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ABSTRACT

The Web Data Commons 2012 hyperlink graph is one of
the largest publicly-available hyperlink graphs, with over
3.5 billion vertices (web pages) and 128 billion edges (hy-
perlinks). Analyses of graphs of this scale are typically
performed on large shared-memory systems, or using open-
source Big Data computational frameworks such as Hadoop
and Giraph. In this paper, we present a collection of al-
gorithms and new parallel implementations for end-to-end
analysis of this massive hyperlink graph. Our MPI- and
OpenMP-based code can be run on supercomputers as well
as smaller compute clusters. For instance, using 256 com-
pute nodes of the Blue Waters supercomputer, the end-to-
end processing and I/O time for six different computationally-
challenging routines is about 70 minutes. Our new contri-
butions include a distributed compressed graph representa-
tion, and efficient parallelization strategies for graph con-
nectivity, harmonic centrality, PageRank centrality, and the
label propagation community detection algorithm. Our al-
gorithms lead to novel centrality and community structure
results for this massive graph. Our work could further be
used for benchmarking algorithms, software, and compute
platforms for massive graph analytics.

1. INTRODUCTION

With the ever-increasing amounts of information being pro-
duced and consumed online, scalable web data management
and analytics is growing in importance. Among the diverse
structured and unstructured information sources available
online, the web hyperlink graph is a unique resource that
researchers have been exploring using graph-theoretic tools
and methods. A hyperlink graph can be constructed by
treating every web page that is accessible online as a vertex,
and using directed edges to indicate links between pages.
Understanding the structure of hyperlink graphs, of any
scale, has many uses. The biggest and most direct appli-
cation is perhaps web search. Web graph analysis may also
shed insight into social and economic processes that may
be responsible for the growth of the Internet. A third use
case is to identify spam pages from legitimate and content-
rich pages. Computer science researchers have been using
hyperlink graphs as real-world instances for testing combi-
natorial algorithms and machine learning methods for rank-
ing, community identification, inference, graph partitioning,
and graph compression. In this paper, we study well-known
computations on such web graphs (generally referred to as
web graph analytics) from a High-Performance Computing
(HPC) perspective. Our goal is to provide an informed

commentary on the efficiency, scalability, and ease of imple-
mentation of graph analytics on current high-end computing
systems. For this purpose, we consider the largest publicly-
available hyperlink graph, the 2012 Web Data Commons
graph, and design clean-slate parallel algorithms and imple-
mentations for the Blue Waters supercomputer, one of the
world’s most powerful computing platforms.

There is a lot of current work on graph algorithms, analytic
frameworks, and graph data management systems. The fol-
lowing aspects motivate our present work and differentiate
it from other related research efforts:

e Most parallel computing research efforts focus on a
single computational routine and study its scalability
for a collection of large graphs [9,10,13]. We want to
simultaneously analyze performance of multiple ana-
lytics, and make decisions about graph data represen-
tations and decomposition strategies based on a single
large-scale graph. We have picked the largest possible
real-world graph that is publicly available.

e Synthetic graphs can never substitute real-world graph
instances, as there are always some topological aspects
that parsimonious models miss. For real-world graphs,
we may be able to exploit more structure when design-
ing analysis algorithms. There may also be some in-
tricacies associated with real-world graphs that do not
manifest in synthetic graphs. One of our objectives is
to precisely quantify some challenges, for a collection
of graph analytics, on an extremely large graph. We
also want to identify known optimizations that work
for this graph instance.

e Before choosing an algorithmic design paradigm (say,
vertez-centric, edge-centric, gather-apply-scatter) or par-
allel platform (large shared memory, distributed mem-
ory, external memory, accelerators) for analyzing a
family of graphs, we believe it is important to get a
sense of how custom, specialized codes would perform
on a certain class of graphs. We consider this massive
graph a possibly challenging instance for any frame-
work.

e Algorithms that are commonly used for graph analyt-
ics have per-iteration operation counts that that scale
linearly (in the asymptotic case) with the number of
vertices and edges. Further, memory requirements and
communication costs are also linear. Thus, the con-
stant factors in the implementations are what lead to
large performance gaps on real systems. Distributed



graph analytic frameworks that provide linear-work
algorithms should thus be evaluated on the largest-
available graphs.

e I/O costs are often ignored when doing in-memory
graph analytics. There is also quite a lot of research on
external and semi-external memory graph algorithms
and frameworks, where minimizing I/O costs, and not
wallclock time, is the primary focus. An end-to-end
evaluation of multiple analytics, considering I/O, mem-
ory, and network costs, would be more representative
of real-world performance.

e We take a top-down approach and focus on high-level
analytics in this work, rather than primitives that are
commonly used within these analytics. Focusing on
the higher-level computations provides more opportu-
nities for testing algorithmic variants and optimiza-
tions.

e Our end-goal is also to provide a new benchmark for
evaluating high-end computer hardware, software, as
well as algorithms. Our current implementation and
subsequent progress will be open-sourced. Given the
size of the graph and some of its pecularities, we believe
this hyperlink graph is a non-trivial and challenging
graph instance for parallel graph analytics.

This paper presents the first in-memory, end-to-end analy-
sis of the largest publicly available graph, including parallel
1/0, graph construction and multiple useful analytics. In ad-
dition, this paper makes the following new algorithmic and
parallel implementation contributions to analyze this mas-
sive graph: We present a fast and memory-efficient scheme
to store the graph in a distributed setting. We then present
algorithms for analyzing the connectivity of this large di-
rected graph. Next, we discuss parallel implementations
of the global path-based Harmonic centrality approach and
the popular PageRank scheme. We finally develop a parallel
community identification implementation based on the label
propagation approach. Using these analytics, we are able to
obtain new insights into the community structure and page-
level centrality rankings of the web graph. Some of these
insights are from the possibly the first in-memory global
community structure experiment on this massive graph.

