
1

An Investigation of Compiler Vectorization on Current and Next-generation Intel

Processors using Benchmarks and Sandia’s SIERRA Applications

Mahesh Rajan
1
, Doug Doerfler

2
, Mike Tupek

1
, Si Hammond

1

1
Sandia National Laboratories,

2
Lawrence Berkeley National Laboratory

mrajan@sandia.gov, dwdoerf@lbl.gov, mrtupek@sandia.gov, sdhammo@sandia.gov

Abstract— Trinity, a Cray XC40, with over 19,000 nodes

utilizing Intel Haswell and Intel Knights Landing (KNL)

processors is the first of NNSA’s new Advanced Technology

Systems (ATS-1) procured by ACES, the partnership between

Los Alamos National Laboratories (LANL) and Sandia

National Laboratories (SNL). Phase-1 of Trinity with only the

Haswell nodes is anticipated to be installed in mid-2015 and

Phase-2 with KNL nodes in the spring of 2016. Effective

vectorization of our applications, to take full advantage of the

AVX2 vector units on each core of Haswell and the two 512-bit

vector SIMD units on each core of KNL, is an important

performance goal on Trinity. We carry out a systematic study

of vectorization using Cray, Intel and GNU, compilers. The

study includes micro-benchmark mini-applications and a set of

important kernel operations from Sandia’s SIERRA

Mechanics applications suite. Cray compilers on Haswell give

the lowest value for the total (sum) time of the 151 loops in the

TSVC vectorization benchmarks, achieving on the average

close to 3X gain in performance. For the LCALS benchmark

Intel compiler out performs Cray and GNU in similar

measures. For the SNL SIERRA Mechanics complex compute

kernels like eigenvalue and material model computations, we

present approaches to achieve significant (up to 50%)

performance improvement. This study highlights the benefits

and limitations of different compilers and the alternate

approaches we may need to take full advantage of the

promised performance with newer SIMD vector units on Intel

processors.

Keywords; KNC, KNL, Haswell, Vectorization, performance

optimization

I. INTRODUCTION

An important element in extracting optimal performance
out of the current generation of CPU architectures and
systems requires us to take advantage of the wide SIMD
registers. Approaches to achieving effective vectorization
can vary in effort and complexity starting from simple use of
compiler switches, calls to optimized library functions,
writing assembly code or calling intrinsic functions that
mimic assembly instructions. For HPC systems the effort in
tuning for the CPU typically benefits performance on hybrid
systems with accelerators like the Xeon Phi or NVIDIA GP-
GPUs. For complex multiphysics codes suites like the SNL
SIERRA Mechanics package, efficient vectorization of the
compute intensive kernels can be quite involved. A good
understanding of the kernels and data structures goes a long
way when faced with this task for applications with
thousands of source code files and functions. Getting
compilers to recognize opportunities for vectorization with
and without some assistance from the code developer (in the

form of directives) is a high priority for our applications.
From this perspective a comparative evaluation of the three
compilers that are likely to be used by ACES code
developers, namely: Intel, GNU and Cray, is of benefit to our
user base. Towards this objective we evaluate the three
compilers using the TSVC benchmark [1] and the Livermore
Kernels benchmark LCALS [2] on Intel processors: Ivy
Bridge, Haswell and Knights Corner (KNC). The
performance gain seen with these processor architectures,
with different SIMD units (AVX, AVX2 and MIC-AVX512
respectively) are investigated.

If the compiler provides good auto-vectorization for

important kernels it allows effective optimization of a wide
range of codes without requiring a large effort or in depth
understanding of the microarchitecture. Compiler unrolling
and peeling of compute intensive loops combined with the
generation of packed SIMD instructions is our preference.
We attempt to identify situations where a programmer may
be able to help the compiler vectorize more loops through
simple modifications to the program and by explicit help
through compiler directives.

