

*Exceptional service in the national interest*



# A Multi-Time-Step Method for Partitioned Time Integration of Peridynamics

**1<sup>st</sup> Pan-American Conference on Computational Mechanics**



**April 28, 2015**



**Michael Parks**  
**Center for Computing Research**  
**Sandia National Laboratories**  
**Albuquerque, New Mexico**

**Payton Lindsay, Arun Prakash**  
**Lyles School of Civil Engineering**  
**Purdue University**  
**West Lafayette, Indiana**



Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2015-XXXXC

# Outline

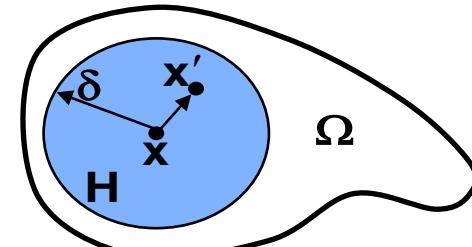
- ❑ Peridynamics Review
- ❑ Motivating Multi-Time-Stepping
- ❑ Nonlocal Multi-Time-Stepping
- ❑ Numerical Example

# What is Peridynamics?

- Peridynamics is a nonlocal extension of classical solid mechanics that permits discontinuous solutions
- Peridynamic equation of motion (integral, nonlocal)

$$\rho \ddot{u}(x, t) = \int_H \left( T[x, t] \langle x' - x \rangle - T[x', t] \langle x' - x \rangle \right) dV_{x'} + b(x, t)$$

- Replace PDEs with integral equations
- Utilize same equation everywhere; nothing “special” about cracks
- No assumption of differentiable fields (admits fracture)
- Damage incurred when deformation criteria satisfied (critical stretch, etc.)
- No obstacle to integrating nonsmooth functions
- Integrand is “force” function; contains constitutive model
- Integrand = 0 for points  $x, x'$  more than  $\delta$  apart (like cutoff radius in MD!)
- PD is “continuum form of molecular dynamics”
- Impact
  - Nonlocality
  - Larger solution space than corresponding classical PDE-based models (fracture)
  - Account for material behavior at small & large length scales (multiscale material model)



Point  $x$  interacts directly with all points  $x'$  within  $H$

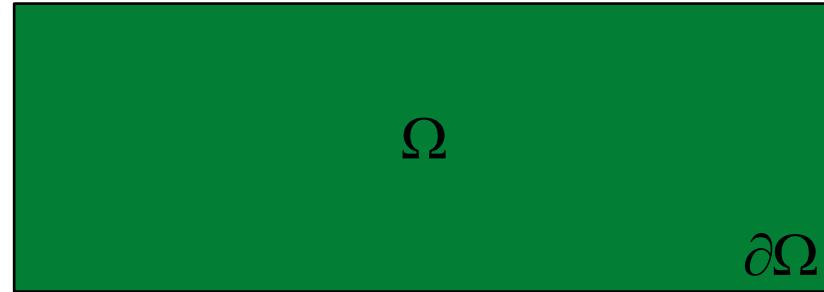
“It can be said that all physical phenomena are nonlocal. Locality is a fiction invented by idealists.”



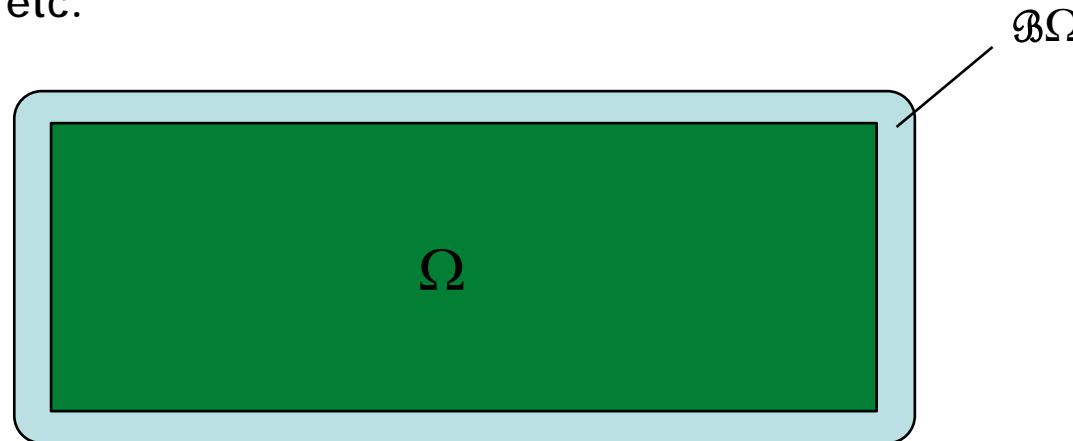
A. Cemal Eringen

# Nonlocal Boundary Conditions

- For local models (for example, PDE-based models), we apply boundary conditions on ... the boundary.

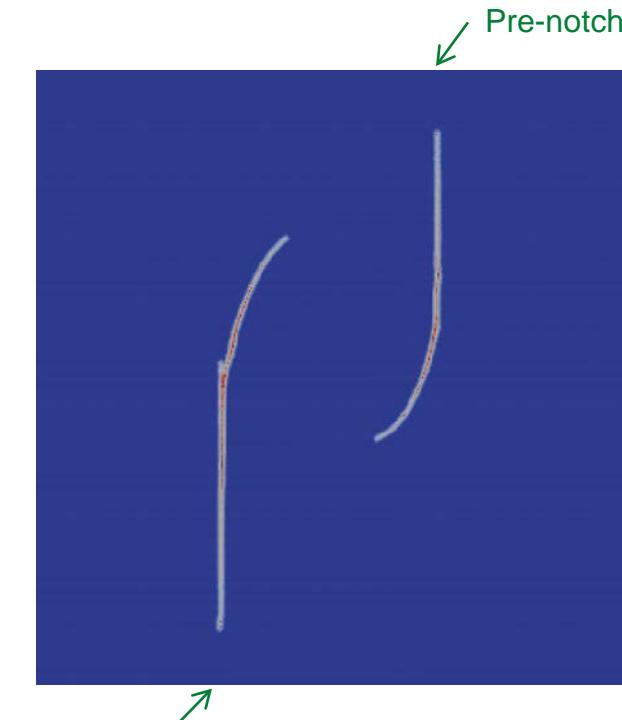


- A Peridynamic “boundary” becomes a volumetric region, sometimes called a “nonlocal boundary”, “collar”, etc.
- Boundary conditions are called “nonlocal boundary conditions”, “volume constraints”, etc.

