footprint of TSVC is ~2.5 MB
and LCALS is ~150 MB. Given these constraints, the results
should be truly representative of the potential performance
improvement of vectorization without the limitation of
being memory bandwidth bound.

For this study, we looked at three generations of Intel
processors, the Ivy Bridge processor which has a 256-bit
AVX SIMD unit, the Haswell processor with a 256-bit
AV X2 SIMD unit, and the Intel Knights Corner which has
an early implementation of the MIC-AVX512F (AVX3.1)
SIMD unit. For the Ivy Bridge and Haswell targets, three
compiler suites were evaluated, GNU, Intel, and Cray. The
details of each processor architecture and platform are listed
in Table 1. The compiler suites used are: Intel 15.0.2, GNU
gcc 4.9.2 and Cray compilers under Cray Programming
environment 5.2.40.

Table 1. Platforms and processors used

Processor Platform Name Specification/CPU

Ivy Bridge Edison, Morgan04 Intel(R) Xeon(R) CPU
E5-2695 v2 @
2.40GHz

Haswell Mutrino, Shephard Intel(R) Xeon(R) CPU
E5-2698 v3 @
2.30GHz

KNC Corner, Morgan04 Intel(R) Xeon(R) Phi
CPU @ 1.238 GHz

Table 2 summarizes the results of our study with the
TSVC benchmark that contains 151 total loops.
“Vectorized” are those loops that showed a speedup (>1.15),
or slow down (< 0.85), between without and with vector
optimization enabled. The “average speedup” includes only
those loops that “vectorized”, while “total time” is for all
loops. TSVC uses single-precision floats, so the expected
speedup is 16 for KNC and 8 for lvy Bridge and Haswell.
The Intel and Cray compilers did the best job, seeing a
speedup on 66% of all loops versus the GNU compiler’s
41%. The KNC results show speeding up 74% of all loops,
while slowing down 5%. The Cray compiler sees a slightly
higher number of loops that slowed down on the Haswell
processor, 6%. The “total time” metric is the aggregate time
spent in all 151 loops. For the Haswell, the Cray compiler
provided a 1.07 speedup over the Intel compiler, and a 1.28
speedup over GNU. For Ivy Bridge, the trend is

Table 2. Results of the TSVC benchmarks, 151 total loops

KNC Ivy Bridge w/AVX Haswell w/AVX2
Intel GNU Intel Cray GNU Intel Cray
vectorized 111 61 99 101 63 91 102
speedup 103 58 96 96 59 88 93
slowdown 8 3 3 5 4 3 9
average 8.04 2.87 2.47 2.80 2.82 2.60 2.88
speedup
total time 177.82 21.41 17.15 16.53 17.29 14.45 13.56
(min)
16

0

TTTT
O m O N o o o o g e O = M 0 = A MmN om > =
© 4 d g~ dmnm s NN~~~ A0 A d A g N mn 4> g Q
Lo e T B T T e O o IR o Y o N o I ¥ N o T o N Y o I o T 5 TR B o T o o R~ L~ | o =
[0 T e IR .o R ¥ TR .o TR ¥ T s T s T ¥ T ¥ T ¥ T 7 T 7 T o DL T 7o T .o R o o T ¥ TR ¥ TR ¥ TR oo T = >
v vy v v
Benchmark

Figure 1. Measured speed up for the 151 loops of the TSVC benchmark

approximately the same. The total time of the KNC
processor is significantly higher. This is due to the relatively
low performance of a KNC core, which is further penalized
by running only a single thread as the KNC requires at least
2 to 3 threads to achieve full instruction issue. A future
effort may look at threaded versions of the benchmark in
order to fully take advantage of current and next-generation
architectures that depend on multiple threads to exploit
maximum performance.

Figurel is a plot of the speedup with vectorization of the
151 loops in the TSVC benchmark. This plot shows the
speedup (> 1.15) and slowdown (< 0.85) for all loops that
“vectorized”. For the Intel KNC, the expected max speedup

is 16. There are two loops not shown that showed a greater
speedup, loops S314 (17.45), S3111 (20.30), S3113 (30.8).
It can be seen that for the Ivy Bridge and Haswell results
there are cases where the speedup is greater than the
expected value of 8, but there is little correlation with the
KNC results.

