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Synopsis 36 

 37 

 38 

 39 
 40 

Driven by major scientific advances in analytical methods, biomonitoring, computational tools, and a 41 

newly articulated vision for a greater impact in public health, the field of exposure science is undergoing 42 

a rapid transition from a field of observation to a field of prediction. Deployment of an organizational 43 

and predictive framework for exposure science analogous to the “systems approaches” used in the 44 

biological sciences is a necessary step in this evolution.  Here we propose the Aggregate Exposure 45 

Pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the 46 

Adverse Outcome Pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways 47 

offer an intuitive framework to organize exposure data within individual units of prediction common to 48 

the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages 49 

between aggregate exposure pathways and adverse outcome pathways, completing the source to 50 

outcome continuum for more efficient integration of exposure assessment and hazard identification. 51 

Together, the two pathways form and inform a decision-making framework with the flexibility for risk-52 

based, hazard-based, or exposure-based decision making.  53 
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WHY ENVIRONMENTAL HEALTH NEEDS AN ORGANIZATIONAL FRAMEWORK FOR EXPOSURE SCIENCE 54 

Exposure science is a field of study that seeks to understand the nature of contact between 55 

physical, chemical or biologic stressors and humans or other ecosystem elements for the purpose of 56 

protecting ecologic and public health
1
.  Historically, exposure assessment has played a complimentary 57 

role with the fields of epidemiology and toxicology, helping identify and mitigate health impacts of 58 

environmental exposures, of which lead and radon serve as good examples
1
.   59 

Recognizing the historical value of exposure science and recent demands to meet the growing 60 

need to conduct more comprehensive exposure assessment (thousands of stressors), more quickly and 61 

more accurately, a committee of the National Academy of Sciences (NAS) recently called for an 62 

extensive expansion of human and ecological exposure assessment
1
.  Ideally, an expanded technological 63 

base and infrastructure would support the characterization of exposure to all endogenous and 64 

exogenous chemicals and other stressors across the life-time of an organism or community of interest,  65 

commonly referred to as the exposome
2
.  Looking beyond exposure characterization, the committee 66 

envisioned a transformed field of science enabled by a predictive framework with the ability to forecast 67 

exposures with improved accuracy.  To realize this vision, exposure science would need to “adopt a 68 

systems-based approach that, to the extent possible, considers exposures from source to dose and dose 69 

to source and considers multiple levels of integration…
1
.” It is clear that data and information emerging 70 

from an invigorated and expanding field of exposure science should be organized in a framework that 71 

not only promotes forecasting of exposures, but provides the necessary linkages between source and 72 

internal exposure.  Informed by data comprising the full pathway from source to internal exposure, 73 

environmental health decisions could be made based on either the effects initiated by an exposure,  74 

control of contributing sources of chemical exposures, or both.  But more than four years after the 75 

committee report, an organizational framework to enable a “systems” based approach has yet to 76 

emerge.  In this context, the framework would be a layered structure that describes the elements of 77 

exposure pathways, the relationship between those elements, and how data describing the elements is 78 

stored and utilized for selected outputs, such as exposure assessment, exposure prediction or public 79 

health decision making.  80 

THE AOP FRAMEWORK AS A FOUNDATION 81 

Fortuitously, most of the elements of an organizing framework that meet the needs of the 82 

exposure science community with the power to drive richer integration with the fields of toxicology and 83 

epidemiology are similar to the elements of the increasingly successful and maturing Adverse Outcome 84 

Pathway (AOP) framework.  An AOP is a conceptual framework that organizes existing knowledge 85 

concerning biologically plausible and empirically supported links between molecular level perturbation 86 

of a biological system and an adverse outcome at a level of biological organization of regulatory 87 

relevance
3
. 88 

 The concept of an AOP was first articulated by Ankley and colleagues in response to rapidly 89 

expanding regulatory demands to assess the ecological risks of chemical exposures for a more expansive 90 

set of biological outcomes
3
.  The AOP framework met critical needs to organize rapidly emerging toxicity 91 

data streams and formalize relationships between biological elements (e.g., binding to receptor, gene 92 

expression, cellular response, tissue response, adverse outcome), promoting the use of mechanistic 93 

information and development of computational models of pathways.  The value of the AOP framework 94 
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is evidenced by the rapid progress in moving from concept to application.  In 2012, the Organization for 95 