This study also investigates a set of compute intensive

loops from Sandia’s SIERRA Mechanics application suite
[3]. An approach developed by the SIERRA Solid
Mechanics code team is the creation of an abstraction layer
called SimdLib which, by directly using SIMD intrinsics,
assures good performance for the loops on all compilers
independent of their ability to auto-vectorize. However, we
also show that when auto-vectorization is aided with
judicious insertion of pragmas it often leads to best possible
performance because the compiler is able to take full
advantage of loop optimizations and hardware features.

II. TSVC AND LCALS BENCHAMRK

The TSVC (Test Suite for Vectorizing Compilers)

benchmark was originally developed by Callahan, Dongarra

and Levine [4]. The version used for this study is an

extended version developed by Maleki, Gao, Garzaran,

Wong and Padua [5]. The extended version took the

original version, converted it from Fortran to C and aligned

all arrays to 16 byte boundaries. In addition, 23 new loops

were added and 7 loops removed that the authors

determined were obsolete. The extended version has 151

loops. We chose this benchmark as it provides a somewhat

pathological collection of relatively simple loops that could

be found in many scientific C codes and forms a good basis

for compiler expectations as we explore more difficult code

SAND2015-3238C

mailto:mrajan@sandia.gov
mailto:dwdoerf@lbl.gov
mailto:mrtupek@sandia.gov

2

segments found in real applications. We modified the array

alignment parameter to 64 bytes in order to accommodate

512-bit SIMD units used in the Intel Knights Corner. This

same alignment was used for Ivy Bridge and Haswell (256-

bit SIMD units) for consistency.

The LCALS (Livermore Compiler Analysis Loop Suite)

benchmark suite was developed by Rich Hornung at

Lawrence Livermore National Laboratory. This suite was

chosen as one of our benchmarks because it represents loops

and “kernels” taken, or derived from, real codes. LCALS

consists of three variants for testing different programming

and execution constructs, and hence different aspects of a

compiler’s performance. The first variant employs

traditional C/C++ for-loop syntax and is referred to as

“Raw” variants. Other variants explore more complex C++

methods such as functors and lambda functions; these were

not explored because the Cray C compiler does not support

lambda functions at the time this work was performed. The

suite also contains loop variants implemented with

OpenMP; these were not explored, as we were only

interested in the vectorization aspects of the compiler and

not the interaction of OpenMP and vectors. For the “Raw”

variants, the suite is broken into three subsets. The subset

“A” represents loops representative of those found in

application codes. Subset “B” is a collection of basic loops

that help to illustrate compiler optimization issues. Subset

“C” is extracted from “Livermore Loops coded in C”

developed by Steve Langer, which was derived from the

original Fortran “Livermore Loops” by Frank McMahon.

Modifications to the original source code included: Setting

num_suite_passes to 3; setting run_loop_length to false for

LONG and MEDIUM test cases; commenting out all

references for lambda function and OpenMP variants; and

setting the cache size parameter to 30 MB. For the Intel

Knights Corner tests the value of LCALS_DATA_ALIGN

was set to 64 bytes to support the 512-bit SIMD unit. The

default value of 32 bytes was used for Ivy Bridge and

Haswell studies. For this initial study, we only performed

the SHORT loop length case because we feel this is the

most challenging case for the compiler.

It is a difficult and tedious task to examine the compiler

generated vectorization reports for all 151 loops found in the

TSVC suite to determine which loops vectorized and which

did not. So we used the method of the Maleki et. al. [5]

study and did runtime comparisons between timings of code

generated with and without vectorization. The baseline

timings are made with optimization turned on, but

vectorization turned off. Note that since optimization is

allowed the baseline timings may employ automatic

compiler techniques such as inlining and loop unrolling. A

second set of timings with the same optimization flags plus

the appropriate vectorization flag set is collected and the

ratio of without vectorization and with vectorization is

calculated and compared to a threshold. If the ratio is greater

than 1.15 we say that the loop vectorized. If the ratio is less

than 0.85 we say the loop vectorized, but it is labeled as a

slowdown.