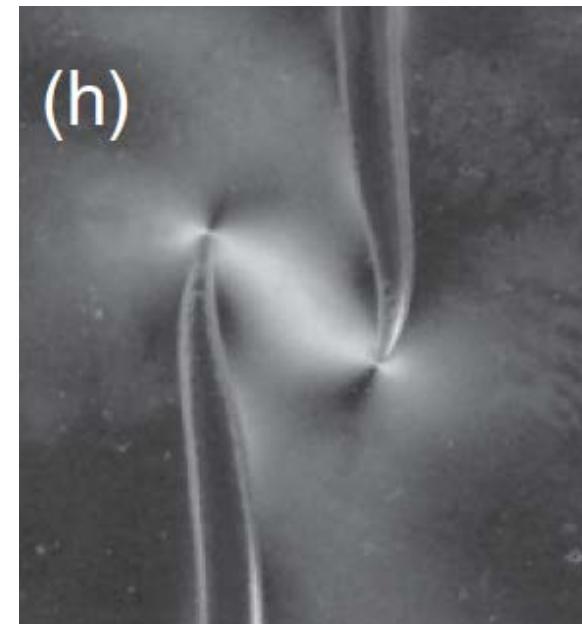


# Two Interacting Cracks

- Offset notches thin rectangular elastic plate
- Uniaxial strain applied from sides
- Approaching cracks produce “en passant” crack pattern



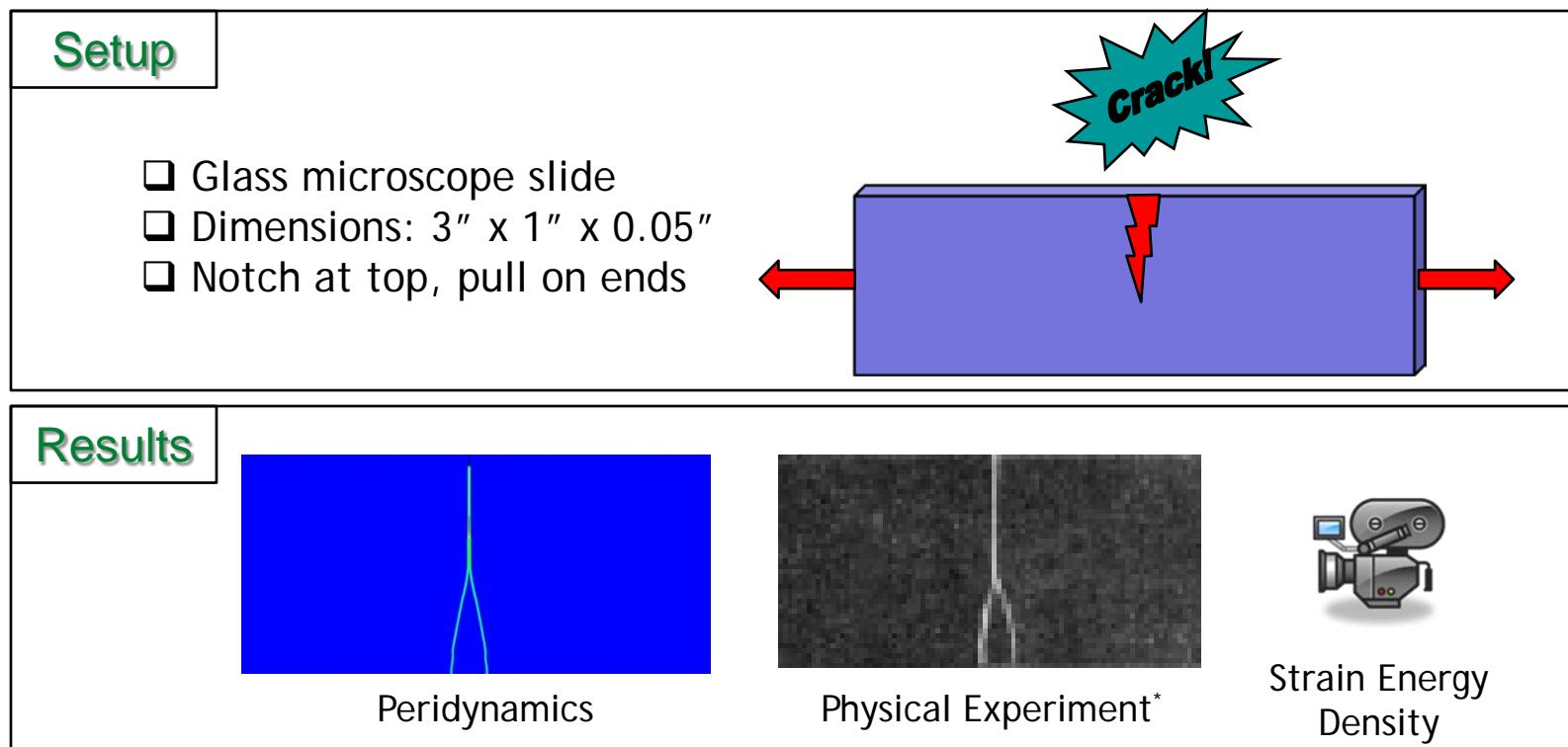
Peridynamics



Physical Experiment\*

# Fracture in Glass Plate

- With Florin Bobaru (Nebraska), Youn-Doh Ha, & Stewart Silling (Sandia)
- Soda-lime glass plate (microscope slide)
  - Dimensions: 3" x 1" x 0.05"
  - Density: 2.44 g/cm<sup>3</sup>
  - Elastic Modulus: 79.0 Gpa
- Dawn (LLNL): IBM BG/P (500 TF; 147,456 cores)
  - Mesh spacing: 35 microns
  - Approx. 82 million particles
  - Time: 50 microseconds (20k timesteps)
  - 6 hours on 65k cores

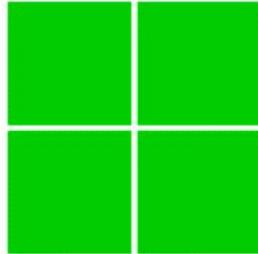
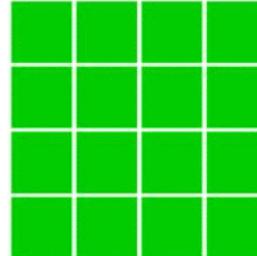
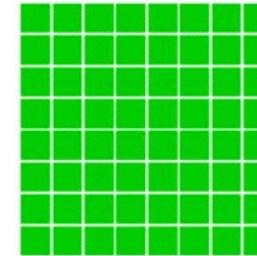


# Outline

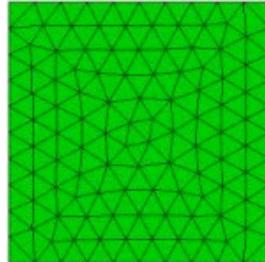
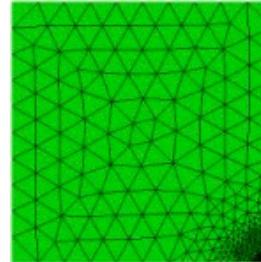
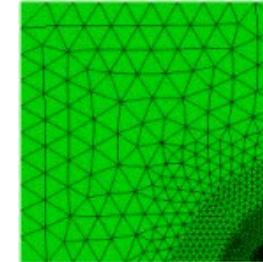
- ❑ Peridynamics Review
- ❑ Motivating Multi-Time-Stepping
- ❑ Nonlocal Multi-Time-Stepping
- ❑ Numerical Examples

# Motivating Multi-Time-Stepping

- ❑ Mesh refinement increases resolution and accuracy of computed solution.



