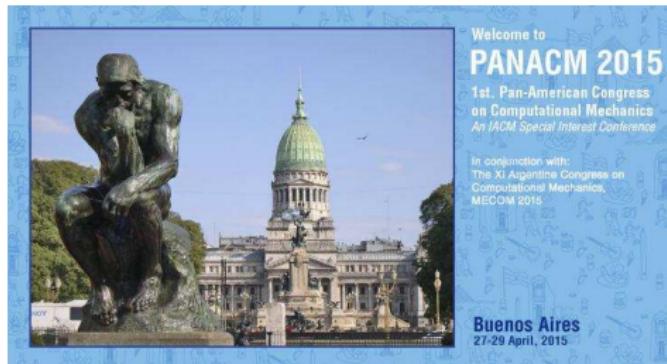


Ordinary Isotropic Peridynamic Models Position Aware Viscoelasticity SAND2015-3078C SAND2015-???? PE

John Mitchell

Center for Computing Research

Sandia National Laboratories, Albuquerque, New Mexico



Sandia National Laboratories is a multi-program laboratory managed and operated, by Sandia Corporation a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL8500.

Ordinary peridynamic models: surface effects

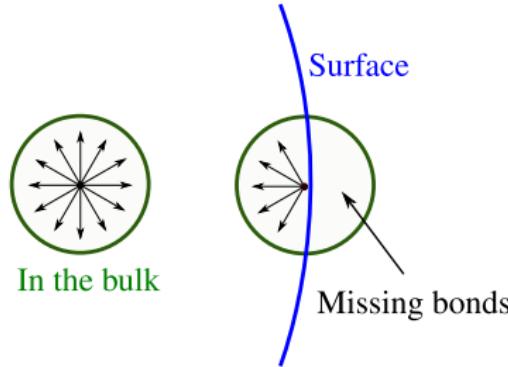
Position Aware models correct for this

Causes relate to material points near surface

↳ Mathematical models assume all points are in the *bulk*

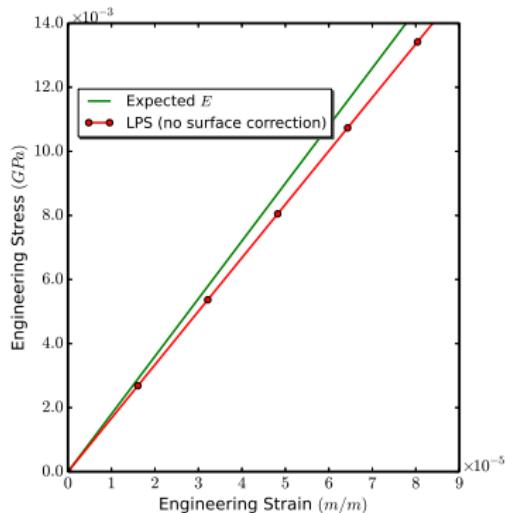
- * Points near surface are *missing bonds*
- * *Missing bonds* imply and induce incorrect material properties
- * **In the bulk mathematical models are consistent**

↳ Kinematic defects at the surface



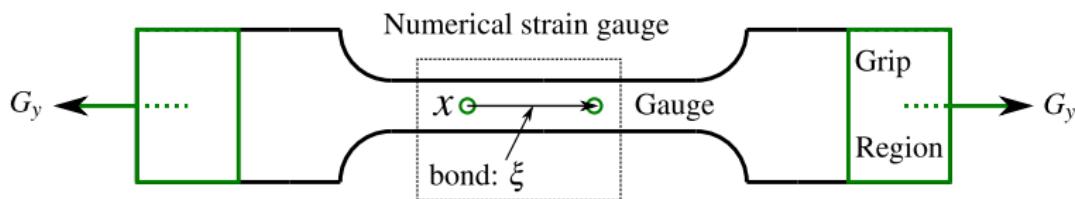
Surface effects in ordinary peridynamic models

Tension test: ordinary isotropic elastic model (LPS)



The following related aspects contribute to mismatch.