The benchmarks are serial implementations and hence

were run on a single core of the target processors and are

not memory bandwidth limited. The footprint of both

benchmarks is very small and the variable arrays of each

test loop should fit in at least the last-level cache of the

processors evaluated. The footprint of TSVC is ~2.5 MB

and LCALS is ~150 MB. Given these constraints, the results

should be truly representative of the potential performance

improvement of vectorization without the limitation of

being memory bandwidth bound.

For this study, we looked at three generations of Intel

processors, the Ivy Bridge processor which has a 256-bit

AVX SIMD unit, the Haswell processor with a 256-bit

AVX2 SIMD unit, and the Intel Knights Corner which has

an early implementation of the MIC-AVX512F (AVX3.1)

SIMD unit. For the Ivy Bridge and Haswell targets, three

compiler suites were evaluated, GNU, Intel, and Cray. The

details of each processor architecture and platform are listed

in Table 1. The compiler suites used are: Intel 15.0.2, GNU

gcc 4.9.2 and Cray compilers under Cray Programming

environment 5.2.40.

Table 1. Platforms and processors used

Processor Platform Name Specification/CPU
Ivy Bridge Edison, Morgan04 Intel(R) Xeon(R) CPU

E5-2695 v2 @
2.40GHz

Haswell Mutrino, Shephard Intel(R) Xeon(R) CPU
E5-2698 v3 @
2.30GHz

KNC Corner, Morgan04 Intel(R) Xeon(R) Phi
CPU @ 1.238 GHz

Table 2 summarizes the results of our study with the

TSVC benchmark that contains 151 total loops.

“Vectorized” are those loops that showed a speedup (>1.15),

or slow down (< 0.85), between without and with vector

optimization enabled. The “average speedup” includes only

those loops that “vectorized”, while “total time” is for all

loops. TSVC uses single-precision floats, so the expected

speedup is 16 for KNC and 8 for Ivy Bridge and Haswell.

The Intel and Cray compilers did the best job, seeing a

speedup on 66% of all loops versus the GNU compiler’s

41%. The KNC results show speeding up 74% of all loops,

while slowing down 5%. The Cray compiler sees a slightly

higher number of loops that slowed down on the Haswell

processor, 6%. The “total time” metric is the aggregate time

spent in all 151 loops. For the Haswell, the Cray compiler

provided a 1.07 speedup over the Intel compiler, and a 1.28

speedup over GNU. For Ivy Bridge, the trend is

3

Table 2. Results of the TSVC benchmarks, 151 total loops

 KNC Ivy Bridge w/AVX Haswell w/AVX2

 Intel GNU Intel Cray GNU Intel Cray

vectorized 111 61 99 101 63 91 102

speedup 103 58 96 96 59 88 93

slowdown 8 3 3 5 4 3 9

average

speedup

8.04 2.87 2.47 2.80 2.82 2.60 2.88

total time

(min)

177.82 21.41 17.15 16.53 17.29 14.45 13.56

Figure 1. Measured speed up for the 151 loops of the TSVC benchmark

approximately the same. The total time of the KNC

processor is significantly higher. This is due to the relatively

low performance of a KNC core, which is further penalized

by running only a single thread as the KNC requires at least

2 to 3 threads to achieve full instruction issue. A future

effort may look at threaded versions of the benchmark in

order to fully take advantage of current and next-generation

architectures that depend on multiple threads to exploit

maximum performance.

Figure1 is a plot of the speedup with vectorization of the

151 loops in the TSVC benchmark. This plot shows the

speedup (> 1.15) and slowdown (< 0.85) for all loops that

“vectorized”. For the Intel KNC, the expected max speedup

is 16. There are two loops not shown that showed a greater

speedup, loops S314 (17.45), S3111 (20.30), S3113 (30.8).

It can be seen that for the Ivy Bridge and Haswell results

there are cases where the speedup is greater than the

expected value of 8, but there is little correlation with the

KNC results.