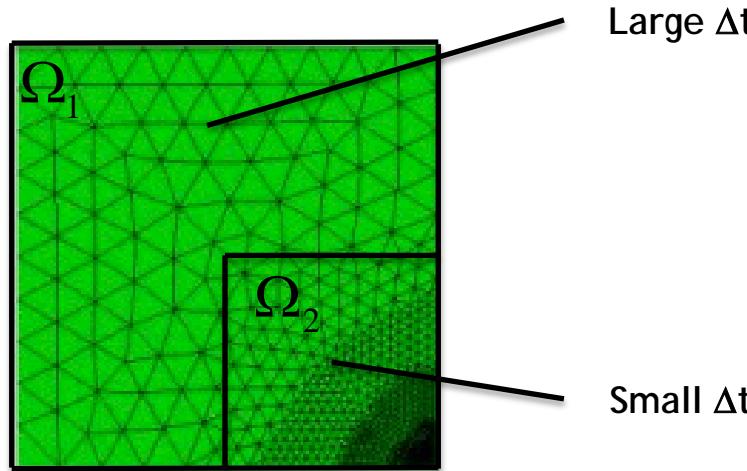
- ❑ Local mesh refinement puts more mesh only where needed.



- ❑ We need to refine our temporal discretization, too.
- ❑ In dynamics, frequently use same timestep everywhere.
  - ❑ This means timestep refinement must be uniform.
- ❑ Like uniform mesh refinement, uniform timestep refinement can generate unnecessary work. May not need a small timestep everywhere!
- ❑ Making matters worse for uniform timestep refinement, to satisfy CFL, timestep usually dictated by the smallest element size. May have really small timestep *everywhere*. 9

# Motivating Multi-Time-Stepping

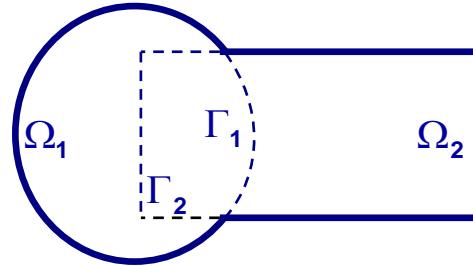
- ❑ Use small timesteps only where needed; Larger timesteps everywhere else.
- ❑ Cut up our domain and choose a timestep for each subdomain.



- ❑ This process is known as multi-time-stepping (sometimes called subcycling).
- ❑ Cutting up our domain is easy...
  - ❑ ... but we'll need to tie it all back together again!
- ❑ We need to leverage ideas from domain decomposition.

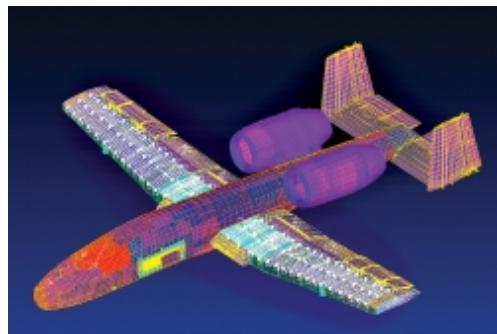
# Domain Decomposition (DD)

- ❑ Original DD method (overlapping method) dates back to Schwarz (1870).



H. A. Schwarz

- ❑ Nonoverlapping DD (substructuring) used by engineers for decades. Original motivation was that entire model wouldn't fit into computer memory.
- ❑ By cutting model into substructures and solving for unknowns along interfaces, can decouple domains and solve each independently.



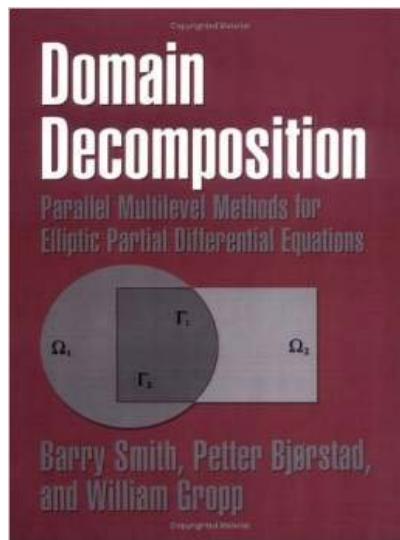
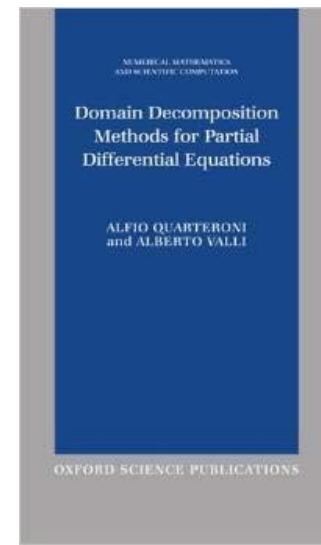
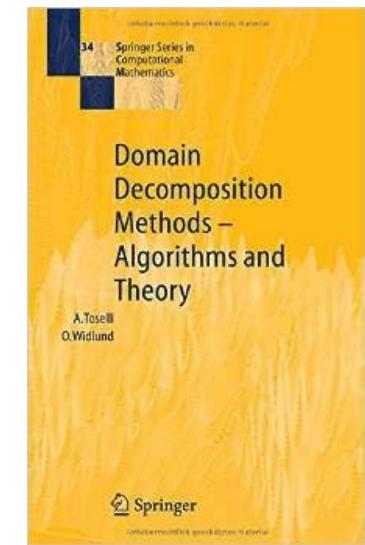
$$\begin{bmatrix} K_{11} & 0 & K_{1\Gamma} \\ 0 & K_{22} & K_{2\Gamma} \\ K_{\Gamma 1} & K_{\Gamma 2} & K_{\Gamma\Gamma} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_\Gamma \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_\Gamma \end{bmatrix}$$

$$(K_{\Gamma\Gamma} - K_{\Gamma 2} K_{22}^{-1} K_{2\Gamma} - K_{\Gamma 1} K_{11}^{-1} K_{1\Gamma}) x_\Gamma = f_\Gamma - K_{\Gamma 2} K_{22}^{-1} f_2 - K_{\Gamma 1} K_{11}^{-1} f_1$$

- ❑ We recognize this as taking a Schur complement with respect to the interface.