We also claim that graph analysis at scale need not be
very daunting. Without resorting to tedious implementa-
tions and performance engineering, we show that end-to-
end execution times can be reasonable, provided one makes
informed algorithmic and data structure choices. All the
analysis routines discussed in this paper fit into approxi-
mately 2500 C++ source lines, use only MPI and OpenMP
for parallelization, and optionally, one additional library for
compressing sorted integer lists. Using just 256 compute
nodes of Blue Waters, we are currently able to perform all
these analytics in under 70 minutes.

This paper is organized as follows. We discuss the data
sources, the test platform, and prior work on analyzing this
web graph in Section 2. In each sub-section of Section 3, we
present an analytic, our parallel algorithm and data struc-
ture choices for this analytic, and performance results on
the test platforms. In Section 4, we discuss cross-cutting
issues related to performance, scalability, and portability.
Given the fact that even a simple ingestion strategy of this

graph requires nearly 2 TB of aggregate memory and ex-
tensive data massaging, we were unable to evaluate existing
open-source frameworks. We however mention some rele-
vant performance results from prior work in Section 5.

2. DATA AND SETUP

We analyze the 2012 Web Data Commons hyperlink graph*
in this work. This graph was in-turn extracted from the open
Common Crawl web corpus®. The Web Data Commons re-
search team provides another hyperlink graph based on the
Spring 2014 common crawl web corpus, but they recommend
using the 2012 graph only, as the largest strongly connected
component in the 2014 graph is much smaller. The 2012
graph is available for download with three levels of aggrega-
tion: at page-level, at the granularity of subdomains/hosts,
and at the granularity of pay-level-domain (PLD). We pri-
marily work with the page-level graph in this paper. This
graph has 3563 million vertices and 128,763 million edges.
In recent work, Meusel et al. [26] presented analysis of the
page-level graph, and Lehmberg et al. [20] evaluated the
PLD graph. They use the WebGraph library [5] to com-
press the graphs and have performed their analysis on large
shared-memory systems. Meusel et al. make several inter-
esting and novel observations in their work. They confirm
that a giant strongly connected component (SCC) exists,
which is along the lines of the observation by Broder et al. [7]
in their seminal paper on web structure. Meusel et al. claim
that the hypothesized bow-tie model for the web may actu-
ally be strongly dependent on the crawl strategy. Further,
they show that degree and component size distributions do
not follow a power law, but may be heavy-tailed. They men-
tion using a 40-node Amazon EC2 instance to compress the
graph, but the running times for various analytics discussed
in their paper were not quantified. They also mention that
computing the largest SCC ‘was no easy task’, and that they
had to use a semi-external memory strategy to build it.

The PLD-level graph is considerably smaller with 43 mil-
lion vertices and 623 million edges. The authors in this
paper additionally look at centrality rankings of PLDs and
present a new two-layer model to explain the structure of
this aggregated graph. They also study clustering coefficient
distributions and connectivity of high-degree PLDs among
themselves. We verify some of the results from these two
papers, but do not discuss any of the common observations
in the next section. We also attempt to precisely quantify
memory usage and communication volume of each analytic,
and also the impact of load balance with the natural crawl-
based vertex ordering. In order to understand effects of the
degree distribution on the load balance, we also generate a
synthetic G(n, P) graph [16] of identical size. The inter-node
communication behavior of graph analytics when tested with
a G(n, P) graph is very regular, and the edge cut can also
be analytically determined. Hence, this provides a good in-
stance for scalability and load balance comparisons.

We primarily use the NCSA Blue Waters supercomputer for
analyzing this page graph. Blue Waters is a hybrid Cray
XE6/XKT system with around 22,500 XEG compute nodes,
and 4200 XK7 compute nodes. Each XE6 node contains two
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AMD Interlagos 6276 processors. There are four NUMA do-
mains per node, each with four cores and sharing a 8 MB
L3 cache. The memory capacity of each node is 64 GB and
the peak memory bandwidth is 102.4 GB/s. We do not use
the GPU-accelerated XK7 partition of Blue Waters. One
of the main reasons we chose Blue Waters was the high-
performance file system. The Lustre-based scratch file sys-
tem uses 180 Scalable Storage Units (SSUs) and the rated
I/O bandwidth is a remarkable 960 GB/s. We compile our
C++ programs using Intel’s compilers (version 15.0.0) and
use the Intel Programming Environment (version 5.2.40) and
Cray-MPICH version (7.0.3). Some of our experiments were
also run on the NERSC Edison supercomputer. This is a
Cray XC30 system with over 5500 nodes. Each node is a
dual-processor Intel Ivy Bridge with 24 cores and 60 GB
memory. Edison also has a high-performance I/O subsys-
tem and the Lustre-based scratch directory we used has 96
OSTs and aggregate peak performance of 48 GB/s.

We emphasize that our goal is to use as few compute nodes
as possible to run all the analytics on the page-level graph.
Some of the analytics we discuss in this paper, such as com-
munity detection and largest strongly connected component
extraction, serve as ways to prune large graphs and con-
struct smaller coarser graphs or regions-of-interest, such as
PLD graphs. Strong-scaling these pruning computations is
perhaps not as important as achieving absolute speedups for
analytics that operate on smaller and coarser graphs. Good
examples of such analytics are various centrality measures,
local community detection, link-based recommendation en-
gines, and network alignment. Further, note that most of the
computations we discuss in this paper perform per-iteration
operations that scale linearly with the number of vertices
and edges, and have memory requirements that are also lin-
ear with number of vertices and edges. In order to strong-
scale these analytics, one can replicate vertex and edge state
to reduce communication.

3. GRAPH ANALYSES AND ALGORITHMS

In this section, we describe the end-to-end analysis of the
massive web graph, beginning with data ingestion, graph
construction, and algorithms for each of the analytics in de-
tail. We also present the insights gained from each one of
the implemented analytics.

3.1 Data Ingestion

We converted the nearly 700 gzipped, text-formatted files
with directed edge information into a single binary file (ap-
proximate size 1 TB). Each directed edge is represented by
two vertices of 32-bit unsigned integer type (vo,v1). We in-
gested data by calculating offsets for each MPI task, with
each task given a nearly-identical portion of the file to read.