Table 3 summaries the results of the 30 loops of the

LCALS benchmark. LCALS uses double-precision floats,

so the expected speedup is 8 for KNC and 4 for Ivy Bridge

and Haswell. For LCALS, the Intel compiler provided the

best performance, vectorizing 53% of the loops for Ivy

Bridge and 57% for Haswell. The GNU compiler provided

the next best result with 30%, while the Cray compiler

4

achieved 20%. The Cray compiler showed a good speedup

on the loops it did vectorize on Haswell, 2.98X,

significantly higher than the Intel and GNU. Although the

Intel compiler vectorized significantly more loops, its

average speedup also includes 3 slowdowns.

Table 3. Results of the LCALS benchmark, 30 loops

 KNC Ivy Bridge w/AVX Haswell w/AVX2
 Intel GNU Intel Cray GNU Intel Cray

vectorized 17 9 16 6 9 17 6

speedup 17 8 16 6 8 14 6

slowdown 0 1 0 0 1 3 0

average
speedup

3.80 1.77 2.12 2.07 2.00 2.36 2.98

total time
(min)

5.57 0.83 0.59 0.87 0.65 0.42 0.65

Figure 2. Measured speedup of the 30 loops of the LCALS benchmark

The slowdowns were not seen on the Ivy Bridge and Intel

showed the best average speed up The Intel result showed

the best total time, a speedup of 1.55 over Cray and GNU.

For Ivy Bridge, the overall speedup using Intel was 1.47 and

1.41 respectively. As was seen with TSVC, the KNC

processor showed very good average speedup, but the

aggregate run time is much higher than the traditional Xeon

processors. Future work may look at the loops that did not

show a speedup and investigate code modifications

(including directives) and more aggressive compiler

techniques to see if improvements can be made to this

baseline measure.

III. SIERRA APPLICATION KERNELS

Under the NNSA’s Advanced Simulation and Computing

(ASC) program, the SIERRA Mechanics finite-element

codes have been developed and used as the principal tool in

support of the U.S. stockpile stewardship program. This

suite of codes includes coupled simulation capabilities for

5

thermal, fluid, aerodynamics, solid mechanics and structural

dynamics. These large-scale codes incorporate physics and

engineering models and specialized codes to predict, with

reduced uncertainty, the behavior of weapons and their

components in a variety of environments. In addition to

supporting the stockpile, a number of other national security

missions use these simulation tools for innovative product

engineering.

In this section we investigate the performance tradeoffs of

different vectorization implementations for important real

SIERRA mechanics kernels, in contrast to the synthetic

kernels with TSVC and LCALS presented in the previous

section. In particular, we consider three time critical

kernels from Sandia’s SIERRA/Solid Mechanics finite

element code [6]. SIERRA/Solid Mechanics is a general

purpose massively parallel nonlinear solid mechanics finite

element code for explicit transient dynamics, implicit

transient dynamics and quasi-statics analysis of structures.

It is built with extensive material, element, contact, and

solver libraries and used at SNL for analyzing structural

response of weapon components to normal, abnormal, and

hostile environments. The kernels we investigate here

constitute a significant portion of the computational expense

for explicit-dynamics simulations of nonlinear material

behavior (in the absence of contact). Each of these routines

is computed once per element every time step, where the

typical numbers of elements per MPI rank is in the

thousands to hundreds of thousands. Identical computation

for each element enables vectorization, provided the data

structures are organized appropriately.

A. Eigenvector kernel:

 This kernel computes for each element the eigenvectors

and eigenvalues for a symmetric 3x3 matrix. The

symmetric 3x3 is stored as a 6 long array, taking advantage

of the matrix symmetry to reduce the memory footprint.

The eigenvectors/eigenvalues are computed using an

analytic formula which requires evaluation of conditionals

and trigonometric functions. In order to allow for

vectorization, these trigonometric functions are calculated to

very near machine precision using a Padé approximation.