Table 3 summaries the results of the 30 loops of the
LCALS benchmark. LCALS uses double-precision floats,
so the expected speedup is 8 for KNC and 4 for Ivy Bridge
and Haswell. For LCALS, the Intel compiler provided the
best performance, vectorizing 53% of the loops for Ivy
Bridge and 57% for Haswell. The GNU compiler provided
the next best result with 30%, while the Cray compiler

& KNC/Intel
HIVB GNU
A IVB Intel
* IVB Cray
X HSW GNU
® HSW Intel

+ HSW Cray

Intel compiler vectorized significantly more loops, its
average speedup also includes 3 slowdowns.

achieved 20%. The Cray compiler showed a good speedup
on the loops it did vectorize on Haswell, 2.98X,
significantly higher than the Intel and GNU. Although the

Table 3. Results of the LCALS benchmark, 30 loops

KNC Ivy Bridge w/AVX Haswell w/AVX2
Intel GNU Intel Cray GNU Intel Cray
vectorized 17 9 16 6 9 17 6
speedup 17 8 16 6 8 14 6
slowdown 0 1 0 0 1 3 0
average 3.80 1.77 2.12 2.07 2.00 2.36 2.98
speedup
total time 5.57 0.83 0.59 0.87 0.65 0.42 0.65
(min)
8
7 * -
’
6
-
5 @ *
= . 3 # KNC Intel
B a < = IVB GNU
§ ‘. AIVBIntel
- p
3 & - % IVB Cray
h. pd X ! A * & ‘ * HSW GNU
2 4 ! ® HSW Intel
‘ﬁ tu* ¢
L DX A‘ = * x ! . HSW Cray
e e ® ¥
0 I I I I I I I I I I ILDI ch I I I'L—JI I I I I I I I I I I I I
99288203229 88¢€283 =4 8985%582558%Z
Slglslﬁ'éu_28é;'olggg'd|84@%%@2'2'0'3%%%0'%
£3589 SuE8 g2¢ EEBEET 50228
4 g' - 5 = Z

Figure 2. Measured speedup of the 30 loops of the LCALS benchmark

techniques to see if improvements can be made to this
baseline measure.

The slowdowns were not seen on the Ivy Bridge and Intel
showed the best average speed up The Intel result showed
the best total time, a speedup of 1.55 over Cray and GNU.
For Ivy Bridge, the overall speedup using Intel was 1.47 and

1.41 respectively. As was seen with TSVC, the KNC Il SIERRA APPLICATION KERNELS

processor showed very good average speedup, but the
aggregate run time is much higher than the traditional Xeon
processors. Future work may look at the loops that did not
show a speedup and investigate code modifications
(including directives) and more aggressive compiler

Under the NNSA’s Advanced Simulation and Computing
(ASC) program, the SIERRA Mechanics finite-element
codes have been developed and used as the principal tool in
support of the U.S. stockpile stewardship program. This
suite of codes includes coupled simulation capabilities for

thermal, fluid, aerodynamics, solid mechanics and structural
dynamics. These large-scale codes incorporate physics and
engineering models and specialized codes to predict, with
reduced uncertainty, the behavior of weapons and their
components in a variety of environments. In addition to
supporting the stockpile, a number of other national security
missions use these simulation tools for innovative product
engineering.

In this section we investigate the performance tradeoffs of
different vectorization implementations for important real
SIERRA mechanics kernels, in contrast to the synthetic
kernels with TSVC and LCALS presented in the previous
section. In particular, we consider three time critical
kernels from Sandia’s SIERRA/Solid Mechanics finite
element code [6]. SIERRA/Solid Mechanics is a general
purpose massively parallel nonlinear solid mechanics finite
element code for explicit transient dynamics, implicit
transient dynamics and quasi-statics analysis of structures.
It is built with extensive material, element, contact, and
solver libraries and used at SNL for analyzing structural
response of weapon components to normal, abnormal, and
hostile environments. The kernels we investigate here
constitute a significant portion of the computational expense
for explicit-dynamics simulations of nonlinear material
behavior (in the absence of contact). Each of these routines
is computed once per element every time step, where the
typical numbers of elements per MPI rank is in the
thousands to hundreds of thousands. Identical computation
for each element enables vectorization, provided the data
structures are organized appropriately.