To achieve high read bandwidth from Blue Waters’ shared
Lustre-based scratch filesystem, we striped the 1 TB file
across 160 storage units. Column 2 of Table 1 lists the total
read time when varying the number of compute nodes, with
a single MPI task per node. These times correspond to read
bandwidths between 20-30 GB/s, or under a minute total to
just read the edges into memory. This is well below the 1
TB/s theoretical peak. However, tests were performed dur-
ing periods of high concurrent system use. We note that us-
ing a larger number of tasks generally corresponds to faster

Table 1: Parallel performance for various stages of
graph construction including the total read time
(Read), time for edge exchange (Ezcg) and time for
CSR representation (LConv).

# Time (s) Perf Speedu
Nodes Read Excg LConv Total Rate (GE/s) P P
256 47 109 41 197 1.30 1.00x
512 45 90 33 168 1.52 1.17x
1024 42 61 27 130 1.97 1.51x
2048 34 55 24 113 2.27 1.74x
4096 39 68 23 130 1.97 1.51x
8192 35 56 19 110 2.33 1.79%

I/0. This is possibly due to the lower read volume require-
ment for each task, and so slowdowns from a single task due
to network traffic and concurrent file system accesses may
have a lesser effect on total time.

3.2 Graph Data Structure Construction

We choose a memory-efficient one-dimensional graph rep-
resentation in this work, where each MPI task owns 2 ver-
tices and all the incoming and outgoing edges out of these
vertices. After each task reads its share of outgoing edges,
the edges are exchanged using an MPI Alltoallv step. As
most of our analytics also require incoming edges, we then
proceed to reverse the edges and do another Alltoallv ex-
change. Note that this second step usually completes much
faster than the first, as the vertex identifiers as labeled have
a moderate degree of locality. This is a byproduct of the
labeling done by the Web Data Commons research team
when they extracted the hyperlink graph from the Common
Crawl corpus. Once each task has all of the outgoing and
incoming edges for the vertices owned by this task, they can
then convert the edge arrays into a compressed sparse row
(CSR)-like representation.

Table 1 also shows the running times in seconds for exchang-
ing both outgoing and incoming edges, as well as the time to
create the final distributed CSR representation when vary-
ing numbers of tasks. We note a degree of strong scaling
with increasing task count. We also include in Table 1 a
performance rate in billions of edges processed per second
(GE/s), corresponding to the total number of edges pro-
cessed (128 billion in- and 128 billion out-edges). We note
that the maximal time from start of execution to a complete
CSR representation is under 200 seconds.

The graph ingestion and creation stage is the most memory-
intensive part of our implementations. To hold the outgoing
edge list in memory, we require 8m bytes of global memory,
where m is the number of edges in the graph. This implies
approximately 1 TB of aggregate memory. In order to use
MPI collectives in the Fxcg step, we also need to create
send and receive buffers, which require an additional 16m
bytes of memory. Assuming each task has 64 GB memory
and we have an even edge partitioning among tasks, and
given the signed integer restriction in MPI collectives, the
minimum number of tasks needed for this stage is about
94. However, as we shall see next, there could be up to
2% edge imbalance with task counts between about 100 and



512. This effectively bounds the minimum number of tasks
required to be about 188, which we is what we observed in
practice. We have also developed a graph ingestion scheme
(explained next) that avoids the All-to-all shuffle.

3.2.1 Compression

Consider an alternate ingestion scenario where we can as-
sume that edges are sorted first by head vertex, and then by
the tail vertex. Given an edge list in binary format stored on
disk, one could read 2 chunks of edge lists, figure out start
offsets of vertices whose edge lists are cut, and then arrive at
an edge-balanced partitioning of the graph. This ingestion
strategy requires close to minimal inter-process communica-
tion and has very good potential to exploit parallel I/O. We
could further use multiple threads per process to read the
graph. Such an edge-balanced approach however may how-
ever imply an imbalance in per-process vertex counts, espe-
cially if the degree distributions are skewed and the vertex
ordering is not random. We implement this strategy and
were able to read only the out-edges in about 2 minutes, us-
ing just 12 nodes (about 732 GB of user-accessible aggregate
main memory; 24 OpenMP threads per node) of NERSC
Edison. This corresponds to an ingestion rate of 1.07 GE/s.

Further, based on the observation that the adjacency arrays
are sorted, and that the crawl ordering of the vertices has
considerable locality, we use a fast integer compression li-
brary [21] to compress the adjacency array of each vertex.
The compression and decompression subroutines in this li-
brary are optimized for modern Intel architectures, and so
we used Edison. We picked the compression and encod-
ing algorithm to use based on vertex degree. Adjacencies
of vertices with degree less than 4 were just stored uncom-
pressed. Vertices with degree between 4 and 127 were com-
pressed using the warint scheme. Adjacencies of vertices
with degree greater than 127 were compressed using the S4-
BP128-D/ scheme. Both compression and decompression
were extremely fast and effective. We could compress out-
edges using 12.74 bits per link. We also used a similar
strategy to compress in-edges of each vertex. In-edges com-
pression worked even better than out-edges at 8.39 bits
per link. Reading and compressing both in-edges and out-
edges took about 220 seconds, and required just 10 nodes of
Edison. This corresponds to a rate of 1.16 GE/s. We be-
lieve this is a significant result, as we can fit the largest web
crawl entirely in memory using a very simple compression
method. The catch here is the assumption on the sorted or-
dering of edges. The edges were initially sorted from head to
tail (out-edge order), and so we did not need one sort. For
generating sorted in-edges, we implemented a parallel, out-
of-place histogram sort. This is not quite optimized. Using
50 nodes of Edison and 4 MPI tasks per node, we were able
to sort all edges in about 4 minutes. Using implementa-
tions of faster parallel sorting algorithms, we could do even
better, and sort using fewer nodes. We note that this com-
pressed graph representation may also benefit semi-external
memory frameworks such as FlashGraph [42]. Evaluating
the performance of algorithms using this compressed graph
representation is left for future work. One issue we encoun-
tered was that the compression library could not be ported
to the AMD processor-based Blue Waters system because
of the use of Intel specific intrinsics in the compression li-
brary. Note, however, that the algorithms for the analytics

to be described next, require minimal changes, as we apply
compression on a per-vertex basis, and there is no other in-
direction. We will consider the uncompressed CSR, graph
stored in-memory for the rest of the paper.