Economic Co-operation and Development (OECD) launched an AOP development program, and 96 

subsequently an international AOP knowledgebase project , which together have produced guidance 97 

documents 
4, 5

, and an online resource (https://aopwiki.org)  that now has more than 100 AOPs at 98 

various stages of development contributed by governmental, academic, and industrial stakeholders 99 

from around the world.  100 

Exposure science has the same set of needs for organizing rapidly emerging information, across 101 

many levels of environmental and biological organization.  In addition, there is a need for better 102 

integration of exposure and toxicity data.   We believe the AOP framework and the existing supporting 103 

infrastructure can be seen as ready for modification, adoption and eventual implementation as the 104 

guiding framework for exposure science. 105 

THE AGGREGATE EXPOSURE PATHWAY CONCEPT  106 

Here we propose the Aggregate Exposure Pathway (AEP) concept as the natural and 107 

complementary companion in the exposure sciences to the AOP concept in the toxicological sciences. 108 

The AEP framework is an extension of earlier calls for better integration of exposure data with the 109 

existing AOP framework, starting with Ankley and colleagues’ inclusion of “concepts of dosimetry” in the 110 

AOP definition
3
 and expanded by Groh and coworkers, the first to recommend “initiating a systematic 111 

collection of the information on exposure, chemical properties, and toxicokinetics” within the AOP 112 

framework
6
. 113 

An AEP is the assemblage of existing knowledge concerning biologically, chemically and 114 

physically plausible, empirically supported links between introduction of a chemical or other stressor 115 

into the environment and its concentration at a site of action, i.e.  target site exposure as defined by the 116 

NAS
1
 (Figure 1). It may be relevant to exposure assessment, risk assessment, epidemiology, or all three. 117 

The target site exposure (the terminal outcome of the AEP), along with the molecular initiating event 118 

from the AOP, represent the point of integration between an AEP and an AOP.  We envision AEPs that 119 

comprise a sequence of key events describing the introduction of a chemical (or other stressor) into the 120 

environment from sources, fate and transport through one or more environmental media, external 121 

exposure sources, patterns of exposure, and the biokinetic processes that together produce the target 122 

site exposure (Figure 1).  This proposal intentionally considers biokinetic processes leading to target site 123 

exposures as part of exposure science and the AEP, consistent with a vision of exposure science 124 

spanning all levels of physical and biological organization necessary to capture the movement of 125 

chemicals from source to the site of action
1
.   126 

The AEP definition intentionally builds on the conceptual AOP framework (Figure 2A ),
3
 
7, 8

 and 127 

where possible, adheres to the standards, style, structure and definitions created for the AOP. 128 

Embracing the AOP framework and retaining its structure and terminology is one of several steps we 129 

take to provide a foundation for the longer term goal of full integration of the AEP and AOP frameworks. 130 

The basic building blocks of an AEP retain the naming conventions used for AOPs, with revisions to 131 

describe specialized elements unique to AEPs: Key Events (KEs) describe the obligate steps through the 132 

AEP (Table 1, Figure 2A); and Key Event Relationships (KERs) describe the linkages between KEs, 133 

establishing the order of events.  The target site exposure is a specialized KE
8
 describing the 134 

concentration or amount of a stressor (and timing/duration) at the site of action that corresponds to a 135 
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molecular initiating event for an AOP. Aggregation of chemical-specific AEPs produces an interacting 136 

network of exposure pathways sharing KEs, converging on common target site exposures, and in the 137 

example provided, common molecular initiating events of the AOP framework, such as estrogen 138 

receptor binding (Figure 2B). 139 

Termination of the AEP at the target site exposure is a unique aspect of the AEP.  By describing 140 

the pathway from source to the site of action, where the molecular initiating event triggering an AOP 141 

occurs, the AEP-AOP linkage provides an intuitive, natural linkage from source and outcome (Figure 3). 142 