The details of this approximation is beyond the scope of this

paper, but it is relavant to point out that it only requires

double precision multiplies, adds and divides. Conditionals

are implemented via ternary operators.

B. Elasticity Kernel:

This kernel computes for each element a mechanical stress

(symmetric 3x3 matrix) given a stretching tensor

(symmetric 3x3 matrix) and a rotation tensor (non-

symmetric 3x3 matrix). A Neo-Hookean elasticity model is

used [7], where the material properties which characterize

this model are the bulk modulus (which relates pressure

with volume change) and the shear modulus (which relates

shear stress with shear strain). This calculation is relatively

straightforward in that it does not require any conditionals

and the most complicated math operation is a cube-root.

C. Plasticity Kernel:

This kernel computes for each element a mechanical stress

(symmetric 3x3 matrix) given a strain rate tensor

(symmetric 3x3 matrix), the old stress tensor (symmetric

3x3 matrix), and an array of length 11 which stores the

internal state history of the material. The model used is a

standard J2 plasticity model with linear hardening [7]. The

properties for this model are the bulk modulus, shear

modulus, yield stress and hardening modulus. This model is

the most complicated for vectorization as it has structs with

stride 11 (i.e. 11 doubles), has many inputs, has conditionals

and even has a while loop at the inner most level to assess

convergence of the material model’s plastic strain updates.

D. Data Layouts

We have measured the performance of each of the above

three kernels using three different data structures: array-of-

structs layout, struct-of-array layout, and SimdLib which

uses a hybrid layout and directly uses vector intrinsics

instead of relying on auto-vectorization. Figures 3a, 3b, and

3c are schematics for the three data structures, namely: the

array-of-structs (AOS), struct-of-array (SOA) and SimdLib

with intrinscics (SLI). For simplicity we show the case

where the struct is a 3-vector. Blocks of the same color

correspond to entries in the same 3-vector.

3a.

3b.

 3c.

Figures 3a, 3b, 3c illustrate AOS, SOA and SLI data

layouts

The layout, used for the SimdLib implementation of the

kernels, is an array of structs-of-arrays, where the innermost

array length is determined at compile time to be the SIMD

vector-length. The Figure 3c depicts the layout for the case

when the vector-length is 2 (i.e. SSE instructions). Note

that, while we show the case of a vector-length of 2, this is

only for purpose of the schematic. All the results presented

below use AVX, AVX2, or MIC-AVX512 instructions with

vector-lengths of 4, 4 and 8, respectively (for double

precision floating point numbers). The layout changes

described here are uniformly applied to all the data

structures used as inputs and outputs to the kernels. The

advantage of both the struct-of-array layout and hybrid

layout over the more typical array-of-structs layout is that

6

data can be loaded directly into SIMD registers without the

need for shuffle instructions to get the data into the correct

layout required for vectorization across elements.

E. SimdLib

Here we provide a brief summary of the key motivations

for and features of SimdLib. As previously mentioned, an

alternative vectorization strategy to compiler auto-

vectorization is the explicit use of SIMD vector intrinsics,

which directly call corresponding assembly instructions.

Direct use of intrinsics is typically ill-advised as they can be

platform and compiler dependent. However, an approach

developed by the SIERRA Solid Mechanics team

overcomes this limitation by providing a simple platform

portable abstraction layout using C++ templates and structs

(similar to the Boost.SIMD library [8]). The key

components of this library are a “Doubles” struct, a “Bools”

struct, and an integer valued vector-length. At compile

time, when the available SIMD instructions are detected, the

vector-length is set to 1, 2, 4 or 8 depending on whether: no

double precision SIMD instructions are available, SSE2

instructions are available, AVX instructions are available, or

AVX512 instructions are available. The “Doubles” and

“Bools” structs are then sized to the vector-length and most

common mathematical operations (such as +,-

,*,/,sqrt,<,<=,!=,&&,||,etc.) are overloaded to use the

appropriate SIMD intrinsics on the data members of the

“Doubles” and “Bools” structs.