A. Eigenvector kernel:

This kernel computes for each element the eigenvectors
and eigenvalues for a symmetric 3x3 matrix. The
symmetric 3x3 is stored as a 6 long array, taking advantage
of the matrix symmetry to reduce the memory footprint.
The eigenvectors/eigenvalues are computed using an
analytic formula which requires evaluation of conditionals
and trigonometric functions. In order to allow for
vectorization, these trigonometric functions are calculated to
very near machine precision using a Padé approximation.
The details of this approximation is beyond the scope of this
paper, but it is relavant to point out that it only requires
double precision multiplies, adds and divides. Conditionals
are implemented via ternary operators.

B. Elasticity Kernel:

This kernel computes for each element a mechanical stress
(symmetric 3x3 matrix) given a stretching tensor
(symmetric 3x3 matrix) and a rotation tensor (non-
symmetric 3x3 matrix). A Neo-Hookean elasticity model is
used [7], where the material properties which characterize
this model are the bulk modulus (which relates pressure
with volume change) and the shear modulus (which relates
shear stress with shear strain). This calculation is relatively

straightforward in that it does not require any conditionals
and the most complicated math operation is a cube-root.

C. Plasticity Kernel:

This kernel computes for each element a mechanical stress
(symmetric 3x3 matrix) given a strain rate tensor
(symmetric 3x3 matrix), the old stress tensor (symmetric
3x3 matrix), and an array of length 11 which stores the
internal state history of the material. The model used is a
standard J2 plasticity model with linear hardening [7]. The
properties for this model are the bulk modulus, shear
modulus, yield stress and hardening modulus. This model is
the most complicated for vectorization as it has structs with
stride 11 (i.e. 11 doubles), has many inputs, has conditionals
and even has a while loop at the inner most level to assess
convergence of the material model’s plastic strain updates.

D. Data Layouts

We have measured the performance of each of the above
three kernels using three different data structures: array-of-
structs layout, struct-of-array layout, and SimdLib which
uses a hybrid layout and directly uses vector intrinsics
instead of relying on auto-vectorization. Figures 3a, 3b, and
3c are schematics for the three data structures, namely: the
array-of-structs (AOS), struct-of-array (SOA) and SimdLib
with intrinscics (SLI). For simplicity we show the case
where the struct is a 3-vector. Blocks of the same color
correspond to entries in the same 3-vector.

xyzmmﬂxyzﬁﬁﬁ
x ol <Ll v E] zlzlz (2]
xlxly vz LaJxE w2 2

Figures 3a, 3b, 3¢ |IIustrate AOS, SOA and SLI data
layouts

The layout, used for the SimdLib implementation of the
kernels, is an array of structs-of-arrays, where the innermost
array length is determined at compile time to be the SIMD
vector-length. The Figure 3c depicts the layout for the case
when the vector-length is 2 (i.e. SSE instructions). Note
that, while we show the case of a vector-length of 2, this is
only for purpose of the schematic. All the results presented
below use AVX, AVX2, or MIC-AV X512 instructions with
vector-lengths of 4, 4 and 8, respectively (for double
precision floating point numbers). The layout changes
described here are uniformly applied to all the data
structures used as inputs and outputs to the kernels. The
advantage of both the struct-of-array layout and hybrid
layout over the more typical array-of-structs layout is that

data can be loaded directly into SIMD registers without the
need for shuffle instructions to get the data into the correct
layout required for vectorization across elements.

E. SimdLib

Here we provide a brief summary of the key motivations
for and features of SimdLib. As previously mentioned, an
alternative vectorization strategy to compiler auto-
vectorization is the explicit use of SIMD vector intrinsics,
which directly call corresponding assembly instructions.
Direct use of intrinsics is typically ill-advised as they can be
platform and compiler dependent. However, an approach
developed by the SIERRA Solid Mechanics team
overcomes this limitation by providing a simple platform
portable abstraction layout using C++ templates and structs
(similar to the Boost.SIMD library [8]). The key
components of this library are a “Doubles” struct, a “Bools”
struct, and an integer valued vector-length. At compile
time, when the available SIMD instructions are detected, the
vector-length is set to 1, 2, 4 or 8 depending on whether: no
double precision SIMD instructions are available, SSE2
instructions are available, AV X instructions are available, or
AVX512 instructions are available. The “Doubles” and
“Bools” structs are then sized to the vector-length and most
common mathematical operations (such as +,-
< srt <,<=,1=,&&,||,etc.) are overloaded to use the
appropriate SIMD intrinsics on the data members of the
“Doubles” and “Bools” structs.