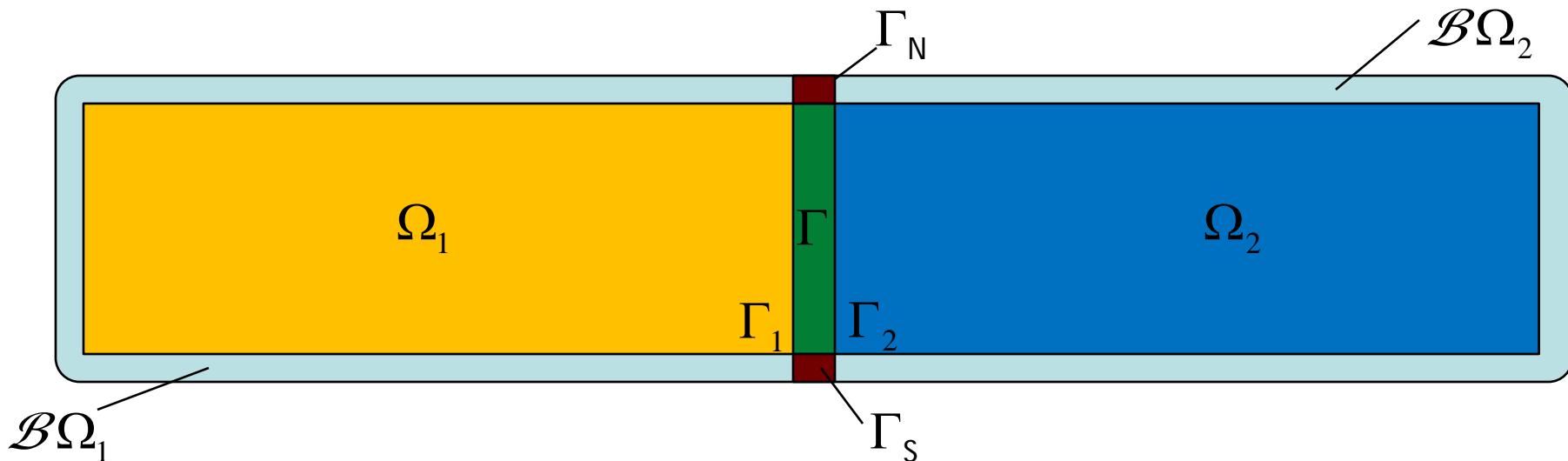
# Domain Decomposition (DD)

- DD is the mathematical and computational technology allowing us to map our problems onto parallel computers. Cut problem into pieces, assign each to a node.
- Subdomains communicate only through their interfaces.
- Primal Schur complement methods (substructuring) isolate subdomains by solving for displacements along an interfacial boundary. Dual Schur complement methods (FETI-type methods) isolate subdomains by solving for forces along an interfacial boundary.
- This lead to highly successful computational approaches and some really elegant mathematical analysis.
- The details can be found in some fantastic texts.



# Nonlocal Domain Decomposition (NLDD)

- For nonlocal models, we can extend some of the classical results.\*
- Interfaces and boundaries for nonlocal models are **volumetric**.



# Time Integration

- Consider one-domain problem with equation of motion

$$\mathbf{M}\ddot{\mathbf{U}}(t) + \mathbf{K}\mathbf{U}(t) = \mathbf{F}(t)$$

$$\mathbf{U}(0) = \mathbf{U}_0$$

$$\mathbf{U}(t) = \mathbf{U}_{B\Omega}$$

- Discretize with Newmark-Beta:

$$\dot{\mathbf{U}}_{n+1} = \dot{\mathbf{U}}_n + \Delta t (1 - \gamma) \ddot{\mathbf{U}}_n + \gamma \Delta t \ddot{\mathbf{U}}_{n+1}$$

$$\mathbf{U}_{n+1} = \mathbf{U}_n + \Delta t \dot{\mathbf{U}}_n + \left(\frac{1}{2} - \beta\right) \Delta t^2 \ddot{\mathbf{U}}_n$$

- Second order iff  $\gamma = 1/2$ .
- Unconditionally stable if  $\beta \geq \gamma/2 \geq 1/4$ .

# Time Integration

- We can write a step of Newmark-Beta as

$$\mathbf{M}\mathbf{U}_{n+1} = \mathbf{F}_{n+1} - \mathbf{N}\mathbf{U}_n$$

where

$$\mathbf{M} = \begin{bmatrix} \mathbf{M} & \mathbf{0} & \mathbf{K} \\ -\gamma\Delta t \mathbf{I} & \mathbf{I} & \mathbf{0} \\ -\beta\Delta t^2 \mathbf{I} & \mathbf{0} & \mathbf{I} \end{bmatrix} \quad \mathbf{N} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ -\Delta t(1-\gamma)\mathbf{I} & -\mathbf{I} & \mathbf{0} \\ -\Delta t^2\left(\frac{1}{2}-\beta\right)\mathbf{I} & -\Delta t\mathbf{I} & -\mathbf{I} \end{bmatrix} \quad \mathbf{U}_n = \begin{bmatrix} \ddot{\mathbf{U}}_n \\ \dot{\mathbf{U}}_n \\ \mathbf{U}_n \end{bmatrix} \quad \mathbf{F}_{n+1} = \begin{bmatrix} \mathbf{F}_{n+1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