- Geometric surface effects
- Nonlocal model kinematics
- Nonlocal model properties
- Discretization error

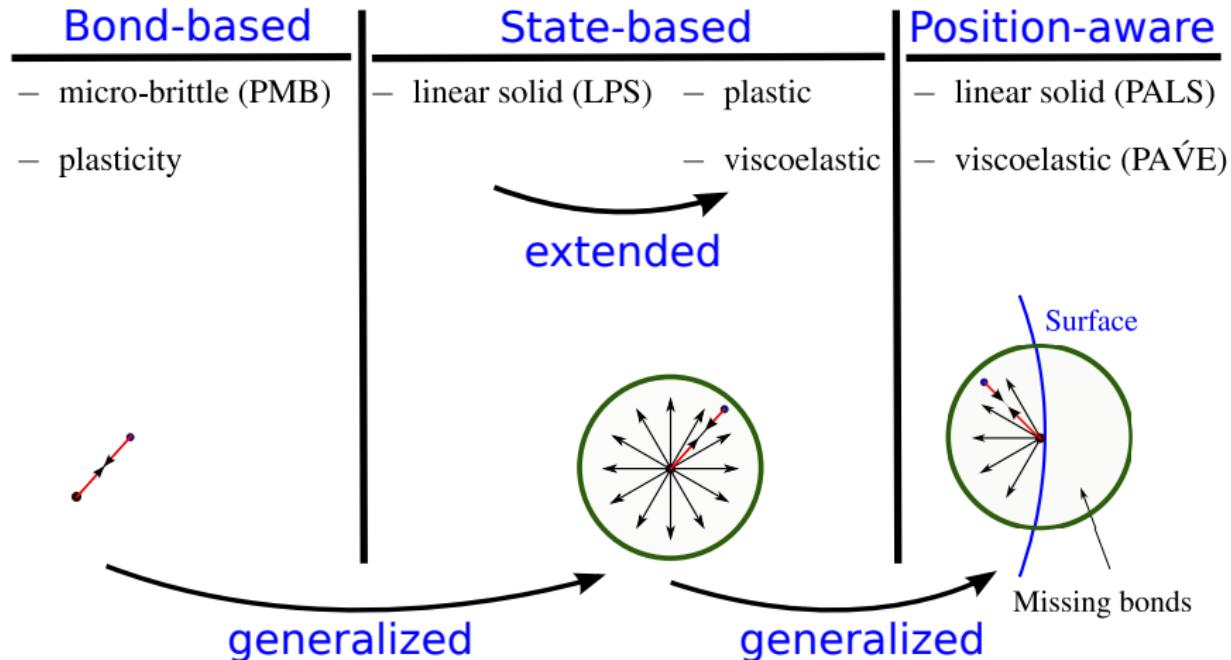


Position Aware Models

Outline

- Review the practical issue/problem of surface effects
- Introduce *Position Aware* models
- Selecting/creating/evaluating influence functions (briefly)
- Demonstration calculations
 - * Position Aware Linear Solid (PALS)
 - * Position Aware Viscoelastic (PAVE)

Maturation & extension of material models



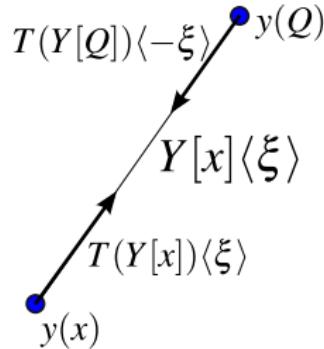
Ordinary material models

Silling, Epton, Weckner, Xu, and Askari, 2007

Integral equation for internal force density f of particle x

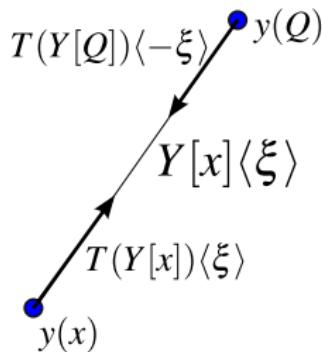
$$\begin{aligned}\rho(x)\ddot{u}(x,t) &= f(x, u(x,t), t) + b(x, t) \\ f(x, u(x,t), t) &= \int_H \{T(Y)[x]\langle\xi\rangle - T(Y)[Q]\langle-\xi\rangle\} dV_Q\end{aligned}$$