In order to use SimdLib, it is necessary to get the data into
the correct layout (as described in the previous section, with
either an array of struct of array layout or just a struct of
array layout) and to template relevant kernels on the
“double” type. In addition, all arrays must be appropriately
aligned to 16, 32, and 64-bit boundaries for SSE2, AVX,
and AVX512, respectively. This approach assures good
performance for application kernels on all compilers
independent of their ability to auto-vectorize.

F. Vectorization Speed-up Results

To evaluate the effectiveness of the different
vectorization strategies, we collected timing results from
three Intel architectures: Ivy Bridge, Haswell and Knights
Corner. We compute the kernels assuming that the number
of elements is 200,000, with the arrays sized accordingly
and with a ‘for’ loop over these 200,000 elements. An
additional outer loop of 100 is used to increase the run-time
and therefore decrease run-to-run timing variations.

Before going into the results, we mention that a few
initial steps were required to get auto-vectorization to work
at all for some of these kernels. The first change was to
ensure that all of the kernels could actually inline, a
prerequisite for auto-vectorization. In particular this
required implementing the functions as inline functions in a
header file. Second, it was necessary to increase the max
inline size to 10000 with the icpc flag —inline-max-total-
size=10000, due to the fact that some of these functions are

around 200 lines long. With these two changes, the kernels
inlined easily. A second difficulty had to do with the Intel
compiler detecting vector dependencies which were not
actually there. This is likely due to the fact that the Intel
compiler has heuristics to efficiently detect these situations,
but it may create a lot of false negatives. We have run these
kernels through Intel’s Thread Advisor tool, which performs
a more thorough dependency analysis and determined that
there are no dependency issues in these kernels. To
overcome this limitation, we collect timing results for each
kernel in two ways: once with no changes to the way the
loops are called, and once with #pragma ivdep right before
calling the relevant loop. To ensure correct code, the
compiler treats an assumed dependence as a proven
dependence, which prevents vectorization. This option tells
the compiler to ignore dependency warning and vectorize
anyways if it is profitable. The IVDEP directive assists the
compiler's dependence analysis. It can only be applied to
iterative DO loops.

Tables 4, 5 and 6 summarize the Ivy Bridge, Haswell
and KNC results, for the three kernels investigated. They
present speedup fractions relative to the baseline array-of-
structs layout and no compiler auto vectorization. In other
words the speed up ratio is computed in reference to run
times when compiler vectorization is prevented through the
use —no-vec flag.

It is an interesting finding from these results that for the
two of the three kernels (Eigenvector and Elasticity) the
SOA+IVDEP performance was indeed better than the SLI
performance. Although we do not have a full understanding
of the reasons behind this somewhat surprising outcome, it
is suspected that “prefetch” instructions introduced by the
compiler for SOA, must be leading to better streaming of
data into the SIMD units. We studied this with CrayPat on
our Cray XC30 with the Haswell processors. CrayPat
measured ratio of the metric:
MEM_UOPS_RETIRED:ALL_LOADS for the SimdLib
runs and the SOA+IVDEP runs, yielded a value of 1.4
which was very close to the observed performance ratio of
1.38. CrayPat measurements also showed another metric
that measures L2 prefetch hits: L2_RQSTS:L2_PF_HIT
registered 3 times higher value for SOA+IVDEP over
Simdlib while the misses as measured by the counter:
L2 RQSTS:L2 _PF_MISS were nearly the same. This
suggests possible improvement of our SimdLib
implementation through the addition of appropriate prefetch
intrinsics.

Data in Tables 4,5 show that for the best performing
SimdLib, we see an increase in performance of Haswell
over Ivy Bridge of: 26.5% for the Eigenvector, 30.7% for
the Elasticity and 21.5% for the Plasticity Kkernels.
Interestingly the worst performing case, SOA without

IVDEP, shows correspondingly 17.1%, 32.7% and 22.7%
gains on Haswell over lvy Bridge.