- By analogy, we can write  $m$  steps of Newmark-Beta as

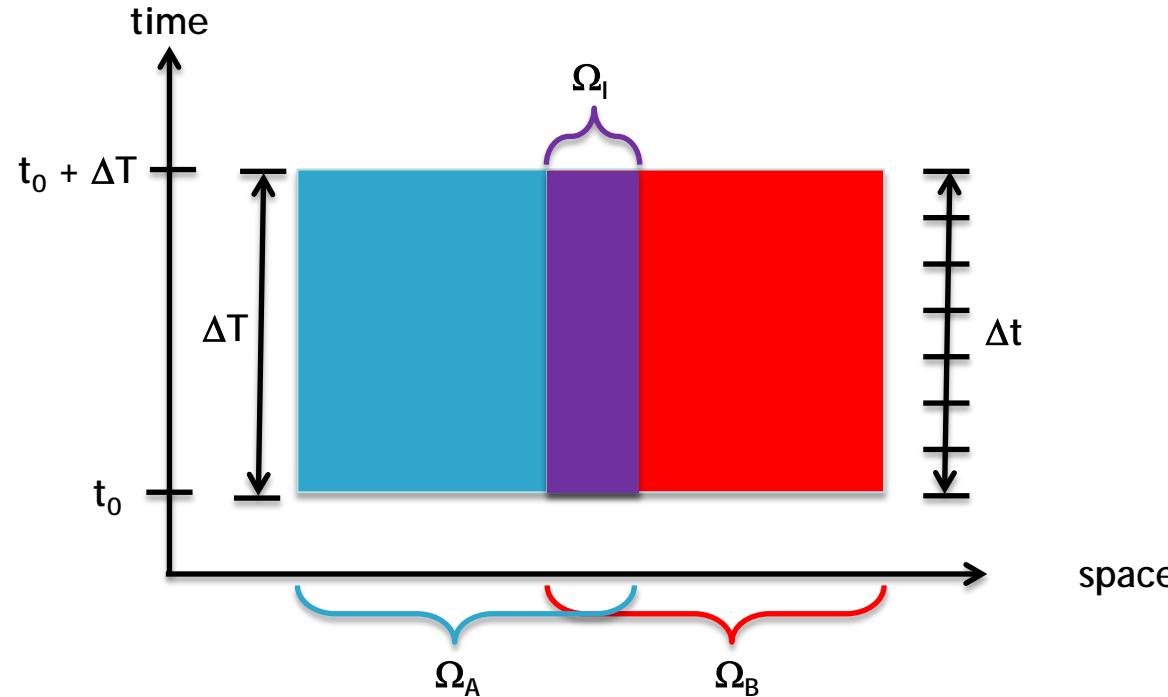
$$\begin{bmatrix} \mathbf{M} & & & \\ \mathbf{N} & \mathbf{M} & & \\ \ddots & \ddots & & \\ & \mathbf{N} & \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{U}_{n+1} \\ \mathbf{U}_{n+1} \\ \vdots \\ \mathbf{U}_{n+m} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{n+1} - \mathbf{N}\mathbf{U}_n \\ \mathbf{F}_{n+1} \\ \vdots \\ \mathbf{F}_{n+m} \end{bmatrix}$$

# Outline

- ❑ Peridynamics Review
- ❑ Motivating Multi-Time-Stepping
- ❑ Nonlocal Multi-Time-Stepping**
- ❑ Numerical Examples

# Nonlocal Multi-Time-Stepping (MTS)

- With this notation, let's couple subdomains with different time steps (MTS).



- Let  $\Delta T = m \Delta t$  for some positive integer  $m$ .
- We will impose transmission conditions between the two subdomains.
- In this work, we adapt the MTS method of Prakash & Hjelmstad\*

# Nonlocal Multi-Time-Stepping (MTS)

- We will choose to couple interface with Lagrange multipliers, and enforce constraint that velocity at interface is consistent across boundary.

$$\mathbf{M}^k \ddot{\mathbf{U}}^k + \mathbf{K}^k \mathbf{U}^k + (\mathbf{C}^k)^T \boldsymbol{\Lambda} = \mathbf{F}^k \quad k = 1, \dots, s$$

$$\sum_{k=1}^s \mathbf{C}^k \dot{\mathbf{U}}^k = \mathbf{0}$$

where  $\mathbf{C}$  is a boolean matrix that extracts interfacial DOFs to form an interface vector.

- Fully discretized equations for subdomain A at time  $t_m$  are

$$\mathbf{M}^A \mathbf{U}_m^A + \mathbf{C}^A \boldsymbol{\Lambda}_m = \mathbf{F}_m^A - \mathbf{N}^A \mathbf{U}_0^A$$

- Similarly, discretized equations for subdomain B at time  $t_j$  ( $j = 1, \dots, m$ ) are

$$\mathbf{M}^B \mathbf{U}_j^B + \mathbf{C}^B \boldsymbol{\Lambda}_j = \mathbf{F}_j^B - \mathbf{N}^B \mathbf{U}_{j-1}^B$$

- We enforce continuity of velocity only at time  $t_m$ \*

$$\mathbf{C}^A \dot{\mathbf{U}}_m^A + \mathbf{C}^B \dot{\mathbf{U}}_m^B = \mathbf{0}$$

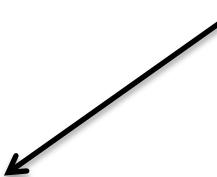
# Nonlocal Multi-Time-Stepping (MTS)

- To solve equations for subdomains A and B and satisfy the constraint equation, split equation for subdomain A into two parts:

$$\mathbf{M}^A \mathbf{U}_m^A + \mathbf{C}^A \Lambda_m = \mathbf{F}_m^A - \mathbf{N}^A \mathbf{U}_0^A$$



$$\mathbf{U}_m^A = \mathbf{V}_m^A + \mathbf{W}_m^A$$



$$\mathbf{M}^A \mathbf{V}_m^A = \mathbf{F}_m^A - \mathbf{N}^A \mathbf{U}_0^A$$



$$\mathbf{M}^A \mathbf{W}_m^A = -\mathbf{C}^A \Lambda_m$$

$$\mathbf{V}_m^A = \begin{bmatrix} \ddot{\mathbf{V}}_m^A \\ \dot{\mathbf{V}}_m^A \\ \mathbf{V}_m^A \end{bmatrix}$$

Free Problem

$$\mathbf{W}_m^A = \begin{bmatrix} \ddot{\mathbf{W}}_m^A \\ \dot{\mathbf{W}}_m^A \\ \mathbf{W}_m^A \end{bmatrix}$$

Interface Problem

# Nonlocal Multi-Time-Stepping (MTS)

- After solving the free problem, can compute the state variables for subdomain A at intermediate times  $t_j$  through linear interpolation between  $t_0$  and  $t_m$ .

$$\mathbf{V}_j^A = \left(1 - \frac{j}{m}\right) \mathbf{U}_0^A + \left(\frac{j}{m}\right) \mathbf{V}_m^A$$

- Knowing free state at  $t_j$ , can compute unbalanced free interface reaction at  $t_j$  (amount subdomain A is out of equilibrium due to external forces only) as

$$\mathbf{S}_j = \mathbf{C}^A \left( \mathbf{F}_j^A - \mathbf{M}^A \ddot{\mathbf{V}}_j^A - \mathbf{K}^A \mathbf{V}_j^A \right)$$

- After much derivation, we can rewrite the equation of motion for subdomain B as

$$\mathbf{M}^B \mathbf{U}_j^B + \left(\frac{j}{m}\right) \mathbf{C}^B \Lambda_m = \mathbf{F}_j^B - \mathbf{N}^B \mathbf{U}_{j-1}^B - \mathbf{C}^B \mathbf{S}_j$$

where we have replaced  $\Lambda_j$  in favor of  $\Lambda_m$ .