3.3 Computing Global Statistics

To verify the integrity of the ingested binary web crawl data,
and to get a sense of the global structure, we computed the
out and in-degree distributions. In Figure 1, we plot these
distributions as cumulative fractions of total edges versus
total vertices, with vertices sorted in decreasing order of de-
gree. We also plot an in-degree distribution of the synthetic
G(n,p) random graph for comparison.
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Figure 1: Cumulative vertex versus in and out edge
fraction for the web crawl and random graph.

As was observed by Muesel et al. [26], we see a skewed de-
gree distribution. A small fraction of vertices account for
the vast majority of the total incoming edges. The solid
vertical line indicates a 5% cumulative fraction of vertices,
which own over 83% of all incoming edges. The highest in-
degree vertex in the crawl, www.youtube.com, has about 93
million incoming links. The bias for outgoing edges is not as
skewed, with 5% of vertices owning 34% of the edges, and a
maximal degree of about 56,000. There were also some crawl
settings preventing exploring pages with a large collection of
hyperlinks, and so the out-degree is bounded.

We note two additional observations about the web crawl
that were not mentioned in the Muesel et al. paper. Firstly,
there are about 120 million vertices in the crawl having no
incoming or outgoing connections. Secondly, there is a large
number of repeated edges. For some of the high degree ver-
tices, only about 75% of their incident edges are unique.
This knowledge is useful for trimming and preprocessing the
graph in order to reduce storage requirements and improve
execution times of algorithms that ignore repeated edges
during execution (e.g. SCC, harmonic centrality).

It is well-studied that skewed degree distributions present a
severe challenge for scalable and portable graph algorithm
implementations, both in shared-memory and distributed
memory. As skew increases, a vertex-balanced partitioning
can have severe inter-task work and communication load im-
balances, as well as severe intra-task work imbalance when
using a full-partitioned (MPI-only) data layout. Using MPI
and multithreading alleviates load imbalance to an extent,



as the graph is not as partitioned, and there is some shar-
ing of vertex information within a node. The number of
partitions, and consequently, the number of MPI tasks, is
therefore crucial.
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Figure 2: Edge cut and edge imbalance versus num-

ber of parts for % vertex partitioning (or vertex bal-

ancing partitioning) of the web crawl using natural
ordering.

We plot in Figure 2 the edge cut ratio (the number of cut
edges to the total number of edges) and edge imbalance ratio
(the maximum number of edges assigned to any partition,
divide by the average number of edges per partition) for
various task counts, using natural ordering and assuming an
% vertex partitioning on the crawl. We note that the edge
cut ratio (between 0.14 and 0.18) is actually quite good, and
seems to increase sub-linearly with the number of parts. It is
not close to 1, as one would expect with a random partition-
ing. As mentioned, this is likely a byproduct of the crawl
ordering. The edge imbalance remains moderate, staying
under 2x until 1024 parts. The large jump is explained by
the fact that 1024 parts is approximately the limit where
the largest degree vertices can exist on a single given parti-
tion without imposing significant imbalance by themselves.
This plot gives some insight into the number of tasks beyond
which a simple % partitioning becomes ineffective.

3.4 Connectivity

As part of our analytic collection, we implement several
connectivity-based algorithms. We run analytics to extract

the largest weakly-connected component (WCC), largest strongly

connected component (SCC), as well as an algorithm for
computing the approximate k-core values for vertices in the
largest weakly connected component of the crawl. All of
these algorithms require a variation of a distributed breadth-
first search (BFS).

Our implementation assumes an MPI+OpenMP model, where

each MPI task has a local queue of vertices to explore during
discovery of a given level and an array of visitation statuses.
The work in the local queue is divided among threads. Each
thread also maintains two smaller next-level queues during
adjacency list expansion, with the queues being filled either
with vertices for the task to explore on the next level or
with vertices to communicate to other tasks for their explo-
ration. Each task also maintains two queues for next-level
exploration and communication, and when a thread-owned
queue reaches capacity, it atomically retrieves and updates
an offset to one of the task-level queues. When the current
work queue expires, all tasks communicate next-level work
with an Alltoallv and the queues are reset.

Algorithm 1 FW-BW SCC Algorithm for finding the
largest SCC (S) given a graph G, with vertices V', outedges
E(V) and inedges E'(V)

1: procedure FW-BW(G(V, E))

2 Select v € V' for which d;n (v) * dout(v) is maximal
3: D — BFS(G(V,E(V)),v)

4 S« DNBFS(G(D,E(D)),v)

We use this BF'S implementation for finding weakly-connected
components (WCC) and the largest strongly connected com-
ponent (SCC). For SCC, we utilize the Forward-Backward
approach [17], as given by Algorithm 1. We first discover all
vertices reachable from our root by expanding out edge adja-
cencies (descendant set, D) and then subsequently discover
all vertices that can reach our root through in edge adjacency
expansion. The overlap between these two sets of vertices,
S, is the strongly connected component that contains our
original root. We maintain a group of potential root ver-
tices based on the magnitude of in- and out-degrees. Prior
work [38] has shown that on large real-world graphs such
as web crawls, the largest degree vertices are almost always
part of the largest weakly and strongly connected compo-
nents. To extract the largest WCC, we simply need to run
a single BF'S starting from one of our roots, exploring both
incoming and outgoing edges for each vertex discovered.

Note that an extension to find all the strongly or weakly con-
nected components requires multiple iterations of the same
FW-BW algorithm, or a color propagation algorithm similar
in communication pattern to label propagation described be-
low [38,39]. We choose to study that communication pattern
for community structure algorithm and instead compute just
the largest SCCs and WCCs here.
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Figure 3: Cumulative fraction of vertices versus ap-
proximate k-core values.

