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 Peridynamics is a nonlocal extension of classical solid mechanics that  
     permits discontinuous solutions 

 
 Peridynamic equation of motion (integral, nonlocal) 

 
 
 
 Replace PDEs with integral equations  
 Utilize same equation everywhere; nothing “special” about cracks 
 No assumption of differentiable fields (admits fracture) 
 Damage incurred when deformation criteria satisfied (critical stretch, etc.) 
 No obstacle to integrating nonsmooth functions 
 Integrand is “force” function; contains constitutive model 
 Integrand = 0 for points x,x’ more than δ apart  

          (like cutoff radius in MD!) 
 PD is “continuum form of molecular dynamics” 

 Impact 
 Nonlocality 
 Larger solution space than corresponding classical PDE-based models    
    (fracture) 
 Account for material behavior at small & large length scales  
    (multiscale material model) 

 
 

What is Peridynamics? 
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Point x interacts 
directly with all 

points x’ within H 

“It can be said that all 
physical phenomena are 
nonlocal. Locality is a  
fiction invented by 

idealists.” 

A. Cemal Eringen 



 For local models (for example, PDE-based models), we apply boundary conditions 
 on … the boundary.  
 
 
 
 
 
 
 
 

 A Peridynamic “boundary” becomes a volumetric region, sometimes called a 
 “nonlocal boundary”, “collar”, etc.  
 Boundary conditions are called “nonlocal boundary conditions”, “volume 

 constraints”, etc.  
 
 
 
 
 
 
 

Nonlocal Boundary Conditions 
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 Offset notches thin rectangular elastic plate  
 Uniaxial strain applied from sides  
 Approaching cracks produce “en passant” crack pattern 

 
 
 
 
 
 
 

Two Interacting Cracks 
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* M. Fender, F. Lechenault, and K. Daniels, Universal Shapes Formed by Two Interacting Cracks, Phys. Rev. Lett. 105, 125505 (2010) . 

Pre-notch 

Pre-notch 

Peridynamics Physical Experiment* 



Fracture in Glass Plate 
 With Florin Bobaru (Nebraska), Youn-Doh Ha, & Stewart Silling (Sandia) 

 
 Soda-lime glass plate (microscope slide) 

 Dimensions: 3” x 1” x 0.05”  
 Density: 2.44 g/cm3 
 Elastic Modulus: 79.0 Gpa 
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 Glass microscope slide 
 Dimensions: 3” x 1” x 0.05” 
 Notch at top, pull on ends 
 

Peridynamics Physical Experiment* 

Setup 

Results 

*S F. Bowden, J. Brunton, J. Field, and A. Heyes, Controlled fracture of brittle solids and interruption of electrical current, Nature, 216, 42, pp.38-42, 1967. 

Strain Energy  
Density 

 Dawn (LLNL): IBM BG/P (500 TF; 147,456 cores) 
 Mesh spacing: 35 microns 
 Approx. 82 million particles 
 Time: 50 microseconds (20k timesteps) 
 6 hours on 65k cores 
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Motivating Multi-Time-Stepping 
 Mesh refinement increases resolution and accuracy of computed solution. 

 
 
 

 
 
 Local mesh refinement puts more mesh only where needed. 

 
 
 
 
 
 
 We need to refine our temporal discretization, too.  
 In dynamics, frequently use same timestep everywhere.  

 This means timestep refinement must be uniform.  
 Like uniform mesh refinement, uniform timestep refinement can generate unnecessary 

 work. May not need a small timestep everywhere! 
 Making matters worse for uniform timestep refinement, to satisfy CFL, timestep usually 

 dictated by the smallest element size. May have really small timestep everywhere.  9 



Motivating Multi-Time-Stepping 
 Use small timesteps only where needed; Larger timesteps everywhere else.  
 Cut up our domain and choose a timestep for each subdomain.  

 
 
 
 
 
 
 
 
 
 
 
 This process is known as multi-time-stepping (sometimes called subcycling).  
 Cutting up our domain is easy… 

 … but we’ll need to tie it all back together again! 
 

 We need to leverage ideas from domain decomposition.  
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Domain Decomposition (DD) 
 Original DD method (overlapping method) dates back to Schwarz (1870).  

