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What is Peridynamics? ) i,

U Peridynamics is a nonlocal extension of classical solid mechanics that
permits discontinuous solutions

O Peridynamic equation of motion (integral, nonlocal)
pu(x,t) = j (T[x, t]<x'—x> ~T|x', t]<x'—x>)dvx. +b(x, t)
H

[ Replace PDEs with integral equations
0 Utilize same equation everywhere; nothing “special” about cracks
L No assumption of differentiable fields (admits fracture)
L Damage incurred when deformation criteria satisfied (critical stretch, etc.)
O No obstacle to integrating nonsmooth functions
U Integrand is “force” function; contains constitutive model
U Integrand = 0 for points x,x’ more than d apart

(like cutoff radius in MD!)
O PD is “continuum form of molecular dynamics”

Point x interacts
directly with all
points x’ within H

"It can be said that all
physical phenomena are
nonlocal. Locality is a
fiction invented by

idealists.”

O Impact
U Nonlocality
O Larger solution space than corresponding classical PDE-based models U4
(fracture)
O Account for material behavior at small & large length scales
(multiscale material model) A. Cemal Eringen
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Nonlocal Boundary Conditions ) .

O For local models (for example, PDE-based models), we apply boundary conditions
on ... the boundary.

O A Peridynamic ““boundary” becomes a volumetric region, sometimes called a
“nonlocal boundary’’, “collar’, etc.
U Boundary conditions are called “nonlocal boundary conditions™, “volume

constraints™, etc. R0

7

(




Two Interacting Cracks .

O Offset notches thin rectangular elastic plate
O Uniaxial strain applied from sides
O Approaching cracks produce ““en passant™ crack pattern

l/ Pre-notch

Pre-notch /

Peridynamics Physical Experiment”
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Fracture in Glass Plate ) jes,
O With Florin Bobaru (Nebraska), Youn-Doh Ha, & Stewart Silling (Sandia)

O Soda-lime glass plate (microscope slide) U Dawn (LLNL): IBM BG/P (500 TF; 147,456 cores)

[ Dimensions: 3” x 1” x 0.05” L Mesh spacing: 35 microns
U Density: 2.44 g/cm3 U Approx. 82 million particles
O Elastic Modulus: 79.0 Gpa [ Time: 50 microseconds (20k timesteps)

(J 6 hours on 65k cores

Setup

O Glass microscope slide
U Dimensions: 3” x 17 x 0.05”
O Notch at top, pull on ends

Results

S _ _ . Strain Energy
Peridynamics Physical Experiment Density
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Motivating Multi-Time-Stepping ) S,

(J Mesh refinement increases resolution and accuracy of computed solution.
EEDEEEEE

U Local mesh refinement puts more mesh only where needed.

(d We need to refine our temporal discretization, too.
O In dynamics, frequently use same timestep everywhere.
1 This means timestep refinement must be uniform.

U Like uniform mesh refinement, uniform timestep refinement can generate unnecessary
work. May not need a small timestep everywhere!

O Making matters worse for uniform timestep refinement, to satisfy CFL, timestep usually
dictated by the smallest element size. May have really small timestep everywhere. q




Motivating Multi-Time-Stepping ) .

L Use small timesteps only where needed; Larger timesteps everywhere else.
(J Cut up our domain and choose a timestep for each subdomain.

Large At

Small At

[ This process is known as multi-time-stepping (sometimes called subcycling).
U Cutting up our domain is easy...
U ... but we’ll need to tie it all back together again!

] We need to leverage ideas from domain decomposition.
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Domain Decomposition (DD) ) =

U Original DD method (overlapping method) dates back to Schwarz (1870).

H. A. Schwarz

(1 Nonoverlapping DD (substructuring) used by engineers for decades. Original
motivation was that entire model wouldn’t fit into computer memory.

U By cutting model into substructures and solving for unknowns along interfaces,
can decouple domains and solve each independently.

Kia 0 Kir || X f1
0 Ky Ky |lX|= fz

_KF1 Krz Krr_ Xr fr

(Krr — KrzKélszz — KFlK-lllKll )Xr — fr — KrzK-zlzfz — KrlK_111f1

1 We recognize this as taking a Schur complement with respect to the interface. 11




Domain Decomposition (DD) L

1 DD is the mathematical and computational technology allowing us to map our
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problems onto parallel computers. Cut problem into pieces, assign each to a node.