In order to use SimdLib, it is necessary to get the data into

the correct layout (as described in the previous section, with

either an array of struct of array layout or just a struct of

array layout) and to template relevant kernels on the

“double” type. In addition, all arrays must be appropriately

aligned to 16, 32, and 64-bit boundaries for SSE2, AVX,

and AVX512, respectively. This approach assures good

performance for application kernels on all compilers

independent of their ability to auto-vectorize.

F. Vectorization Speed-up Results

To evaluate the effectiveness of the different

vectorization strategies, we collected timing results from

three Intel architectures: Ivy Bridge, Haswell and Knights

Corner. We compute the kernels assuming that the number

of elements is 200,000, with the arrays sized accordingly

and with a ‘for’ loop over these 200,000 elements. An

additional outer loop of 100 is used to increase the run-time

and therefore decrease run-to-run timing variations.

Before going into the results, we mention that a few

initial steps were required to get auto-vectorization to work

at all for some of these kernels. The first change was to

ensure that all of the kernels could actually inline, a

prerequisite for auto-vectorization. In particular this

required implementing the functions as inline functions in a

header file. Second, it was necessary to increase the max

inline size to 10000 with the icpc flag –inline-max-total-

size=10000, due to the fact that some of these functions are

around 200 lines long. With these two changes, the kernels

inlined easily. A second difficulty had to do with the Intel

compiler detecting vector dependencies which were not

actually there. This is likely due to the fact that the Intel

compiler has heuristics to efficiently detect these situations,

but it may create a lot of false negatives. We have run these

kernels through Intel’s Thread Advisor tool, which performs

a more thorough dependency analysis and determined that

there are no dependency issues in these kernels. To

overcome this limitation, we collect timing results for each

kernel in two ways: once with no changes to the way the

loops are called, and once with #pragma ivdep right before

calling the relevant loop. To ensure correct code, the

compiler treats an assumed dependence as a proven

dependence, which prevents vectorization. This option tells

the compiler to ignore dependency warning and vectorize

anyways if it is profitable. The IVDEP directive assists the

compiler's dependence analysis. It can only be applied to

iterative DO loops.

Tables 4, 5 and 6 summarize the Ivy Bridge, Haswell

and KNC results, for the three kernels investigated. They

present speedup fractions relative to the baseline array-of-

structs layout and no compiler auto vectorization. In other

words the speed up ratio is computed in reference to run

times when compiler vectorization is prevented through the

use –no-vec flag.

It is an interesting finding from these results that for the

two of the three kernels (Eigenvector and Elasticity) the

SOA+IVDEP performance was indeed better than the SLI

performance. Although we do not have a full understanding

of the reasons behind this somewhat surprising outcome, it

is suspected that “prefetch” instructions introduced by the

compiler for SOA, must be leading to better streaming of

data into the SIMD units. We studied this with CrayPat on

our Cray XC30 with the Haswell processors. CrayPat

measured ratio of the metric:

MEM_UOPS_RETIRED:ALL_LOADS for the SimdLib

runs and the SOA+IVDEP runs, yielded a value of 1.4

which was very close to the observed performance ratio of

1.38. CrayPat measurements also showed another metric

that measures L2 prefetch hits: L2_RQSTS:L2_PF_HIT

registered 3 times higher value for SOA+IVDEP over

Simdlib while the misses as measured by the counter:

L2_RQSTS:L2_PF_MISS were nearly the same. This

suggests possible improvement of our SimdLib

implementation through the addition of appropriate prefetch

intrinsics.

Data in Tables 4,5 show that for the best performing

SimdLib, we see an increase in performance of Haswell

over Ivy Bridge of: 26.5% for the Eigenvector, 30.7% for

the Elasticity and 21.5% for the Plasticity kernels.

Interestingly the worst performing case, SOA without

7

IVDEP, shows correspondingly 17.1%, 32.7% and 22.7%

gains on Haswell over Ivy Bridge.