We employ a similar approach to compute an approximate
k-core decomposition. We use our set of seed vertices and
iteratively explore the maximal components containing ver-
tices of some minimal degree. This will effectively give us an
upper bound on true k-core values. We capture the maximal
approximate k-core sizes versus k-core values we retrieved
during our analysis of the web crawl. These are plotted as
cumulative fractions in Figure 3. We observe the sizes of
the approximate k-cores are quite large, dropping below 500
million vertices only after reaching a k-core value of 128.
However, by about a k-core value of 1024, only a small frac-



tion of vertices remain (20 million, or about 0.5%). The
approximate k-core results can be refined, if necessary, to
compute exact k-core values.

3.5 Centrality Measures

We additionally compute several centrality metrics as part
of our distributed large-scale analytics test suite. Central-
ity measures generally indicate the relative importance of a
single vertex in graph. We look at the centrality measures
of harmonic centrality, PageRank, as well as in-degree and
out-degree.

Our implementation for determining the highest-scoring ver-
tices based on harmonic centrality follows the same general
approach as what was described previously for our BFS-
based analytics. We select up to 100 seed vertices sorted
by decreasing in-degree to calculate harmonic centrality val-
ues. For each vertex, we then determine the distances of all
vertices that are able to reach the seed vertex through a dis-
tributed BFS following incoming edges. The final harmonic
centrality value is calculated as ) %|Vy/, which corresponds
d=1

to the sum over all distances d of the number of vertices |Vy|
that are d hops from the seed, scaled by d.

We also calculate all per-vertex PageRank values in order
to retrieve the highest-scoring vertices. Our approxima-
tion to the PageRank scheme is given in Algorithm 2. Our
implementation stores the scores for each task-owned ver-
tex in a local array, PageRanks, and uses a hash map,
PageRankMap, for storing scores of vertices within one in-
coming hop. These values are stored as vertex-value pairs.
During each iteration, we compute all scores for each task
set of vertices, V4, using thread-level parallelism. We use
Alltoallv collectives to communicate updated PageRank
values of boundary vertices among tasks. Note that we do
not explicitly check for convergence of the PageRank values,
nor do we have any communication-reducing optimizations
(such as propagating score of a vertex only if it has changed)
in the current implementation.

Previously, the Web Data Commons team and Meusel et al.
calculated centrality measures on the condensed host graph.
In order to gain a different perspective on the highest ver-
tices by centrality, we chose instead to calculate centrality
measures on the full page graph. The top-scoring results for
centrality values of out-degree, in-degree, PageRank, and
harmonic centrality are given in Table 2. Note that we con-
sider the PageRank values approximate, as we report the top
scores after 20 iterations. The harmonic centrality values are
also considered approximate, because we only calculated the
values for the top 100 vertices by in-degree.

There are several conclusions that can be reached based on
the results of Table 2. The foremost that out-degree does
not have any significance as a centrality measure. Looking
at the other three columns, we note consistent similarities
in the sites that appear between our results, and those cal-
culated on just the host level graph (youtube, wordpress,
google, gmpg, twitter). However, we also note how pages
belonging to the same host consistently appear together in
the rankings. As we see in our next analytic, a number of
these vertices are found to additionally appear in similar

Algorithm 2 Distributed PageRank
1: procedure PAGERANK-DIST(G(V, E), §)

2: PageRankMap = HashMap()
3: for allv € V do
: 1
4: PageRanks(v) «— VTTE]
5: for i =1 to iter do
6: Qupdatet+ = Alltoallv(Vy, PageRanks)
7 for all (v,p) € Qupdate do
8: PageRankMap.set(v, p)
9: for all v € V; do in parallel
10: Py — 0
11: for u € E'(v) do
12: if rank(u) =t then
13: Dv — Dv + PageRanks(u)
14: else
15: Dv — Dv + PageRankMap.get(u)
16: Py — Py X O
17: Py — pupx %
18: Po <~ By
19: PageRanks(v) < py
20: for all v € V do
21: PageRanks(v) <« PageRanks(v) x |E(v)|

dense communities. We observe this trend continuing well
beyond just the top 10 scoring pages, though these addi-
tional results are omitted for brevity. Overall, it is appar-
ent that using the full page-level graph can be quite noisy,
indicating the necessity for preprocessing and aggregating
the page-level graph. While considering only the host-level
graph for analysis and extraction of useful information is
one way to do this (such as how Meusel et al. did it), other
potential approaches require further study.

3.6 Global Community Structure

Exploring dense clusters or communities in networks has
been the focus of a lot of recent research [24,31,32,37]. Re-
cently, the label propagation algorithm [32] has received con-
siderable attention due to the fact that it gives high-quality
and stable communities, is very scalable, and is also easy
to implement and parallelize. The general label propaga-
tion algorithm is as follows: each vertex is initially assigned
a unique label. For some number of iterations, each ver-
tex updates its label by picking the label that appears most
frequently among all of its immediate neighbors. Ties are
broken randomly.

For our label propagation implementation, we use an ap-
proach similar to the constrained label propagation imple-
mentation by Meyerhenke et al. [27]. We ignore directivity
of edges and consider them all undirected; labels can prop-
agate in either direction. For storing labels within one hop
of the vertices owned by a given task, we use a hash map
with vertex-label key-value pairs, similar to our PageRank
implementation. We store owned vertices in an array. Due
to the presence of several vertices with tens of millions of
neighbors, the computationally expensive part of the algo-
rithm during the implementation is determining the maxi-
mal label count over all neighbors. In the worst case, each
neighbor has a unique label, and so the storage requirements
are bounded by twice the number of neighbors (note that we



Table 2: The top 10 web pages according to different centrality indices (* Harmonic, PageRank centrality

rankings are approximate).

