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Motivation

= Lunar, planetary and small
body magnetism

= Ejecta motion on small
bodies

" |mpacts on man-made
satellites

Sample 70019 $-73-15333

(after Srnka et al., 1979)




AVGR Experiments to Detect Magnetic
Fields from Impacts

= Magnetic search coils

= Electrostatic noise
eliminated by push-
pull design, shielding
= Spontaneous
magnetic fields
observed

= High ambient
magnetic field
environment

= Substantial ambient
field contamination




Reduced Ambient Field via Mu-Metal Shield

= Lunar-like ambient field
. ~450 nT

= Substantially reduced
ambient field
contamination

= Allowed unambiguous
mapping of spontaneous
fields




Spontaneous Magnetic Fields from Impacts

Vector field 9 cm below target surface

Magnetic Field: t = 400 ys, 2= -9
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Proposed Mechanism

= Hypervelocity impact produces solid
ejecta, melt, vapor, ions and electrons L2
(a dusty plasma). PLASMA

+  Target Surface

= |mbalance between ion and electron
thermal currents at the contact .
between plasma and ejecta leads to Gy
charging of ejecta.

Total amount of charge is an increasing function of impactor
mass and velocity.

= Charge motion produces time-varying magnetic fields. Large
impacts may produce strong fields.




Electrostatic Experiments

Electrodes

‘Electric current at different ejection angles
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Possible charge configuration
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Variable Mass, Constant Impact Velocity

. Early-time solid ejecta
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Constant Mass, Variable Impact Velocity

- Early-time solid ejecta
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Dependence on Impact Velocity

Fjected Negative Charge
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Separated Charge

2.620.1
) Vv .
AO=10"m C (SI units)
3000
Velocity (km/s) Total Charge (Q)  Separated Charge (AQ) Degree of Separation
(Coulombs) (Coulombs) (A0/0)
5 0.3 4x107 1.4x10™
20 12 1.4x107 1.2x10™
70 380 4x107 9.5x107

(1 g projectile)




Assume an expanding spherical charge
distribution: currents and fields

m v3.6i0.1
I=5x10" Amps
X
2.6+0.1
my
E=0.24 . Volts/m
X
3.6%0.1
oo MV
B=9x107% —— Tesla
X
t(sec.) E (Volts/m) I (Amps) B (Tesla)
1) Laboratory (2x10™* kg, 5 km/s) 2x107 8x10° 4x107 107
2) Cometary Meteoroid (107 kg, 70 km/s) ~ 3x10™ 10° 0.02 10°®
3) Small Meteoroid (1 kg, 15 km/s) 4x107 2x10° 180 10
4) 1 km Asteroid (10" kg, 20 km/s) 100 4x10"2 2x10"° 0.03
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Simple Model of Charge Separation
(based on electrostatic probe theory)

Solid/Liquid  lonized Gas

N, becomes more negative as
electrons attach to condensed
phases

J, =0 when N, < Q,

N, becomes more positive as
ions collide with condensed
phases and recombine with
bound electrons

K——O J: =0 when N, >0
<E

_¢0




Simple Model of Charge Separation
(based on electrostatic probe theory)

Solid/Liquid  lonized Gas
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Simple Model of Charge Separation
(equilibrium charge)

Equilibrium occurs when J, = J:

¢o = ¢e k_Tln(

e

1/2
m j at equilibrium potential, ¢,

Equilibrium Charge (Q,):

N2,
Eohp

0, =
where A 1s surface area of ejecta
exposed to plasma
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Adding the model to CTH

= Track gas phases and condensed phases separately using
different CTH material IDs

= Transition determined by vaporization temperature (T,)
= |on density (N;) always constrained by Saha equation:

1/2 3/4 N, = neutral number density (N, m)
Zl.) (27rmekT) SE /T

N; = Nk “i : E; = 1onization energy
Z h Z/Z ~o(1)

= Explicitly integrate J.and J, to exchange charge between
plasma and condensed-phase surfaces

= Limit the integration to the equilibrium surface charge (Q,) if
currents would otherwise drive surface charge past Q,
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Adding the model to CTH (cont.)

Surface area (A) of I |
condensed phases:  ,_ M min(“”@:f‘ken) L, is particle size from
N A user input
o min(3 al’, I/ceﬂ)

Parameters for the CTH

_ Aluminum Air Calcite
Electrostatics Model:
Ny(g™h) 2.23x10% 4x10% 6x10*!
E:(eV) 5.99 926 6.11
ZAE 0.17 1 1.74
m; (amu) 26.98 30 40
T,(eV) 0.24 0 0.09
L, (cm) 0.01 N/A 0.05
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CTH calculations using the charge separation model
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CTH calculations using the charge separation model

cQv
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CTH calculations using the charge separation model
caQv
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Calculated Magnetic Field vs. Measured Field

Experiment (100-300 ps)

Magnetic Field (vertical, 5.03 km/s)
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Calculated Charge vs. Experimental
Measurements
Ejected Charge
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Pore Collapse Role in lonization?

Pressine Pressure at 0.00e+00 seconds Internal Energ Internal Energy at 0.00¢+00 seconds
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Conclusions & Future Work

= Production of charged debris will occur in impacts wherever
plasma and dust co-mingle.

= Magnitude of charge, currents and fields increase with
impactor mass and velocity

Q oC m0.67-1.0V2.6

= Computer simulations show reasonable agreement with
experimental data.

= Ongoing Development & Future Computational Work

= 3-D simulations

= Predicting remanence