 
 
 
 
 
 
 Nonoverlapping DD (substructuring) used by engineers for decades. Original 

 motivation was that entire model wouldn’t fit into computer memory.  
 
 By cutting model into substructures and solving for unknowns along interfaces,   

 can decouple domains and solve each independently.  
 
 
 
 
 
 
 
 We recognize this as taking a Schur complement with respect to the interface.  11 
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Domain Decomposition (DD) 
 DD is the mathematical and computational technology allowing us to map our 

 problems onto parallel computers. Cut problem into pieces, assign each to a node.  
 Subdomains communicate only though their interfaces.  
 Primal Schur complement methods (substructuring) isolate subdomains by solving for 

 displacements along an interfacial boundary. Dual Schur complement methods (FETI-
 type methods) isolate subdomains by solving for forces along an interfacial boundary. 
 This lead to highly successful computational approaches and some really elegant 

 mathematical analysis.  
 The details can be found in some fantastic texts.  
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Nonlocal Domain Decomposition (NLDD) 
 For nonlocal models, we can extend some of the classical results.* 
 Interfaces and boundaries for nonlocal models are volumetric.  
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*B. Aksoylu and M.L. Parks, Variational Theory and Domain Decomposition for Nonlocal Problems, Applied Mathematics and Computation, 217, pp. 6498-6515, 2011.  
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Time Integration 
 Consider one-domain problem with equation of motion 

 
 
 
 
 
 
 Discretize with Newmark-Beta: 

 
 
 
 
 
 
 Second order iff γ = 1/2.  
 Unconditionally stable if β ≥  γ/2 ≥ 1/4. 
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Time Integration 
 We can write a step of Newmark-Beta as 
 
 
 where 
 
 
 
 
 
 
 
 By analogy, we can write m steps of Newmark-Beta as  
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Nonlocal Multi-Time-Stepping (MTS) 
 With this notation, let’s couple subdomains with different time steps (MTS). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Let ∆T=m ∆t for some positive integer m. 
 We will impose transmission conditions between the two subdomains.  
 In this work, we adapt the MTS method of Prakash & Hjelmstad* 
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t0 

t0 + ∆T 

∆T ∆t 

*A. Prakash and K. Hjelmstad, A FETI-based multi-time-stepping coupling method for Newmark schemes in structural dynamics, IJNME, 61:2183-2204, 2004. 

ΩI 



Nonlocal Multi-Time-Stepping (MTS) 
 We will choose to couple interface with Lagrange multipliers, and enforce constraint 

 that velocity at interface is consistent across boundary.  
 
 
 
 
 

 where C is a boolean matrix that extracts interfacial DOFs to form an interface vector. 
 Fully discretized equations for subdomain A at time tm are  

 
 
 Similarly, discretized equations for subdomain B at time tj (j = 1,…,m) are 

 
 
 We enforce continuity of velocity only at time tm* 
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* A. Combescure & A. Garavouil, A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis. CMAME, 
191:1129—1157, 2002.  
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Nonlocal Multi-Time-Stepping (MTS) 
 To solve equations for subdomains A and B and satisfy the constraint equation,  
 split equation for subdomain A into two parts: 
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Nonlocal Multi-Time-Stepping (MTS) 
 After solving the free problem, can compute the state variables for subdomain A at 

 intermediate times tj through linear interpolation between t0 and tm. 
 
 
 
 
 
 Knowing free state at tj, can compute unbalanced free interface reaction at tj                   
 (amount subdomain A is out of equilibrium due to external forces only) as  

 
 
 
 
 After much derivation, we can rewrite the equation of motion for subdomain B as 
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Nonlocal Multi-Time-Stepping (MTS) 
 We can now write the complete set of equations to be solved: 
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Nonlocal Multi-Time-Stepping (MTS) 
  We can re-write as 

 
 
 
 

 
 where U = V+W, and solve as a multistep process: 
 
1) Compute VA (free system) 
2) Compute reaction forces Sj.  
3) Compute VB. 
4) Solve for Λm (interface reaction force at time tm), then determine Λj 
5) Using Λj, compute WA, WB.  
6) Update solution UA, UB.  