In an ideal case with a fully defined AEP and AOP, the comparison of the target site exposure 143 

concentration of a chemical with the concentration predicted to sufficiently perturb the molecular 144 

initiating event and activate the AOP will give a margin of safety estimate needed for risk assessment. 145 

The AOP framework, with its natural dependency on exposure and pharmacokinetic information 146 

for any risk-based application, may often drive AEP development.  On the other hand, as momentum in 147 

the acquisition of exposure data for a greater fraction of the ~80,000 chemicals in commerce grows, AEP 148 

development is also expected to drive AOP development.  149 

Flexibility would be a key component of the AEP and AOP frameworks.  Full AEP development 150 

may not always be warranted.  For example, for screening-level assessments, truncated AEPs detailing 151 

only elements of the pathway from external exposure to internal exposure may be sufficient.  AEPs may 152 

conclude at any level of ecological organization appropriate for the needs of the assessment it supports, 153 

for example, from source to deposition on a plant or element of the built environment.  However, 154 

developers of AEPs should strive for completeness.  Doing so opens opportunities to contribute to the 155 

evolution and expansion of exposure science through the acquisition and organization of exposure data.   156 

The AEP framework offers an intuitive approach for organization of exposure data.  The 157 

framework promotes identification of data gaps, as well as identification and ranking of common or 158 

critical exposure pathways.  Prediction of chemical concentrations and transformations, within the 159 

physical or biological elements of an exposure pathway or across the elements of a pathway,  is 160 

empowered.  Looking farther ahead, we envision direct linkages between AEPs and AOPs (Figures 2 and 161 

3), completing the source to outcome continuum and setting the stage for more efficient integration of 162 

exposure and toxicity data for decision making.  Together these frameworks form and inform a decision 163 

making framework with the flexibility for risk-based, hazard-based or exposure-based decision making. 164 

DEFINING THE TERM “EXPOSURE” FOR AGGREGATE EXPOSURE PATHWAY APPLICATIONS 165 

In some application areas, the terms dose and exposure are each used, sometimes 166 

interchangeably and without convention, to describe exposures at different levels of biological 167 

organization (e.g., external site of contact or internal site of action).  The NAS report on exposure 168 

science for the 21
st

 century defined the field of exposure science as the study of the contact between 169 

stressors and receptors
1
.  Thus the field, and the term exposure, encompasses the full breadth of 170 

processes and conditions from source to any abiotic or biotic receptor.  Here we embrace this definition 171 

of exposure and formally adopt exposure as the only necessary term for the field.  Exposure refers to 172 

the amount of a stressor reaching buildings, soil microbes, humans, tissues, or cells, without arbitrary 173 

determinations regarding when the exposure becomes a dose
1
.  The identity, amount, location, and 174 

duration/time(ing) of a stressor coming in contact with a receptor comprise the four necessary 175 

parameters for characterizing an exposure of interest.  Establishment of an exposure science ontology, 176 
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proposed recently by Mattingly and colleagues 
9
, is a necessary step in the evolution towards a 177 

productive AEP framework.  178 

PRINCIPLES GUIDING AGGREGATE EXPOSURE PATHWAY DEVELOPMENT 179 

While over-specification of the process for developing AEPs here might limit evolution of the 180 

AEP concept best accomplished in workshops, the thoughtful approaches articulated by Groh,  181 