Table 4. Ivy Bridge: SIERRA kernels speedup relative to

AOS layout and no vectorization

Eigenvector Elasticity Plasticity

AOS 1.62 1.01 0.99

AOS, IVDEP 1.67 1.61 0.98

SOA 1.09 0.99 0.70

SOA, IVDEP 2.45 2.19 0.71

SLI 2.27 1.86 1.80

Table 5. Haswell: SIERRA kernels speedup relative to

AOS layout and no vectorization

Eigenvector Elasticity Plasticity

AOS 1.80 1.00 0.97

AOS, IVDEP 1.74 1.37 0.97

SOA 0.90 0.99 0.58

SOA, IVDEP 2.53 2.45 0.59

SLI 2.03 1.79 1.54

Table 6. KNC: SIERRA kernels speedup relative to AOS

layout and no vectorization

Eigenvector Elasticity Plasticity

AOS 2.28 1.00 1.00

AOS, IVDEP 1.64 0.92 1.00

SOA 0.95 0.84 0.63

SOA, IVDEP 5.14 7.16 0.63

SLI 5.10 2.39 2.63

IV. TUNING WITH HARDWARE COUNTERS

Mini Applications as typified by Sandia’s Mantevo

project [9] are frequently used to investigate performance of

new computer architectures and processors. Trinity

acceptance testing includes (among other performance

goals) investigation of performance of four mini application

benchmarks: miniFE, AMG, UMT and SNAP. The details

of these codes and benchmarks are available at

http://www.nersc.gov/users/computational-

systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-

8-trinity-benchmarks/

We investigated performance of these four benchmarks with

Intel compiler on KNC (native mode), measuring run times

with compiler vectorization (-O3 compiler switch) and with

no vectorization (-O3 –no-vec). Results are shown in

Table 7. These results suggest that further effort is needed

to fully exploit the promise of substantial performance gains

from the vector units in KNC and KNL.

Table 7. Mini applications vectorization performance

Application miniFE AMG UMT SNAP

% speedup 4.68% 6.52% 17.95% 19.52%

MiniFE, as it is representative of the SIERRA mechanics

applications whose run times are predominantly in sparse

matrix solver functions, was studied further for possible

strategies for improving performance. Figure 4 shows the

performance of miniFE on a 2 socket Sandy Bridge node

and on a single KNC with 57 cores.

The baseline performance using only MPI with one task

per core on the Sandy Bridge front end processor with 16

MPI tasks and on the KNC in native mode with 57 MPI

tasks showed the KNC performance to be 23% slower than

the front-end Sandy Bridge node. As a first step in-lining

the Sparse MV kernels and adding OpenMP threading

improved the performance by 23%. Additional gains in

performance were achieved by disabling transparent huge

pages and using selectively large page allocations for vector

data structures to lower TLB miss rates. These tuning

measures improved the KNC performance by 33% and

exceeded the front end Sandy Bridge node performance by

20%.

Figure 4. MiniFE performance optimization on KNC

Micro-architectural performance tuning using the

hardware events available through the built-in Performance

Monitoring Unit (PMU) on KNC can be accessed through

Intel’s Vtune. We have also installed a version of the TAU

performance tool and used it to measure hardware counter

metric ratios on KNC like Vectorization Intensity defined

as:

Vectorization Intensity=VPU_ELEMENTS_ACTIVE /

VPU_INSTRUCTIONS_EXECUTED

A matrix multiply benchmark using MKL’s DGEMM on

the KNC showed that the percentage of peak double

http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/

8

precision floating point operations achieved is about 30%,

which is considerably less than published best performance

of close to 90% [10]. A few measurements of Vectorization

Intensity metric ratio on the MIC, gave a vectorization

intensity value of 7.84. This metric has an upper bound of 8

and so values close to 8 suggest efficient use of MIC’s

SIMD units. However since the

VPU_ELEMENTS_ACTIVE counter measures vector

instructions like vector load/stores from memory, and

instructions to manipulate vector mask registers, in addition

to the double precision floating point instructions of interest

to us, caution is needed in use of this metric for performance

tuning. The fact that our measurement of this metric

achieves close to the peak showing high vectorization

intensity is misleading if our goal is to attain high floating

point operations throughput. However it is anticipated that

on the Intel Knights Landing processor the PMU will

provide a FLOPS counter enabling easier identification of

effective use of the vector units for floating point

operations.