Table 4. lvy Bridge: SIERRA Kernels speedup relative to
AOS layout and no vectorization

Eigenvector Elasticity Plasticity
AOS 1.62 1.01 0.99
AOS, IVDEP 1.67 1.61 0.98
SOA 1.09 0.99 0.70
SOA, IVDEP 2.45 2.19 0.71
SLI 2.27 1.86 1.80

Table 5. Haswell: SIERRA kernels speedup relative to
AOS layout and no vectorization

Eigenvector Elasticity Plasticity
AOS 1.80 1.00 0.97
AOS, IVDEP 1.74 1.37 0.97
SOA 0.90 0.99 0.58
SOA, IVDEP 2.53 2.45 0.59
SL 2.03 1.79 1.54

Table 6. KNC: SIERRA kernels speedup relative to AOS
layout and no vectorization

Eigenvector Elasticity Plasticity
AOS 2.28 1.00 1.00
AOS, IVDEP 1.64 0.92 1.00
SOA 0.95 0.84 0.63
SOA, IVDEP 5.14 7.16 0.63
Su 5.10 2.39 2.63

IV. TUNING WITH HARDWARE COUNTERS

Mini Applications as typified by Sandia’s Mantevo

project [9] are frequently used to investigate performance of
new computer architectures and processors. Trinity
acceptance testing includes (among other performance
goals) investigation of performance of four mini application
benchmarks: miniFE, AMG, UMT and SNAP. The details
of these codes and benchmarks are available at
http://www.nersc.gov/users/computational-
systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-
8-trinity-benchmarks/
We investigated performance of these four benchmarks with
Intel compiler on KNC (native mode), measuring run times
with compiler vectorization (-O3 compiler switch) and with
no vectorization (-O3 —no-vec). Results are shown in
Table 7. These results suggest that further effort is needed
to fully exploit the promise of substantial performance gains
from the vector units in KNC and KNL.

Table 7. Mini applications vectorization performance

AMG UMT
6.52% 17.95%

SNAP
19.52%

miniFE
4.68%

Application
% speedup

MiniFE, as it is representative of the SIERRA mechanics
applications whose run times are predominantly in sparse
matrix solver functions, was studied further for possible
strategies for improving performance. Figure 4 shows the
performance of miniFE on a 2 socket Sandy Bridge node
and on a single KNC with 57 cores.

The baseline performance using only MPI with one task
per core on the Sandy Bridge front end processor with 16
MPI tasks and on the KNC in native mode with 57 MPI
tasks showed the KNC performance to be 23% slower than
the front-end Sandy Bridge node. As a first step in-lining
the Sparse MV kernels and adding OpenMP threading
improved the performance by 23%. Additional gains in
performance were achieved by disabling transparent huge
pages and using selectively large page allocations for vector
data structures to lower TLB miss rates. These tuning
measures improved the KNC performance by 33% and
exceeded the front end Sandy Bridge node performance by
20%.

MiniFE Optimizations
10.0
CG Solve Time (Seconds), 175x175x175, 200 Itr
8.0
6.0
4.0
2.0
0.0
Optimized Sandy MIC MiniFE MIC MiniFE MIC MiniFE MIC MiniFE
Bridge Reference (MPI Inlined Kemels OpenMP and MPI Selective Large
Only) (MPI Only) Pages

Figure 4. MiniFE performance optimization on KNC

Micro-architectural — performance tuning using the
hardware events available through the built-in Performance
Monitoring Unit (PMU) on KNC can be accessed through
Intel’s Vtune. We have also installed a version of the TAU
performance tool and used it to measure hardware counter
metric ratios on KNC like Vectorization Intensity defined
as:

Vectorization Intensity=VPU_ELEMENTS_ACTIVE /
VPU_INSTRUCTIONS_EXECUTED

A matrix multiply benchmark using MKL’s DGEMM on
the KNC showed that the percentage of peak double

http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/

precision floating point operations achieved is about 30%,
which is considerably less than published best performance
of close to 90% [10]. A few measurements of Vectorization
Intensity metric ratio on the MIC, gave a vectorization
intensity value of 7.84. This metric has an upper bound of 8
and so values close to 8 suggest efficient use of MIC’s
SIMD units. However since the
VPU_ELEMENTS_ACTIVE counter measures vector
instructions like vector load/stores from memory, and
instructions to manipulate vector mask registers, in addition
to the double precision floating point instructions of interest
to us, caution is needed in use of this metric for performance
tuning. The fact that our measurement of this metric
achieves close to the peak showing high vectorization
intensity is misleading if our goal is to attain high floating
point operations throughput. However it is anticipated that
on the Intel Knights Landing processor the PMU will
provide a FLOPS counter enabling easier identification of
effective use of the wvector units for floating point
operations.

V. CONCLUSIONS

The TSVC and LCAL benchmarks show that significant
improvements (up to 3X) in performance can be achieved if
the compute intensive kernels of our applications are
vectorized. Our study also points out that for some of the
complex kernels as typified by the J2 plasticity kernel in
SIERRA, direct use of SIMD intrinsics (in our case using
the SimdLib abstraction layer) is necessary to achieve the
desired performance. An important objective of the design
of the SimdLIB is easy portability to processors with
different lengths of the vector registers. However, an
interesting observation from our study of the Elasticity and
Eigenvalue kernels is that compiler auto-vectorization can
indeed give the best performance when kernels have
appropriate data structure layout and the compiler is aided
by pragma directives. The importance of hardware
performance counter measures to identify all aspects of
effective use of the SIMD units is pointed out.

ACKNOWLEDGMENT

This work was supported in part by the U.S. Department
of Energy. Sandia is a multi program laboratory operated
by Sandia Corporation, a Lockheed Martin Company, for
the United States National Nuclear Security Administration
and the Department of Energy under contract DE-AC04-
94AL85000.

REFERENCES
1. Extended Test Suite for Vectorizing Compilers.
http://polaris.cs.uiuc.edu/ ~malekil/TSVC.tar.gz.
2. LCALS (“Livermore Compiler Analysis Loop Suite”).
https://codesign.linl.gov/LCALS.php.
3. H.C. Edwards, and J.R. Stewart. SIERRA: A Software

Environment for Developing Complex Multi-Physics Applications. In K.J.
Bathe (ed.) First MIT Conference on Computational Fluid and Solid
Mechanics, Amsterdam, Elsevier.

4. D. Callahan, J. Dongarra, and D. Levine. 1988. Vectorizing
compilers: a test suite and results. In Proceedings of the 1988 ACM/IEEE
conference on Supercomputing (Supercomputing '88). IEEE Computer
Society Press, Los Alamitos, CA, USA, 98-105.

5. S. Maleki, Y. Gao, M.J. Garzaran, T. Wong, and D.A. Padua.
2011. An Evaluation of Vectorizing Compilers. In Proceedings of the 2011
International Conference on Parallel Architectures and Compilation
Techniques (PACT '11). IEEE Computer Society. Washington, DC, USA,
372-382

6. SIERRA/SM development team. 2014. SIERRA/SM: 4.32
Verification Tests Manual. Sandia National Laboratories, SAND2014-
3257, Albuquerque, NM and Livermore, CA.

7. SIERRA/SM development team. 2013. SIERRA/SM: Theory
Manual. Sandia National Laboratories, SAND2013-4615, Albuquerque,
NM.

8. P. Esterie, M. Gaunard, J. Falcou, J.-T. Lapreste, and B. Rozoy.
2012. Boost. simd: generic programming for portable simdization. In
International Conference on Parallel architectures and compilation
techniques, 431-432.

9. https://software.sandia.gov/mantevo

10. Alexander Heinecke, Karthikeyan Vaidyanathan, Mikhail
Smelyanskiy, Alexander Kobotov, Roman Dubtsov, Greg Henry,
Aniruddha G Shet, George Chrysos, Pradeep Dubey, “Design and
Implementation of the Linpack Benchmark for Single and Multi-node
Systems Based on Intel Xeon Phi Coprocessor”, IPDPS 2013.

https://codesign.llnl.gov/LCALS.php
https://software.sandia.gov/mantevo