Villeneuve, 
7, 8

 and others, as well as the OECD, 
4, 5

 serve as a positive starting point.  Five “core” 182 

principles were proposed for AOPs:  AOPs are 1) not chemical specific, 2) modular, 3) a pragmatic unit of 183 

development and evaluation, 4) functional units of prediction and 5) constantly evolving “living” 184 

documents
7, 8

.  These principles, with two exceptions, would also provide sufficient flexibility and 185 

structure to assure consistency, utility and continued evolution of the AEP framework.  Principle one 186 

would be modified to reflect the chemical-specific nature of exposure pathways (Figure 2), although 187 

some elements of an AEP, for example KER’s related to a metabolic process affecting the fate of multiple 188 

compounds, may be chemical agnostic and reusable.   While the AEP concept maintains the spirit of the 189 

third principle, the pragmatic unit in an exposure pathway would be the contributions from all sources 190 

to a single target site exposure.  For example, a single chemical could move through several 191 

environmental media (air, water, soil) and enter a target species through more than one pathway 192 

(dermal, inhalation, oral) leading to a single target site exposure (Figure 2B).  In comparison, the unit of 193 

development for AOPs is a restricted pathway connecting a single molecular initiating event with a 194 

single adverse outcome. 195 

Where the AOP framework was fit to a single purpose of understanding the pathway from 196 

molecular initiating event to adverse outcome, we see that the AEP framework may serve several 197 

purposes, and thus may need greater flexibility than the AOP framework.  AEPs may be constructed for 198 

purposes of understanding source contributions, the role of exposure pathways, or may be driven by the 199 

need to supply the human exposure to target site exposure information for an AOP.  Additional 200 

modification and extension of these principles to reflect aspects unique to AEPs would be expected, but 201 

might best emerge from multi-stakeholder workshops similar to those convened to establish the AOP 202 

framework.  We expect that these issues will be widely discussed with guidance emerging from 203 

contributions from multiple stakeholders. 204 

AGGREGATE EXPOSURE PATHWAY APPLICATIONS IN ENVIRONMENTAL HEALTH 205 

We envision a broad range of application areas emerging from implementation of the AEP 206 
framework within publically accessible, web-based tools like those in development for AOPs 207 
(https://aopkb.org/).  The development of AEPs will enable general activities such as data acquisition, 208 
organization, access and mining, and those that enabled by the availability of these data, such as 209 
aggregation of exposure pathways by source, chemical classes, exposure routes, common AOPs. 210 
Another example would be identification of new target site exposures of concern and, by extension, 211 
AOPs in need of development.   Application areas already common to the field of exposure science 212 
would also be enhanced by the AEP framework, for example, exposure modeling, weighted source 213 
assessment and mitigation, and cumulative risk assessment.  Some specific examples follow. 214 
 Exposure Modeling: Modular descriptions of exposure pathways would allow use of individual 215 

modules as units of prediction (e.g., CalTox, IMPACT, USEtox), and the collection of modules for 216 

prediction of a full exposure pathway.  Several research programs involve development of exposure 217 
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modules that cover various elements of the AEP, such as near-field exposures during the use of 218 

consumer products
10, 11

.  In addition, construction of aggregate exposure models has been an active area 219 

of research outside of the agency and within the ecological/environmental fate and transport field, for 220 

pesticides and consumer products
12-27

.  Development of these models can be viewed as an initial step 221 

toward construction of modular, predictive AEPs able to estimate exposures that, in turn, can be directly 222 

linked to hazard data and AOPs.    223 

Weighted Source Assessment and Mitigation: Querying a growing database of AEPs would 224 

produce new insights into the relative importance of key sources, biological or environmental processes 225 

contributing to either total external exposure, or perhaps more importantly, their concentration at one 226 

or more specific target site exposure linked to AOPs of regulatory concern (Figure 3).  By extension, the 227 