V. CONCLUSIONS

The TSVC and LCAL benchmarks show that significant

improvements (up to 3X) in performance can be achieved if

the compute intensive kernels of our applications are

vectorized. Our study also points out that for some of the

complex kernels as typified by the J2 plasticity kernel in

SIERRA, direct use of SIMD intrinsics (in our case using

the SimdLib abstraction layer) is necessary to achieve the

desired performance. An important objective of the design

of the SimdLIB is easy portability to processors with

different lengths of the vector registers. However, an

interesting observation from our study of the Elasticity and

Eigenvalue kernels is that compiler auto-vectorization can

indeed give the best performance when kernels have

appropriate data structure layout and the compiler is aided

by pragma directives. The importance of hardware

performance counter measures to identify all aspects of

effective use of the SIMD units is pointed out.

ACKNOWLEDGMENT

This work was supported in part by the U.S. Department

of Energy. Sandia is a multi program laboratory operated

by Sandia Corporation, a Lockheed Martin Company, for

the United States National Nuclear Security Administration

and the Department of Energy under contract DE-AC04-

94AL85000.

REFERENCES

1. Extended Test Suite for Vectorizing Compilers.

http://polaris.cs.uiuc.edu/ ~maleki1/TSVC.tar.gz.
2. LCALS (“Livermore Compiler Analysis Loop Suite”).

https://codesign.llnl.gov/LCALS.php.

3. H.C. Edwards, and J.R. Stewart. SIERRA: A Software
Environment for Developing Complex Multi-Physics Applications. In K.J.

Bathe (ed.) First MIT Conference on Computational Fluid and Solid

Mechanics, Amsterdam, Elsevier.

4. D. Callahan, J. Dongarra, and D. Levine. 1988. Vectorizing

compilers: a test suite and results. In Proceedings of the 1988 ACM/IEEE

conference on Supercomputing (Supercomputing '88). IEEE Computer
Society Press, Los Alamitos, CA, USA, 98-105.

5. S. Maleki, Y. Gao, M.J. Garzarán, T. Wong, and D.A. Padua.

2011. An Evaluation of Vectorizing Compilers. In Proceedings of the 2011
International Conference on Parallel Architectures and Compilation

Techniques (PACT '11). IEEE Computer Society. Washington, DC, USA,
372-382

6. SIERRA/SM development team. 2014. SIERRA/SM: 4.32

Verification Tests Manual. Sandia National Laboratories, SAND2014-
3257, Albuquerque, NM and Livermore, CA.

7. SIERRA/SM development team. 2013. SIERRA/SM: Theory

Manual. Sandia National Laboratories, SAND2013-4615, Albuquerque,
NM.

8. P. Esterie, M. Gaunard, J. Falcou, J.-T. Lapreste, and B. Rozoy.

2012. Boost. simd: generic programming for portable simdization. In
International Conference on Parallel architectures and compilation

techniques, 431-432.

9. https://software.sandia.gov/mantevo

10. Alexander Heinecke, Karthikeyan Vaidyanathan, Mikhail
Smelyanskiy, Alexander Kobotov, Roman Dubtsov, Greg Henry,
Aniruddha G Shet, George Chrysos, Pradeep Dubey, “Design and
Implementation of the Linpack Benchmark for Single and Multi-node
Systems Based on Intel Xeon Phi Coprocessor”, IPDPS 2013.

https://codesign.llnl.gov/LCALS.php
https://software.sandia.gov/mantevo