J Subdomains communicate only though their interfaces.

O Primal Schur complement methods (substructuring) isolate subdomains by solving for
displacements along an interfacial boundary. Dual Schur complement methods (FETI-
type methods) isolate subdomains by solving for forces along an interfacial boundary.

[ This lead to highly successful computational approaches and some really elegant
mathematical analysis.
[ The details can be found in some fantastic texts.
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Nonlocal Domain Decomposition (NLDDJ -

[ For nonlocal models, we can extend some of the classical results.*
[ Interfaces and boundaries for nonlocal models are volumetric.




Time Integration

U Consider one-domain problem with equation of motion
MU(t) + KU(t) = F(t)
U(0) = U,
U(t) = Uy,

(] Discretize with Newmark-Beta:

Un+1 = Un +At(1—y)Un + yAtUn+1
U.,=U +AtU. +(%—B)At20n

U Second order iff y = 1/2.
U Unconditionally stable if § > y/2 > 1/4.

Sandia
National
Laboratories




: : e
Time Integration ) fe,
(J We can write a step of Newmark-Beta as

Mwn+1 — IFn+1_ NU

n

where

M 0 K] 0 0 0] 0, ] F .
M=|-yatl | 0| N=|-Atl-y)] -1 0 |w,=|U, |F,  =| 0

BAPL O 1| |-AP(E-BN -AH -1 U, 0

O By analogy, we can write m steps of Newmark-Beta as

M wn+1 Fn+1_ an
N M wn+1 — IFn+1
- N M__wn+m_ | IFn+m _
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Nonlocal Multi-Time-Stepping (MTS) @i

1 With this notation, let’s couple subdomains with different time steps (MTS).

time

Q

A

t, + AT -

At

> space

U Let AT=m At for some positive integer m.
L We will impose transmission conditions between the two subdomains.
Q In this work, we adapt the MTS method of Prakash & Hjelmstad*
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Nonlocal Multi-Time-Stepping (MTS)  [@E=.

O We will choose to couple interface with Lagrange multipliers, and enforce constraint
that velocity at interface is consistent across boundary.

MO+ KU+ (C A =F k=15

Zs:ckuk =0
k=1

where C is a boolean matrix that extracts interfacial DOFs to form an interface vector.
 Fully discretized equations for subdomain A at time t_, are

M U +Cc* A =F -N"U,
O Similarly, discretized equations for subdomain B at time t,(j=1,..,m)are

 We enforce continuity of velocity only at time t_*

C*U% +C®UE =0
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Nonlocal Multi-Time-Stepping (MTS) @i

1 To solve equations for subdomains A and B and satisfy the constraint equation,
split equation for subdomain A into two parts:

M U’ +Cc* A =F.-N"U,
\

U, =V, +W,

MV =F -N"U) MW =-C*"A_
Vi W,
Vo =|Vy W, =| Wy
Vi W,

Free Problem Interface Problem




Nonlocal Multi-Time-Stepping (MTS)  [Ez.

U After solving the free problem, can compute the state variables for subdomain A at
intermediate times t; through linear interpolation between tyand t

V) = (1— ij U, + (ij \/4
m m

U Knowing free state at t;, can compute unbalanced free interface reaction at t;
(amount subdomain A is out of equilibrium due to external forces only) as

S, = CAFA - MAVA —KAVA)

J After much derivation, we can rewrite the equation of motion for subdomain B as

MEU+ (i}tB A, =F’-N°U; —-C"S,
m

where we have replaced A, in favor of A .

20




Nonlocal Multi-Time-Stepping (MTS) @

(J We can now write the complete set of equations to be solved:

M° w;
N®  ™° U,
U,

mM" U,

B° A, |

where B> =0 C* 0| B®=|0 C® 0

F° - N°Wg—C®S,
F,-C"S,
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Nonlocal Multi-Time-Stepping (MTS)

(d We can re-write as
M cul [p
B OfA,| |O

where U = V+W, and solve as a multistep process:

1) Compute VA (free system)

2) Compute reaction forces S;-

3) Compute VB,

4) Solve for A, (interface reaction force at time t,)), then determine A,
5) Using A;, compute W#, W&,