AEP and AOP frameworks would be used together to identify key sources, exposure or biokinetic 228 

processes controlling exposure for classes of compounds operating through single AOPs, allowing joint 229 

weighting by exposure level, source, or biological potency (Figure 3).  This way, source mitigation 230 

priorities, or research priorities for reducing uncertainty related to missing essential data could be 231 

identified properly through weighting of both hazard and exposure.  For example, Tolls and colleagues 232 

estimated emissions of adhesives and sealants through aggregation of multiple use and manufacturing  233 

scenarios for purposes of environmental risk assessment
28

. 234 

Cumulative risk assessment: Groups of compounds acting through a common AOP would be 235 

conducted rapidly and efficiently through mining of AEP data.  For example, existing extensive 236 

information on concentrations of synthetic and natural plant-derived estrogens in food supply, 237 

consumer products, cash register receipts could be utilized to assemble networks of AEPs for all 238 

estrogenic compounds, e.g. the estrome, for purposes of weighing sources of exposure and developing 239 

mitigation strategies or calculating the probability of effects from one or more estrogen receptor 240 

initiated AOPs (Figure 2B).  241 

AEP-AOP INTEGRATION FOR ENVIRONMENTAL HEALTH 242 

Creation and adoption of an effective organizational structure for exposure science and 243 

emergence of a supporting computational infrastructure are initial steps towards the more 244 

transformational goal of a formal linkage between the organizational frameworks for exposure science 245 

and toxicology.  AEPs, with their complimentary network of exposure pathways, are not invoked here as 246 

a stand alone concept parallel to the AOP.  Where Perkins saw a system of interactive AOPs with 247 

common key events as a AOP network (cited in 
29

), we envision a similar AEP network capturing the 248 

cumulative exposure from multiple chemicals across several exposure pathways, with direct linkage to 249 

AOP networks (Figure 2B).  AEPs would produce target site exposures for comparison with 250 

concentrations expected to trigger the molecular initiating event for the corresponding AOP (Figure 2B), 251 

providing interacting organizational frameworks from which exposure, hazard, or risk-based decisions 252 

could be made.  253 

The recent emergence and rapid growth of integrating high throughput exposure predictions 254 

and high throughput toxicity testing data
30-34

 for high throughput prioritization exemplifies the value and 255 

impact of AEP-AOP integration.  In our view, these efforts reflect the use of AEPs embedded in 256 

computational models to provide external exposures to large numbers of compounds, and to translate 257 

these exposures into equivalent serum or tissue concentrations (i.e. target site exposure).  Comparison 258 
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of estimated target site exposures to concentrations found in high throughput test systems that are 259 

sufficient for triggering selected molecular initiating events, as surrogates for adverse outcomes, can be 260 

made.  These emerging high throughput approaches have been successfully combined to make risk-261 

based ranking of almost 200 compounds
34

.  We also envision databases of accumulated information on 262 

interacting AEP-AOPs would transform the assessment of hazards/risks arising from the cumulative 263 

effects of multiples stressors acting on a single AOP (cumulative risk assessment), and the aggregate 264 

effects of exposure to all chemicals producing exposure to each chemical at a site of action (aggregate 265 

risk assessment, Figure 2B).  In the extreme, AEPs would help identify cases where the AOP is not 266 

relevant for a specific chemical because it cannot reach the site of action, for example, formaldehyde is 267 

proposed to cause leukemia through an AOP involving DNA damage to cells of the lymphohemopoetic 268 

system
35

, but it has recently been shown not to reach systemic tissues including the bone marrow
36

.   269 

FUTURE DIRECTIONS AND CONCLUSIONS 270 

The improvements in public health through better integration of exposure science and 271 

toxicological science envisioned by the NAS
1, 37

 will occur more quickly, more completely and have more 272 

immediate impact if there is an organizing framework and infrastructure that allows archiving and 273 

efficient use of these data for prediction and decision making.  Our proposal to utilize the AEP concept 274 

as the organizational framework for exposure science, builds on the long history of aggregate exposure 275 

assessments as a key feature of the field and recent technological advances in computational exposure 276 

modeling and informatics (e.g. AOP Wiki, Effectopedia).  By articulating the basic elements, uses and 277 

impact of the AEP framework here, we intend to initiate a broader effort, to include workshops and 278 

additional manuscripts, that will produce more complete guidance, address the use of exposure tools 279 

for developing AEP’s, and the challenges and uncertainties in accumulating the necessary exposure data. 280 