# Nonlocal Multi-Time-Stepping (MTS)

- We can now write the complete set of equations to be solved:

$$\begin{bmatrix}
 \mathbf{M}^B & & & \\
 \mathbf{N}^B & \mathbf{M}^B & & \\
 \ddots & \ddots & & \\
 & \mathbf{N}^B & \mathbf{M}^B & \\
 \hline
 & & \mathbf{M}^A & \mathbf{C}^A \\
 \hline
 & & \mathbf{B}^A & \mathbf{B}^B & \mathbf{0} \\
 \end{bmatrix}
 \begin{bmatrix}
 \frac{1}{m} \mathbf{C}^B \\
 \frac{2}{m} \mathbf{C}^B \\
 \vdots \\
 \frac{m}{m} \mathbf{C}^B
 \end{bmatrix}
 \begin{bmatrix}
 \mathbf{U}_1^B \\
 \mathbf{U}_2^B \\
 \vdots \\
 \mathbf{U}_m^B
 \end{bmatrix}
 = \begin{bmatrix}
 \mathbf{F}_1^B - \mathbf{N}^B \mathbf{U}_0^B - \mathbf{C}^B \mathbf{S}_1 \\
 \mathbf{F}_2^B - \mathbf{C}^B \mathbf{S}_2 \\
 \vdots \\
 \mathbf{F}_m^B - \mathbf{C}^B \mathbf{S}_m \\
 \hline
 \mathbf{F}_m^A - \mathbf{N}^A \mathbf{U}_0^A \\
 \hline
 \mathbf{0}
 \end{bmatrix}$$

where  $\mathbf{B}^A = \begin{bmatrix} \mathbf{0} & \mathbf{C}^A & \mathbf{0} \end{bmatrix}$     $\mathbf{B}^B = \begin{bmatrix} \mathbf{0} & \mathbf{C}^B & \mathbf{0} \end{bmatrix}$

# Nonlocal Multi-Time-Stepping (MTS)

- We can re-write as

$$\begin{bmatrix} M & C \\ B & 0 \end{bmatrix} \begin{bmatrix} U \\ \Lambda_m \end{bmatrix} = \begin{bmatrix} P \\ 0 \end{bmatrix}$$

where  $U = V + W$ , and solve as a multistep process:

- 1) Compute  $V^A$  (free system)
- 2) Compute reaction forces  $S_j$ .
- 3) Compute  $V^B$ .
- 4) Solve for  $\Lambda_m$  (interface reaction force at time  $t_m$ ), then determine  $\Lambda_j$
- 5) Using  $\Lambda_j$ , compute  $W^A, W^B$ .
- 6) Update solution  $U^A, U^B$ .

- Tedious, but straightforward!

# Numerical Properties

- We can write the change in energy of the coupled system from time  $t_0$  to  $t_m$  as

$$\begin{aligned}
 \Delta\mathcal{E} = & -\left(\gamma_A - \frac{1}{2}\right)\left(\ddot{\mathbf{U}}_m^A - \ddot{\mathbf{U}}_0^A\right)^T \left[\mathbf{M}^A + \Delta t^2 \left(\beta_A - \frac{\gamma_A}{2}\right) \mathbf{K}^A\right] \left(\ddot{\mathbf{U}}_m^A - \ddot{\mathbf{U}}_0^A\right) \\
 & - \left(\gamma_B - \frac{1}{2}\right) \sum_{j=1}^m \left(\ddot{\mathbf{U}}_j^B - \ddot{\mathbf{U}}_{j-1}^B\right)^T \left[\mathbf{M}^B + \Delta t^2 \left(\beta_B - \frac{\gamma_B}{2}\right) \mathbf{K}^B\right] \left(\ddot{\mathbf{U}}_j^B - \ddot{\mathbf{U}}_{j-1}^B\right) \\
 & + E_\Lambda
 \end{aligned}$$

- If  $\Delta\mathcal{E} \leq 0$ , we assert our method is stable.
- If  $\mathbf{M}^A, \mathbf{K}^A, \mathbf{M}^B, \mathbf{K}^B$ , are SPD and we choose  $\beta_A, \gamma_A, \beta_B, \gamma_B$ , for unconditional stability, then  $E_\Lambda \leq 0$  is sufficient to guarantee stability. After much derivation, can show that

$$E_\Lambda \propto \mathbf{C}^A \left(\dot{\mathbf{U}}_m^A - \dot{\mathbf{U}}_0^A\right) + \mathbf{C}^B \left(\dot{\mathbf{U}}_m^B - \dot{\mathbf{U}}_0^B\right) = \mathbf{0}$$

- Thus, coupling method neither adds nor removes energy from coupled system, hence:
  - 1) Coupling method is stable (if the Newmark-Beta integrators for  $\Omega_A, \Omega_B$  are stable).
  - 2) Coupling method does not introduce any additional dissipation.

# Truncation Error

- For a two node problem, can eliminate acceleration variables and rewrite as

$$\mathbf{y}_1 = \mathbf{A}\mathbf{y}_0 + \mathbf{c}_0$$

where  $\mathbf{y}_1$  is vector of numerical solutions at next full timestep.

- Truncation error is

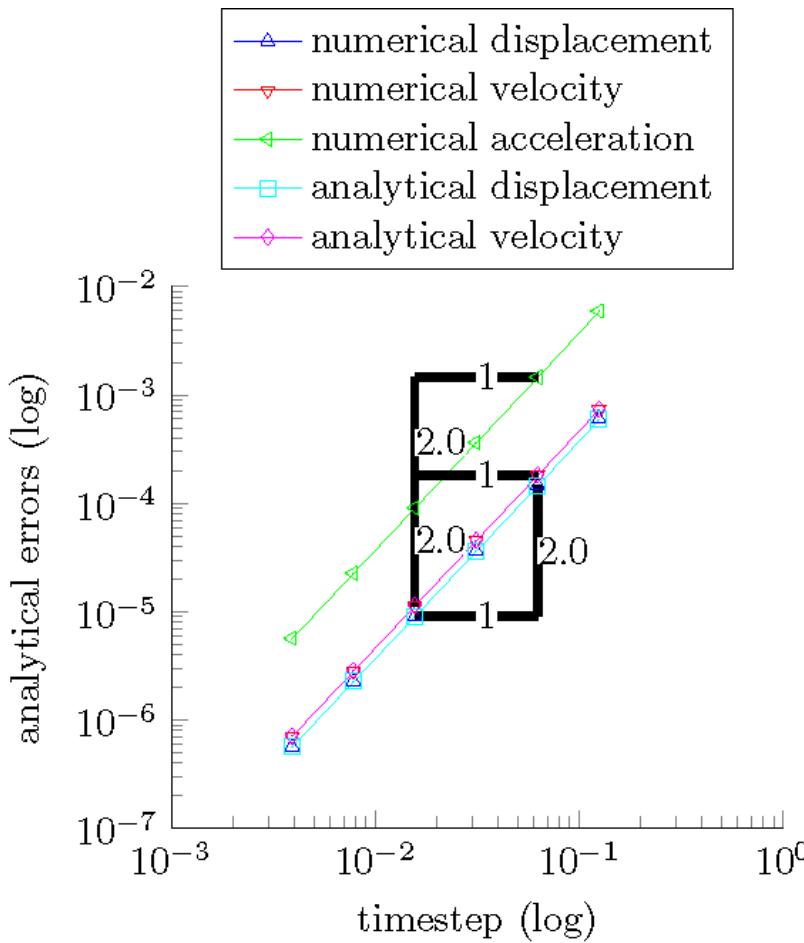
$$\tau(t_0) = \mathbf{y}(t_1) - \mathbf{y}_1 = \mathbf{y}(t_1) - \mathbf{A}\mathbf{y}(t_0) - \mathbf{c}(t_0)$$

where  $\mathbf{y}(t_1)$  is vector of exact kinematic values. Using Taylor series, get