6) Update solution UA, W8,

U Tedious, but straightforward!
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Numerical Properties ) i,

 We can write the change in energy of the coupled system from time t, to t, as

0E = (1, - 3N0A - U3 W + AT?(p,, - 2 U - 02)
_(VB _%)i(UJB N U?l)T[MB +At2(BB _%)KBKU? N U?l)
j=1
+E,

O If AE<0, we assert our method is stable.
 If MA, KA, MB, KB, are SPD and we choose 3, Y4, Bg, ¥p, for unconditional stability, then
E, <0 is sufficient to guarantee stability. After much derivation, can show that

AlCIA A B({"1B | |B
E, o CHUA - U2)+cB(UB - UB)=0
U Thus, coupling method neither adds nor removes energy from coupled system, hence:

1) Coupling method is stable (if the Newmark-Beta integrators for Q2,, (3, are stable).
2) Coupling method does not introduce any additional dissipation.
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Truncation Error

U For a two node problem, can eliminate acceleration variables and rewrite as
Y, = Ayo +Cy

where y, is vector of numerical solutions at next full timestep.
M Truncation error is

t(ty) = y(t,) -y, = y(t,)- Ay(ty)-clt,)

where y(t,) is vector of exact kinematic values. Using Taylor series, get

ofat®
1, (t)] olat?
it _(zy-1>m<cv2(uzg?ﬁtul(to)ﬁf(to>)+ )
T w0086 ) oy
T;f(?oo)) _(Zy—l)At(Cvl(uzztE)—Ul(to))+f(to))+ (s
olat?) y



Truncation Error

1 Direct numerical simulation of two node system

analytical errors (log)

—e— numerical displacement

—s— numerical velocity

—— numerical acceleration
analytical displacement

—+— analytical velocity

10-7
10-3

10-2 101
timestep (log)

vy=1/2,=0

100

analytical errors (log)
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—e— numerical displacement
—-— numerical velocity
—=— numerical acceleration
analytical displacement
—s— analytical velocity
10—2 g
1073 ¢
1074 ¢
1072 ¢
10-° g
10—7_ Lol [ R Lol
10-3 102 10-1 10°
timestep (log)
Y= 1/2, [3 =1/4




Rough Cost Estimate h
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U Suppose there are n, elements in domain Q,\Q;, n; elements in domain Q;\Q2,, and

n, elementsin A N B.
4 Let n = ny+ng+n,.
[ Further suppose each element has n, bonds.
(Ignore that the number of bounds near a boundary is not n,.)

 If we use a uniform timestep and take m steps, computational work ~ nn m.
d For the MTS scheme, computational work ~ n, (n, + n, + m(n, + n.) ).

 MTS scheme becomes advantageous if (m-1)n, > n,.

J For example, if ng is 10% of overall domain size, m=2," then

Computational Work for Uniform Timestep

~ 1.8
Computational Work for MTS Timestep

26
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Numerical Example — Cracked Plate =~ (@)=

1 Dimensions: 20 mm x 10 mm x 0.1 mm plate; h = 0.1 mm.

O p =2235 kg/m3, E = 13.5 MPa; G, = 204 J/m?2.

1 Gamma = 1/2; beta = 1/4.

O For MTS, At = 1x108; AT = mAt. Fast timestep region was middle 20% of plate.

O Execution ~ 10x faster than uniform fine timestep, but with improved
accuracy in middle of plate (crack).

PD

MTS-PD,
m=10

time=t, time=t, time = t,




Numerical Example - Cracked Plate rh) je

1 Dimensions: 20 mm x 10 mm x 0.1 mm plate; h = 0.1 mm.

O p =2235 kg/m3, E = 13.5 MPa; G, = 204 J/m?2.

1 Gamma = 1/2; beta = 1/4.

O For MTS, At = 1x108; AT = mAt. Fast timestep region was middle 20% of plate.

Wethod [Tmet, |Timet, |Tmete

PD, At=10x10°  1.86x10°¢ <mm,  3.26x10° @,  3.27x10° €,
MTS-PD, m=10 1.76x10¢ =  2.95x10¢ W  1.59x10° W

O Error (avg. rel. error over all cells) was computed with respect to one-domain PD
solution with At = 1x102,




Summary ) S,
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