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Motivation
 Lunar, planetary and small 

body magnetism

 Ejecta motion on small 
bodies

 Impacts on man-made 
satellites
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Lunar Prospector ER Map (from Wieczorek)



AVGR Experiments to Detect Magnetic 
Fields from Impacts

 Magnetic search coils
 Electrostatic noise 

eliminated by push-
pull design, shielding

 Spontaneous 
magnetic fields 
observed

 High ambient 
magnetic field 
environment
 Substantial ambient 

field contamination
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Reduced Ambient Field via Mu-Metal Shield

 Lunar-like ambient field
 ~450 nT

 Substantially reduced 
ambient field 
contamination

 Allowed unambiguous 
mapping of spontaneous 
fields
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Spontaneous Magnetic Fields from Impacts
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Proposed Mechanism

 Hypervelocity impact produces solid 
ejecta, melt, vapor, ions and electrons 
(a dusty plasma).

 Imbalance between ion and electron 
thermal currents at the contact 
between plasma and ejecta leads to 
charging of ejecta.
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 Total amount of charge is an increasing function of impactor
mass and velocity.

 Charge motion produces time-varying magnetic fields. Large 
impacts may produce strong fields.



Electrostatic Experiments
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Possible charge configuration
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Variable Mass, Constant Impact Velocity
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Constant Mass, Variable Impact Velocity
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Dependence on Impact Velocity

Slope = 2.6 +/- 0.1
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Separated Charge
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(Coulombs)
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(Coulombs)

Degree of Separation
(Q/Q)

5 0.3 4x10-5 1.4x10-4

20 12 1.4x10-3 1.2x10-4

70 380 4x10-2 9.5x10-5

(1 g projectile)
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Assume an expanding spherical charge 
distribution: currents and fields
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13105


  Amps

 (sec.) E (Volts/m) I (Amps) B (Tesla)

1) Laboratory (2x10-4 kg, 5 km/s) 2x10-3 8x105 4x10-3 10-9

2) Cometary Meteoroid (10-7 kg, 70 km/s) 3x10-4 105 0.02 10-8

3) Small Meteoroid (1 kg, 15 km/s) 4x10-3 2x109 180 10-5

4) 1 km Asteroid (1012 kg, 20 km/s) 100 4x1012 2x1010 0.03
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Simple Model of Charge Separation
(based on electrostatic probe theory)

Solid/Liquid Ionized Gas

Nb
Ji ,    Ni

Nb becomes more negative as 
electrons attach to condensed 
phases

Je = 0 when Nb ≤ Qe

Nb becomes more positive as 
ions collide with condensed 
phases and recombine with 
bound electrons

Ji = 0 when Nb ≥ 0
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Simple Model of Charge Separation
(based on electrostatic probe theory)

Solid/Liquid Ionized Gas
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Simple Model of Charge Separation
(equilibrium charge)
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Equilibrium occurs when Ji = Je:

Equilibrium Charge (Qe):

where A is surface area of ejecta
exposed to plasma

at equilibrium potential, ϕe
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Adding the model to CTH

 Track gas phases and condensed phases separately using 
different CTH material IDs
 Transition determined by vaporization temperature (Tv)

 Ion density (Ni) always constrained by Saha equation:

 Explicitly integrate Ji and Je to exchange charge between 
plasma and condensed-phase surfaces

 Limit the integration to the equilibrium surface charge (Qe) if 
currents would otherwise drive surface charge past Qe
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Adding the model to CTH (cont.)

Surface area (A) of 
condensed phases:
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Lp is particle size from
user input

Parameters for the CTH
Electrostatics Model:



CTH calculations using the charge separation model 



CTH calculations using the charge separation model 



CTH calculations using the charge separation model 



Calculated Magnetic Field vs. Measured Field
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Calculated Charge vs. Experimental 
Measurements

Experiments

Calculations



Pore Collapse Role in Ionization?
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Conclusions & Future Work

 Production of charged debris will occur in impacts wherever 
plasma and dust co-mingle.

 Magnitude of charge, currents and fields increase with 
impactor mass and velocity

Q  m0.67-1.0v2.6

 Computer simulations show reasonable agreement with 
experimental data.

 Ongoing Development & Future Computational Work
 3-D simulations

 Predicting remanence

25