Completing the source to outcome continuum by joining the AEP and AOP networks sets the 281 

stage for more efficient integration of toxicity testing information and exposure information, creating 282 

opportunities for development and deployment of novel computational tools that enable more 283 

comprehensive, more rapid exposure-based, hazard-based, and risk-based decision making
38

.  284 

The incentive for establishing the AEP or other organizational framework for exposure science 285 

will continue to grow in proportion to the rapid growth of exposure science, invigorated by a new vision 286 

for the field and fueled by new investments by the National Institutes of Health, Environmental 287 

Protection Agency, and other federal agencies.  Development of the AEP framework will undoubtedly 288 

benefit substantially from the existing organizational support and physical/computational infrastructure 289 

now supporting the AOP framework (e.g. the wiki).  Ideally, supporting infrastructure, similar in 290 

structure and function to those developed for the AOP program, would be developed for a 291 

complimentary AEP program.  292 
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Figure Legends 308 

Figure 1:  The principle components of an Aggregate Exposure Pathway (AEP) cover all necessary levels 309 

of ecological, biological and physical organization from sources to target tissue.  Each box represents a 310 

key event which is a measurable change in a chemical state and concentration that is essential, but not 311 

necessarily sufficient, for the movement of a chemical from a source to the target site exposure.  Each 312 

arrow represents a key event relationship which links a pair of key events. AEP’s can be used to 313 

accumulate information for source mitigation, or use in epidemiology and toxicology. 314 

Figure 2: A) Aggregate Exposure Pathway building blocks adapted from the Adverse Outcome Pathway 315 

conventions. Chemical transformations and metabolism can produce chemicals that connect AEPs. B) 316 

Aggregation of chemical-specific AEPs for a group of natural and synthetics estrogens showing the 317 

emergent interacting network of AEPS through sharing KEs, converging on common target site 318 

exposures for each estrogen and a common molecular initiating event for receptor dependent AOPs. 319 

Figure 3: Conventional and emerging exposure science tools, from exposomics, biomonitoring and 320 

computational exposure construction will be used to characterize key events and construct AEPs. 321 

Aggregation of AEPs can be used to weigh the influence of assembled key events on aggregate exposure 322 

for purposes of prioritizing source mitigation efforts.  323 

 324 

  325 
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Tables and Figures 326 

 327 

Table 1: Primary Components of an AEP (AEP) a. 328 

Key Event (KE) • A measureable change in a chemical state or 

concentration that is essential, but not necessarily 

sufficient, for the movement of a chemical from a 

source to the target site exposure leading to an AE  

• Represented as nodes in an AEP network 

• Provides verifiability to an AEP description 

Examples: Increasing mercury levels in rivers, increased 

phthalates in food, increased mycotoxins in corn. 

Key Event Relationship (KER) • The relationship between a pair of KEs, establishing 

the order of the events and the fundamental basis for 

their connection 

• Supported by chemical, physical and biological 

plausibility and empirical evidence 

• Represented as an arrow within and AEP 

• A unit of inference or extrapolation within and AOP 

Examples: deposition of mercury in water bodies,  migration 

of phthalates from plastics to food, production of mycotoxins 

Target Site Exposure (TSE) • A specialized type of KE 

• The chemical concentration at the biological location 

of the Molecular Initiating Event (MEI) of the AOP 

pathway 

• Measured at the level of biological organization 

corresponding to a defined protection goal 

Conventionally referred to as the target site 

concentration 

• Could be biotic (cellular concentration), or abiotic (air 

concentration) depending on the objective of the 

assessment. The point of integration for the AEP and 

AOP frameworks 

Examples: blood mercury concentrations in eagles,  tissue 

concentrations of phthalates in humans 

a
The structure of the table, and description of the building blocks of the AEP are intentionally drawn 329 

from the corresponding table in Villeneuve et al. 
8
 and concepts in Ankley et al. 

3
 with the minimal 330 

necessary modifications to assure the parallelism and complimentary nature of the AEP and AOP are 331 

conveyed.  332 

  333 
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