Out-degree In-degree PageRank* Harmonic*
photoshare.ru/.. www.youtube.com www.youtube.com wordpress.org
dvderotik.com/. . wordpress.org www.youtube.com/t/. . twitter.com
www.zoover.be/.. www.youtube.com/t/. . www.youtube.com/testtube twitter.com/privacy
cran.r-project.org/.. wWw.youtube.com/ . . www.youtube.com/t/. . twitter.com/about
cran.rakanu.com/. . www.youtube.com/t/. . www.youtube.com/t/. . twitter.com/tos
www.linkagogo.com/. . www.youtube.com/. . www.tumblr. com twitter.com/account/..
WWw.cran.r-project.org/.. www.youtube.com/t/.. www.google.com/intl/en/.. twitter.com/account/..
www.fussballdaten.de/. . gmpg.org/xfn/11 wordpress.org twitter.com/about/resources
www.fussballdaten.de/.. www.google.com www.google.com/intl/. . twitter.com/login
www.fussballdaten.de/.. www.google.com/intl/.. www.google.com twitter.com/about/contact

need to store both labels and counts). This can be an issue
in a multi-threaded environment where dozens of threads
are concurrently tracking counts and each could potentially
require up to this amount of storage. As a result, we need to
limit the number of concurrent threads running on a given
node during this portion in practice. The execution times
we will present in the next section will be a reflection of this.

Table 3 gives resultant communities obtained after running
our label propagation algorithm for 10 (top) and 30 (bottom)
iterations on the web crawl. We give the number of vertices
in the community, the number of intra-community edges,
and well as the number of cut edges. These results are pro-
duced from separate runs, but demonstrate the previously-
observed stability of communities produced from label prop-
agation [25], as we note high similarity between the two lists
(this is especially apparent with the Tumblr, WordPress, and
TripAdvisor communities).

The biggest difference we observe when increasing the num-
ber of iterations of label propagation is that the communi-
ties become denser, and the intra-community versus inter-
community edge ratio increases. Additionally, it is possible
that large communities end up merging. Notably, it ap-
pears the two largest communities from the 10 iteration run
would have eventually combined in the subsequent itera-
tions, likely a result of the high number of outgoing edges
from the www.google.com/intl/en/.. community, quite
possibly into the www.youtube.com community.
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Figure 4: Frequency plot of community structure

Table 3: The top 10 communities ordered by ver-
tex count, as given by our clustering output. The
top half shows the list after 10 iterations, and the
bottom list is after 30 iterations. m,, denotes intra-
cluster edges, m.,: denotes edge cut. All values are
rounded to millions.

Nin  Min Meut Representative vertex

57 1600 30 www.youtube.com

55 46 440 www.google.com/intl/en/..

17 370 400 www.tumblr.com

13 383 226 www.amazon.com
9 515 84 creativecommons.org/..
7 176 426 wordpress.org/..
5 38 194  www.flickr.com/..
4 120 147  www.google.com
4 281 18 tripadvisor.com
1 19 30 gmpg.org/xfn/

112 2126 32  www.youtube.com

18 548 277 www.tumblr.com
9 516 84 creativecommons.org/. .
8 186 85 wordpress.org/..
7 57 83 www.amazon.com
6 41 21  www.flickr.com/..
6 39 58 askville.amazon.com
4 133 142 www.google.com
4 280 18 tripadvisor.com
3 78 13 www.househunt.com




We also plot the frequency of community sizes produced
after 30 iterations of label propagation on the web crawl in
Figure 4. This plot has a striking similarity to the frequency
plots of in-degree, out degree, WCC, and SCC in Meusel et
al. [26]. This lends further notion to the consistent and pos-
sibly heavy-tailed structural characteristic that have been
observed previously in web crawls.

4. PERFORMANCE ANALYSIS

Table 5: Summary of memory, communication, and
computational requirements for each task during ex-
ecution of each of the six analytics.

Analytic Memory CommVol CompVol
sScC (3mdée +n)/p  2méc/p 2mde/p
WCC (6mée +n)/p  2méc/p 2mbe/p
KC (3mée +n)/p  kmdc/p kmde/p

PR (2mde +n)/p+ mbe/p  imdc/p imde/p

HC (3mde +n)/p moc/p  mbe/p

LP (4mbe +n)/p + mdc/p + tdmas 12mdc/p i2mdbe/p

In this section, we report the execution times for our six
implemented analytics, which include WCC, SCC, approxi-
mate k-core decomposition, PageRank, harmonic centrality,
and label propagation. We reiterate that fine tuning the per-
formance of any single algorithm was not our primary goal
with this effort. However, all our hand-coded implementa-
tions are reasonably efficient for the algorithmic choices we
made. This is demonstrated from the performance of these
large kernels as shown below. We could implement any of
the optimizations listed in Section 5, including some of our
work such as 2D layouts for BFS or PageRank calculation,
and improve each of these analytics. However, as a first step,
we wish to observe global trends from running different ana-
lytics on this large-scale irregular and highly skewed graph,
and, in turn, open up possible discussions about the direc-
tion for future research efforts. We believe that attempts
at getting end-to-end analyses running in parallel using rea-
sonably efficient implementations for graphs of such scale
has not been done before. We hope this first step will mo-
tivate research in reducing the end-to-end times further. In
the rest of this section, we report times of the six different
analytics on Blue Waters.

Table 5 gives an overview of the theoretical per-task perfor-
mance and memory requirement (we don’t consider actual
graph storage costs here) bounds for all of our implemented
algorithms. In the table, m is the number of directed edges
in the graph, n is the number of vertices, p is the number of
tasks, d. is the edge imbalance among tasks, d. is the task
edge cut imbalance, dmq. is the maximal vertex degree, k is
the maximal approximate k-core value, and 4 is the number
of fixed iterations for PageRank and label propagation. We
differentiate between §. and d. to more accurately capture
the difference in upper theoretical bounds for aggregate per-
task computational volume (number of edges, PageRanks,
and labels read) and communication volume (number of ad-
jacent vertices, PageRanks, and labels sent to other tasks).

