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The Test Vehicle
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 The test vehicle allows changing bridge length and the explosive pressing.

 Input is measured using a CVT for current and differential voltage probes 

for voltage.

 The output is detected via optical detection or pressure reading.
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Obtaining Voltage with Differential Probes

 The two voltage signals are subtracted.

 The result is the true voltage across the bridge.

 This method works most reliably being as close to the bridge as 

possible with the two measurements.



The Ignition Problem

 Trying to find ������ + ����� ≥ ���������
or

���������� = ������ − (������� + �������) ≥ ���������

Header = Sink
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HMX Powder = Sink
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Observations from TKP Tests

 All wires are 1 Ω.

 Changing bridge dimensions and material changes energy and 
power asymptotes.

Different 
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Energy



The Curves are Related by Surface Area

 The different bridge materials and dimensions can be related by 
their surface area.

 This allows translation between designs having only performed a 
single test series.
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Kick-up is due to electrical 
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 Several tests conducted increasing firing current from 2 A to 25 A.

 Many tests performed at 4 A (near threshold).

HMX Performance Data



HMX Performance Data

Large Scatter 
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Performance Data

Large Scatter 
Near Threshold

Indistinguishable 
performance 

~10 A

 Why is there  a reduction in scatter as input is increased?

 Where in the design does the scatter come from?



Power-Energy Space

 Points taken at Peak Power, which corresponds to bridge burnout.

 In low-power region, burnout occurs when output occurs.

 In high-power region, bridge burns out before output.



Power-Energy Space
Low-power 
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• In the low-power regime, heat gain and heat loss compete to ignite the 
explosive.
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• In the low-power regime, heat gain and heat loss compete to ignite the 
explosive.
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Power-Energy Space

• In the low-power regime, heat gain and heat loss compete to ignite the 
explosive.

• At high-power, energy deposition is too fast for heat loss to occur and 
scatter becomes negligible.

High-power 
Asymptote 

(>6 A)



Low-power 
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Power-Energy Space

• In the low-power regime, heat gain and heat loss compete to ignite the 
explosive.

• At high-power, energy deposition is too fast for heat loss to occur and scatter 
becomes negligible.

• Since losses can be ignored at high power, ������ = ���������
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Analyzing Single Test Series in Low Power Region

 Assume HMX ignites at same energy every time (���������).

 Can observe design’s inherent variability in heat loss.

���������



Obtaining ����

 Assume HMX ignites at same temperature independent of input.
 Large variability in initiation of HMX (��������� range).

 Even larger variability in heat loss due to powder and header 
contact (����� range).
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Obtaining ������ and ������

 Raising the bridge gives us the same energy to ignition as high-power testing.
 This implies the powder is an insulator on these time scales, and the energy 

loss to the powder goes to zero.
 This also implies the largest variability in ignition is due to heat loss to the 

header.

������� → 0
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Back to HMX – Changing Bridge Size

 This test changes the resistance by changing the bridge 
dimensions.

 These bridges were pressed onto the header.



These Tests are also Related by SA

 Surface area relates the different wire geometries.
 This implies the Power-Energy curve can be normalized by surface area.
 Now a new tool exists for scanning the design space of an HMX ignitor.
 Bridge dimensions and materials can be changed until the desired no-fire (energy 

asymptote) and desired hard-fire (power-asymptote) can be achieved.



Comparing HMX and TKP

 HMX requires ~2 orders of magnitude higher power/energy for ignition.

 This type of analysis can be performed on other explosives to further aid 
design decisions for both no-fire safety and performance criteria.



Conclusions
 Power-Energy Space governs hotwire performance.

 Any material and any bridgewire geometry can be compared 
using Power/SA vs Energy/SA.

 Doing a single test series produces the characteristic 
performance curve.

 Wire dimensions can now be changed until desired 
characteristics are achieved.
 The energy asymptote (low-power) controls no-fire and safety criteria.

 The power asymptote (low-energy) controls hard-fire characteristics.

 Different explosives can be compared readily in Power-Energy 
Space.
 Compare no-fire requirements for safety.

 Compare input requirements for performance.