 
 Tedious, but straightforward! 
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Numerical Properties 
 We can write the change in energy of the coupled system from time t0 to tm as  

 
 
 
 
 
 
 
 If ∆E ≤ 0, we assert our method is stable.  
 If MA, KA, MB, KB, are SPD and we choose βA, γA, βB, γB, for unconditional stability, then 

 EΛ ≤ 0 is sufficient to guarantee stability. After much derivation, can show that  
 
 
 
 Thus, coupling method neither adds nor removes energy from coupled system, hence: 
 
1) Coupling method is stable (if the Newmark-Beta integrators for ΩA, ΩB are stable).  
2) Coupling method does not introduce any additional dissipation. 
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Truncation Error 
 For a two node problem, can eliminate acceleration variables and rewrite as 

 
  
 where y1 is vector of numerical solutions at next full timestep.  
 Truncation error is 

 
  
 where y(t1) is vector of exact kinematic values. Using Taylor series, get 
 
 
 
 

001 cAyy +=

( ) ( ) ( ) ( ) ( )001110 ttttt cAyyyyτ −−=−=

( )

( )
( )
( )
( )
( )
( )
( )

( )
( )
( )

( ) ( ) ( )( ) ( )( ) ( )
( ) ( ) ( )( ) ( )( ) ( )
( ) ( ) ( )( ) ( )( ) ( )

( ) 



































∆

∆+
+−∆−

−

∆+
+−∆−

−

∆+
+−∆−

−

∆
∆
∆

=





























=

2

2001021

2001021

2001022

2

2

2

0Λ

0u

0u

0u

0u

0u

0u

0

t

t
2ρ

tftutuCVt1γ2

t
2ρ

tftutuCVt1γ2

t
2ρ

tftutuCVt1γ2
t
t
t

tτ
tτ
tτ
tτ
tτ
tτ
tτ

t

2,2

1,2

1,1

2,2

1,2

1,1

O

O

O

O

O
O
O











τ

24 



Truncation Error 
 Direct numerical simulation of two node system   
 
 
 
 

γ = 1/2, β = 0 γ = 1/2, β = 1/4 
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Computational Work for Uniform Timestep 
Computational Work for MTS Timestep 

Rough Cost Estimate 
 Suppose there are nA elements in domain ΩA\ΩB, nB elements in domain ΩB\ΩA, and 

 nI elements in A ∩ B.  
 Let n = nA+nB+nI.  
 Further suppose each element has nb bonds.  
 (Ignore that the number of bounds near a boundary is not nb.) 

 
 
 If we use a uniform timestep and take m steps, computational work ~ nnbm.  
 For the MTS scheme, computational work ~ nb (nA + nI + m(nI + nb) ).  

 
 MTS scheme becomes advantageous if (m-1)nA > nI.  

 
 
 For example, if nB is 10% of overall domain size, m=2,` then  

 
 ≈ 1.8 
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Numerical Example – Cracked Plate 
 Dimensions: 20 mm x 10 mm x 0.1 mm plate; h = 0.1 mm. 
 ρ = 2235 kg/m3, E = 13.5 MPa; G0 = 204 J/m2.  
 Gamma = 1/2; beta = 1/4.  
 For MTS, ∆t = 1×10-8; ∆T = m∆t. Fast timestep region was middle 20% of plate. 

 
 Execution ~ 10× faster than uniform fine timestep, but with improved 

 accuracy in middle of plate (crack).  
 
 
 
 
 
 
 
 
 
 
 
 

PD 

MTS-PD, 
m=10 

time = tA time = tB 
time = tC 
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Numerical Example – Cracked Plate 
 Dimensions: 20 mm x 10 mm x 0.1 mm plate; h = 0.1 mm. 
 ρ = 2235 kg/m3, E = 13.5 MPa; G0 = 204 J/m2.  
 Gamma = 1/2; beta = 1/4.  
 For MTS, ∆t = 1×10-8; ∆T = m∆t. Fast timestep region was middle 20% of plate. 

 
 
 
 
 
 
 
 
 
 Error (avg. rel. error over all cells) was computed with respect to one-domain PD 

 solution with ∆t = 1×10-8.  
 

Method Time tA Time tB Time tC 

PD, ∆t = 10×10-8 1.86×10-6 3.26×10-6 3.27×10-5 

MTS-PD, m=10 1.76×10-6 2.95×10-6 1.59×10-5 
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Summary 
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