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lterative Modeling & Simulation is needed to enable effective Task A: BEO modeling, calibration, & - Future-gen Systems & Task B: Testbed experimentation &

validation benchmarking

HW/SW co-design =3

- Traditional simulation methods are either too slow (cycle-accurate .@l [EE
simulation) or not accurate enough (analytical machine models) A[i“'i‘” =l

- There Is need for a fast, scalable, and reasonably accurate simulation ma|) SEw/

Apps & Kernels

methodology and simulator

Existing Systems &
Architectures

Task C: Behavorial Emulation platform development

We propose to handle exascale complexity via:
- Coarse-grained component models: Behavioral Emulation Objects

- Multi-scale simulation at micro-, meso-, and macro-scale

Behavioral Emulation aims to address this problem by mimicking
or emulating behavior, not cycle-accurate functionality, of apps
running on future devices & systems

BEO Design & Calibration Simulation Validation

BEOs are simulation constructs that mimic behavior of app It Is Important to evaluate the accuracy of BE approach
(AppBEO) & arch (ArchBEQO) under study - Study contribution of communication & computation to error
- AppBEOs: High-level app representation understood by simulator - Evaluate use of fine vs. coarse-grained app decomposition
- List of instructions processed by ProcBEOs - Device: Many-core device with user accessible mesh network
- Each instruction represents a comp/comm block
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Architecture design space exploration T arying processor core capabliies, 0 - Conclusions:
with spectral element solver e E - Behavioral Emulation allows co-design from early stages of app

-  Mesh network with different
processor cores
- Mesh networks with different latency
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0 | Zopowers development and machine design
o - Reasonable simulation accuracy gives some confidence in use of BE
: for architecture design space exploration
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Notional Mesh Device with 72 XeonPhi cores NO. OF GRIDPOINTS, N

T R performance predictions for notional mesh device Future Work:

. it - Extend BE framework for modeling nodes and systems

e // T o —=Pover - Develop and evaluate methods for modeling communication behavior

5 ., ///«/f; - -/ of an app (network congestion) at different scales

: M S / - Integrate with an existing scalable PDES (eg. SST) and explore

B v e e e T knowledge-based optimizations to the simulation framework
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