We observe memory requirements are quite consistent, dom-
inated by the two or three queues each of the algorithms used
for send and receive communications and controlling current
iteration workloads. For algorithms that consider both in

and out edges (WCC and LP), we have an additional scal-
ing of 2x. The n/p length arrays are used to store per-vertex
information for each analytic, such as visitation status, dis-
tance from root, label, or PageRank. PageRank and Label
Propagation require additional hash maps bounded by the
one hop neighborhoods and size of the maximal degree ver-
tex. Communication volumes are bounded by the total num-
ber of cut edges, and are dependent on the number of itera-
tions being performed for each algorithm scaled by the edge
cut imbalance for each task. Computational volumes are
similar, but we consider the edge imbalance instead of edge
cut imbalance. Using the bounds given in Table 5, we can
expect better scalability while running the analyses on the
G(n,p) graph due to the d. and . terms becoming trivial rel-
ative to the web crawl for even a moderate number of tasks.
A difference of over 2x for communication and computation
requirements between the graphs can be expected. We can
also expect PageRank, label propagation, and approximate
k-core decompositions to have much higher execution times
relative to the other analytics from the additional iterations
terms on the computation and communication volumes.

We report the total execution time as well as the percent
of the total time spent in the communication phase of each
algorithm in Table 4. We run PageRank for 20 iterations
and label propagation for 10 iterations. The time for har-
monic centrality is the execution time for the vertex with the
largest in degree and subsequently largest harmonic central-
ity magnitude. We report times on both the full web crawl
as well as on a G(n,p) random graph with approximately
the same number of vertices, edges, and average degree.

When we observe the performance for our SCC and WCC
implementations, we see good strong-scaling on the random
graph, but the scalability is limited on the web crawl due
to work and communication imbalance among tasks. As our
implementations use synchronous communications, almost
all tasks remain idle when waiting for the longest-running
task to complete. However, for end-to-end execution and
I/0 time, we note that our current code is still able to re-
trieve the largest SCC or WCC from each graph on 256
nodes in under six minutes on Blue Waters. As harmonic
centrality and approximate k-core decomposition algorithms
have similar expected performance bounds, we observe char-
acteristics as with WCC and SCC. We again note limited
scalability due to computation and communication load im-
balance for the web crawl, while the implementations strong
scale quite well on the random graph. Future research di-
rections of large scale real-world graph analytics should in-
vestigate edge-based partitions and more effective intra-task
work distribution methods to overcome this. Hybrid parti-
tions where high degree vertices use an edge-based partition
and others use a vertex based partition also need to be in-
vestigated.

We next make some interesting observations about our PageR-
ank implementation. This implementation especially suffers
due to communication load imbalances. The unbalanced
maximal per-part edge cuts limit scalability, as communica-
tions of almost all updated PageRank values are necessary
for each iteration, and, since we perform multiple iterations
and synchronizations, the general scalability of our imple-
mentation on the web crawl is limited relative to the ran-



Table 4: Summary of all analytics with total execution time and % communication time on 256 and 512 for

the web crawl and a synthetic random graph.

Web Crawl GNP
256 nodes 512 nodes 256 nodes 512 nodes
Analytic Exec Time % Comm Exec Time % Comm Exec Time % Comm Exec Time % Comm
WCC 131 34% 133 44% 84 12% 44 23%
SCC 148 25% 222 22% 88 15% 48 26%
Approx. K-core 1374 30% 1376 38% 731 12% 408 23%
PageRank 930 91% 900 95% 1210 30% 510 38%
Harmonic Cent. 92 34% 110 48% 41 12% 24 24%
Label Prop. 1438 70% 1425 76% 2406 23% 1382 25%

dom graph. We note that over 90% of total execution time is
spent on the Alltoallv collective communications that dis-
tribute the updated PageRank values, and future implemen-
tations should attempt to balance the number of cut edges,
or maximal per-part edge cut, of the graph part owned by
any single task. Surprising, however, is how much more
computation time is required on the random graph. This is
explained by the fact that, although the random graph has
better load balance, a majority of its PageRank lookups are
done through the hash map rather than the array storing lo-
cal vertex values. This is due to the inherently poor locality
of random graphs. As a result, we believe methods such as
edge partitions based up on vertex partitions [6] would be
much more competitive than 2D random distributions.

We finally look at our label propagation performance results.
Due to per-thread memory requirements that scale with the
largest maximal in4-out degree in the graph, we are unable
to run a fully threaded implementation that utilizes all the
available hardware threads on the web crawl due to memory
constraints. We limit the maximum worker threads to 8 for
these results. Similar to PageRank, we incur considerable
communication costs for pushing label updates during each
iteration when running on the web crawl. Running label
propagation on the random graph incurs the previously ob-
served high computation overheads due to the poor locality
of the random graph and relatively high proportion of hash
map accesses.

Overall, we note that the performance numbers observed in
practice from the web crawl and random graph align quite
well with the expected bounds given in Table 5. In general,
these performance results demonstrate the importance of
future efforts to minimize the d. and Jd. terms to ensure
proper work balance for large and highly-skewed networks.

5. RELATED WORK

There are plenty of frameworks or libraries for different graph

analytics on various platforms (supercomputers, multithreaded

architectures, distributed clusters, accelerators, flash mem-
ory) implemented on top of different technologies (MPI,
Sockets, OpenMP, CUDA, Hadoop) suitable for the target
users. This section covers some of the work closest to this
paper in terms of the technologies used and in terms of the
scale of the graphs we have analyzed. We point out the
largest analytics on supercomputers, distributed and shared-
memory graph frameworks first. We also cover some related
work on each of the analytic mentioned in Section 3.

The introduction of the Graph500 benchmark [28] has in-
creased the relevance of supercomputers for graph data an-
alytics. The top ten of the most recent Graph500 list are all
supercomputers designed for general problems [1] similar to
the way we use it. However, while the focus of Graph500 is
on one benchmark application (BFS) with a synthetic graph
(R-MAT). This has lead to renewed interest in the race for
the achievable GTEPS and algorithms for BFS/R-MAT re-
lated problems [3,9,11-13,29]. All these work focused on
scaling the Graph500 benchmark or similar algorithm on
various synthetic graphs. They vary on the data layout
(1D vs 2D), handling of high degree vertices, communication
layer and the BFS algorithm used (direction-optimizing vs
traditional). We note that before this paper, these works
corresponded to the analysis of some of the largest created
synthetic graphs. In contrast, we analyze a real world graph
of similar size and with richer analytics here.