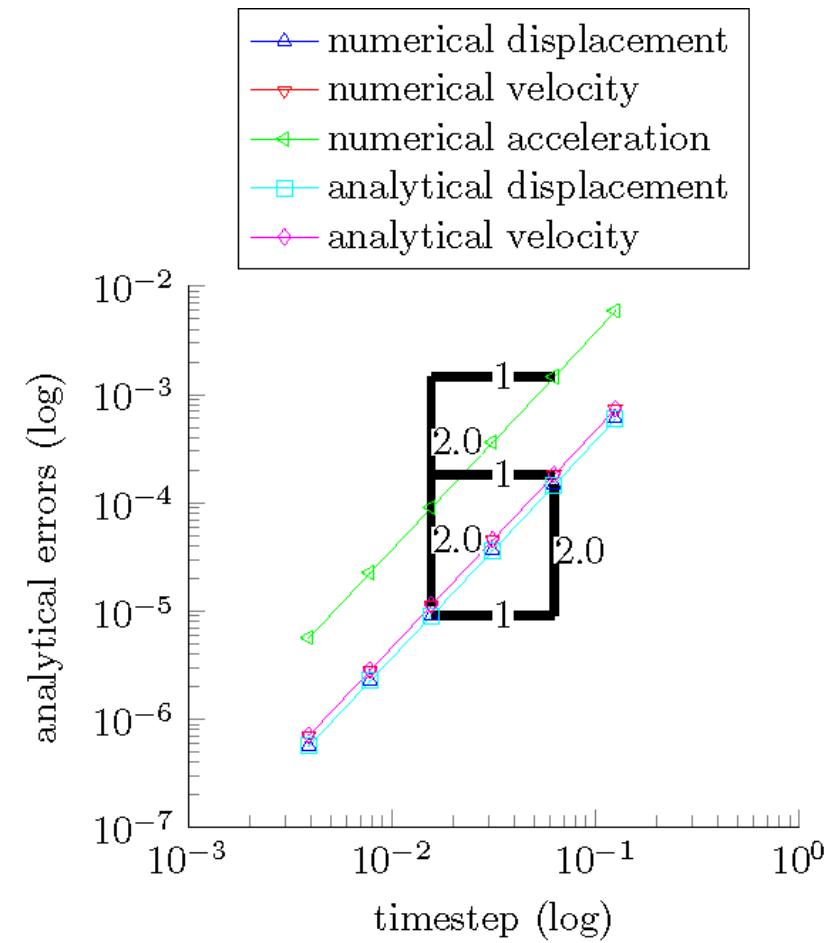
$$\tau(t_0) = \begin{bmatrix} \tau_{u_{1,1}}(t_0) \\ \tau_{u_{1,2}}(t_0) \\ \tau_{u_{2,2}}(t_0) \\ \tau_{\dot{u}_{1,1}}(t_0) \\ \tau_{\dot{u}_{1,2}}(t_0) \\ \tau_{\dot{u}_{2,2}}(t_0) \\ \tau_{\Lambda}(t_0) \end{bmatrix} = \begin{bmatrix} O(\Delta t^2) \\ O(\Delta t^2) \\ O(\Delta t^2) \\ -\frac{(2\gamma-1)\Delta t(CV_2(\dot{u}_2(t_0) - \dot{u}_1(t_0)) + \dot{f}(t_0))}{2\rho} + O(\Delta t^2) \\ -\frac{(2\gamma-1)\Delta t(CV_1(\dot{u}_2(t_0) - \dot{u}_1(t_0)) + \dot{f}(t_0))}{2\rho} + O(\Delta t^2) \\ -\frac{(2\gamma-1)\Delta t(CV_1(\dot{u}_2(t_0) - \dot{u}_1(t_0)) + \dot{f}(t_0))}{2\rho} + O(\Delta t^2) \\ O(\Delta t^2) \end{bmatrix}$$

# Truncation Error

## □ Direct numerical simulation of two node system



$$\gamma = 1/2, \beta = 0$$



$$\gamma = 1/2, \beta = 1/4$$

# Rough Cost Estimate

- ❑ Suppose there are  $n_A$  elements in domain  $\Omega_A \setminus \Omega_B$ ,  $n_B$  elements in domain  $\Omega_B \setminus \Omega_A$ , and  $n_I$  elements in  $A \cap B$ .
- ❑ Let  $n = n_A + n_B + n_I$ .
- ❑ Further suppose each element has  $n_b$  bonds.  
(Ignore that the number of bounds near a boundary is not  $n_b$ .)

- ❑ If we use a uniform timestep and take  $m$  steps, computational work  $\sim nn_b m$ .
- ❑ For the MTS scheme, computational work  $\sim n_b (n_A + n_I + m(n_I + n_b))$ .

- ❑ MTS scheme becomes advantageous if  $(m-1)n_A > n_I$ .