Orthogonal to the above efforts that are focused on using
supercomputers for Graph 500, there are a number of graph
frameworks for graph analytics in distributed memory sys-
tems such as Giraph, PowerGraph, GraphLab, GraphX, So-
ciaLite and FlashGraph [14, 18,19, 22,23, 35,42]. Satish et
al. [34] compare a subset of these frameworks along with
other codes such as CombBLAS [8] and Galois [30]. They
also compare these frameworks to their native code which
is hand-optimized and demonstrate that the performance
gap between native code and using a framework is huge: 2-
30x in most cases but as high as 300x in some cases. The
largest real world graph in their study is the Twitter graph
with 61M vertices and 1.4B edges. For this particular graph,
the hand optimized version takes ~3 seconds for an itera-
tion of the PageRank and ~5 seconds for the BFS using
four nodes. To provide some context, our implementation
takes 45 and 70 seconds for an iteration of PageRank and
BF'S, respectively, using 256 nodes for the webscale graph,
which is roughly 100x larger in term of the number of edges.
Note that the frameworks mentioned above differ in differ-
ent ways. CombBLAS [8] uses MPI as the programming
paradigm and treats graphs as sparse matrices with 2D lay-
outs (or edge-based distribution). Giraph [14] is based on
Hadoop, Socialite [35] is built using Datalog and Galois [30]
is built for shared-memory systems. We point out just the
native implementation’s performance as it has been shown
that the native implementation performs better [34]. Flash-
graph [42] is one framework that is not included in that
study but has interesting similarities to our work. It uses
(relatively) fast external memory to store large graphs and



“out-of-core’-like analytic algorithms. They have been able
to run the large web-crawl used in this paper in a semi-
external memory mode in order to calculate some of the an-
alytics in Section 3. In later work, they also filter this graph
and use the filtered graph for community detection on fewer
active vertices [40]. In contrast, we use the entire graph
in our analytic experiments, including the community de-
tection algorithms, and we store the graph in-memory. Fur-
thermore, we compute analytics like the approximate K-core
decomposition that were not computed using Flashgraph.

In addition to the above frameworks, there are a number
of different frameworks for shared-memory systems. Ligra,
Galois, STINGER are all multithreaded frameworks [15, 30,
36] for graph analytics with different algorithmic capabili-
ties. In the past, we have implemented some of the ana-
lytics described here in shared-memory architectures, such
as the connected-components algorithms, and showed bet-
ter performance than frameworks such as ligra [38]. More
recently, we have also showed that the portable implementa-
tion of these algorithms are also possible in GPUs and Xeon
Phis [39]. We could use a lot of these ideas on the shared
memory portion of this work. However, pure shared mem-
ory analytics cannot handle massive graphs such as the one
we are primarily targeting in this work.

Next we describe related work to some of the analytics we
used in Section 3. The problem of PageRank is a well-
studied one. There are implementations in different frame-
works and comparisons of different frameworks are also avail-
able [34]. Other than the frameworks, it has been shown
algorithms such as PageRank depend heavily on the data
layout [6,41]. However, computing these layouts are much
more expensive than the combined cost of the analytics here
and are left to future work.

The strongly connected components algorithm is one of the
toughest algorithm to effectively parallelize. The two tradi-

tional parallel algorithms are what is called forward-backward [17]

and color-propagation [2]. In the past work, we have demon-
strated a combination of these two approaches is the best
approach for real world graphs [38,39]. The algorithm used
in this work generalizes this approach to distributed memory
(Section 3).

Scalable algorithms for community detection have generated
a lot of interest in the recent years. We have implemented
community detection algorithms such as label propagation
in the shared memory architectures and used it for parti-
tioning very large graphs [37]. The label propagation al-
gorithm described in Section 3 is a generalization of this
approach to distributed memory. Que et al. [31] achieve
nearly one GTEPS with 4K nodes (with RMAT graphs) in
their implementation of the Louvain algorithm while using
a custom communication runtime. The largest real world
graph they used has 39M vertices and 936M edges. There
are also recent studies in community detection algorithms
using shared memory systems [4,24,33]. The largest graphs
in Lu et al. [24] are limited to 674M edges which takes ~200
seconds using 32 threads. Reidy et al. [33] demonstrated
performance of 261M edge graph on Cray XMT2 (285 secs)
and Intel Xeon server (33s). In comparison to previous work
our target graph is nearly three orders of magnitude larger in

number of edges and our label propagation implementation
takes ~1400 seconds (or 1.78 GTEPS).

There is also work on all these architectures with other ana-
lytics of interest. Chakaravarthy et al. [10] focuses on single
source shortest path algorithms, especially focusing on the
scalability of the approach while handling high-degree ver-
tices. They demonstrated 40 GTEPS on 1024 nodes with a
graph of 63M vertices and 1.8B edges.

6. CONCLUSION

In this paper, we focused on an in-memory, end-to-end anal-
ysis of the largest publicly available web crawl graph. We
were able to run a multitude of analytics and report their
results for the first time on some of the analytics, such as
PageRank on the page level graph and label propagation-
based community identification. We were also able to match
the results some of the other analytics with the previous re-
sults (from external memory frameworks). We will make the
entire results of community structure and connected com-
ponents publicly available to the community to best under-
stand this massive dataset.

We further narrowed our focus on end-to-end analytics with
the fewest available nodes that are required to hold the
graph in memory to demonstrate the relevance of small clus-
ters or few supercomputer nodes on webscale data analytics.
We believe we have successfully demonstrated that, with a
turnaround time in the order of a few minutes with 256
compute nodes. This work lays the foundation for future re-
search in three different direction. A performance portable
compression method will allow us to run the analytics in-
memory with a much smaller footprint. We could also scale
each step of this end-to-end solution using algorithmic tech-
niques for each one of the analytics, as mentioned in Sec-
tion 5, to further improve upon the reported baseline per-
formance. We could also utilize the technologies such cus-
tom communication runtimes and algorithmic ideas from the
Graph 500 improvements to gain another constant factor
improvement. Beyond all that, the key message is one can
read, construct and analyze a web-scale graph for multiple
meaningful analytics with few compute nodes in the time it
takes to get a pizza delivered!
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