- ❑ For example, if  $n_B$  is 10% of overall domain size,  $m=2$ , then

## Computational Work for Uniform Timestep $\approx 1.8$

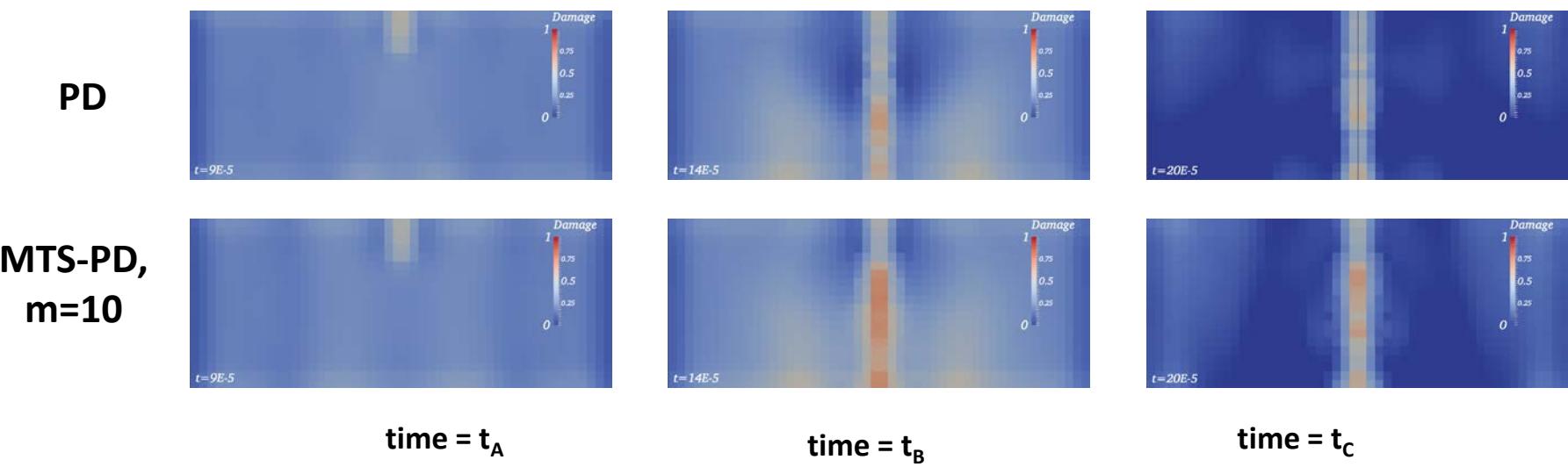
## Computational Work for MTS Timestep

# Outline

- ❑ Peridynamics Review
- ❑ Motivating Multi-Time-Stepping
- ❑ Nonlocal Multi-Time-Stepping
- ❑ Numerical Example

# Numerical Example – Cracked Plate

- Dimensions: 20 mm x 10 mm x 0.1 mm plate;  $h = 0.1$  mm.
- $\rho = 2235 \text{ kg/m}^3$ ,  $E = 13.5 \text{ MPa}$ ;  $G_0 = 204 \text{ J/m}^2$ .
- $\Gamma = 1/2$ ;  $\beta = 1/4$ .
- For MTS,  $\Delta t = 1 \times 10^{-8}$ ;  $\Delta T = m\Delta t$ . Fast timestep region was middle 20% of plate.
- Execution  $\sim 10 \times$  faster than uniform fine timestep, but with improved accuracy in middle of plate (crack).



# Numerical Example – Cracked Plate

- Dimensions: 20 mm x 10 mm x 0.1 mm plate;  $h = 0.1$  mm.
- $\rho = 2235 \text{ kg/m}^3$ ,  $E = 13.5 \text{ MPa}$ ;  $G_0 = 204 \text{ J/m}^2$ .
- Gamma = 1/2; beta = 1/4.
- For MTS,  $\Delta t = 1 \times 10^{-8}$ ;  $\Delta T = m\Delta t$ . Fast timestep region was middle 20% of plate.

| Method                             | Time $t_A$            | Time $t_B$            | Time $t_C$            |
|------------------------------------|-----------------------|-----------------------|-----------------------|
| PD, $\Delta t = 10 \times 10^{-8}$ | $1.86 \times 10^{-6}$ | $3.26 \times 10^{-6}$ | $3.27 \times 10^{-5}$ |
| MTS-PD, $m=10$                     | $1.76 \times 10^{-6}$ | $2.95 \times 10^{-6}$ | $1.59 \times 10^{-5}$ |

- Error (avg. rel. error over all cells) was computed with respect to one-domain PD solution with  $\Delta t = 1 \times 10^{-8}$ .

# Summary

## ☐ Peridynamics Review

## ☐ Motivating Multi-Time-Stepping

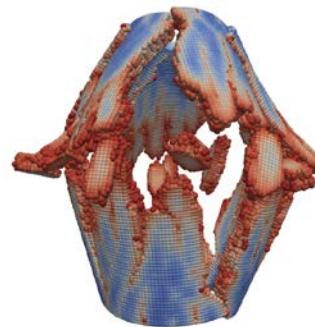
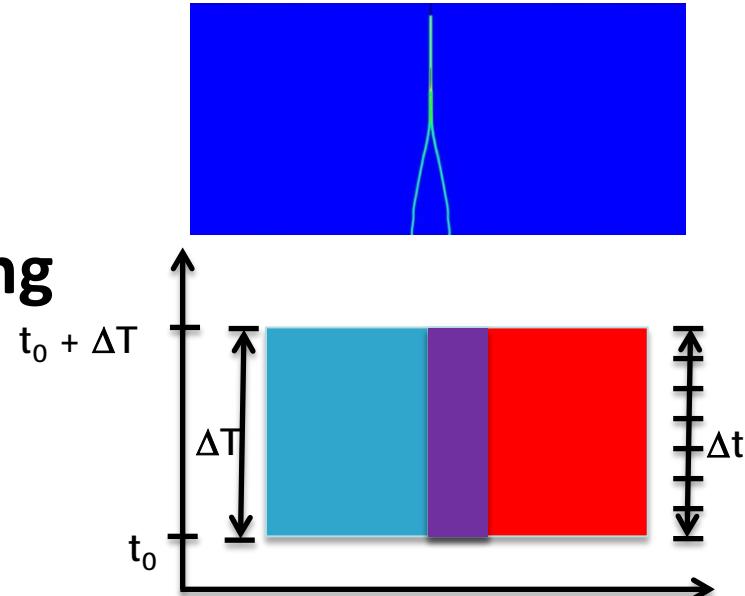
## ☐ Domain Decomposition

## ☐ Nonlocal Multi-Time-Stepping

## ☐ Numerical Properties

## ☐ Numerical Example

## ☐ Questions?



$$\begin{bmatrix}
 \mathbf{M}^B & & & & \frac{1}{m} \mathbf{C}^B & \mathbf{U}_1^B \\
 \mathbf{N}^B & \mathbf{M}^B & & & \frac{2}{m} \mathbf{C}^B & \mathbf{U}_2^B \\
 \vdots & \vdots & & & \vdots & \vdots \\
 & \mathbf{N}^B & \mathbf{M}^B & & \frac{m}{m} \mathbf{C}^B & \mathbf{U}_m^B \\
 & \hline
 \mathbf{B}^A & \mathbf{B}^B & \mathbf{0} & \mathbf{C}^A & \mathbf{U}_m^A \\
 & \hline
 & & & & \Lambda_m
 \end{bmatrix} = \begin{bmatrix}
 \mathbf{F}_1^B - \mathbf{N}^B \mathbf{U}_0^B - \mathbf{C}^B \mathbf{S}_1 \\
 \mathbf{F}_2^B - \mathbf{C}^B \mathbf{S}_2 \\
 \vdots \\
 \mathbf{F}_m^B - \mathbf{C}^B \mathbf{S}_m \\
 \hline
 \mathbf{F}_m^A - \mathbf{N}^A \mathbf{U}_0^A \\
 \hline
 \mathbf{0}
 \end{bmatrix}$$