Ordinary



Ordinary material models

Silling, Epton, Weckner, Xu, and Askari, 2007



The vector force state T is given as:

$$T(Y) = t(Y)M(Y) \quad \text{where} \quad M(Y) = \frac{Y}{|Y|}$$

Scalar force state $t(Y)$ defines *ordinary* material model. More later.

Kinematic peridynamic states: \underline{e} , θ , $\underline{\varepsilon}$

Scalar extension state: \underline{e}

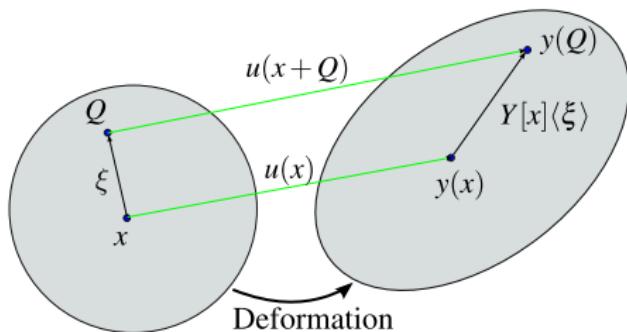
$$\underline{e}\langle\xi\rangle = |Y| - |\xi|$$

Dilatation: θ

$$\begin{aligned}\theta &= (\underline{\omega}|\xi|) \bullet \underline{e} \\ &= \int_H \underline{\omega}|\xi| \underline{e}\langle\xi\rangle dV_Q\end{aligned}$$

Deviatoric extension state: $\underline{\varepsilon}$

$$\underline{\varepsilon} = \underline{e} - \frac{\theta|\xi|}{3}$$



Position Aware Linear Solid (PALS)

Mitchell, Silling, and Littlewood, 2015

Scalar force state obtained from elastic energy density functional

$$W(\theta, \underline{\varepsilon}) = \frac{\kappa\theta^2}{2} + \mu(\underline{\sigma}\underline{\varepsilon}) \bullet \underline{\varepsilon}$$

Position Aware Linear Solid (PALS)

Mitchell, Silling, and Littlewood, 2015

Scalar force state obtained from elastic energy density functional

$$W(\theta, \underline{\varepsilon}) = \frac{\kappa\theta^2}{2} + \mu(\underline{\sigma}\underline{\varepsilon}) \bullet \underline{\varepsilon}$$

Scalar force state

$$\mathbf{t}(Y) = p\underline{\omega}x + 2\mu\underline{\sigma}\underline{\varepsilon}$$

Sandia National Laboratories

John Mitchell

Position Aware Linear Solid (PALS)

Mitchell, Silling, and Littlewood, 2015

Scalar force state obtained from elastic energy density functional

$$W(\theta, \underline{\varepsilon}) = \frac{\kappa\theta^2}{2} + \mu(\underline{\sigma}\underline{\varepsilon}) \bullet \underline{\varepsilon}$$

Scalar force state

$$t(Y) = p\underline{\omega}x + 2\mu\underline{\sigma}\underline{\varepsilon}$$

Scalar force state with deviatoric *in-elastic* deformations $\underline{\varepsilon}^p$

$$t(Y) = p\underline{\omega}x + 2\mu\underline{\sigma}\underbrace{(\underline{\varepsilon} - \underline{\varepsilon}^p)}_{elastic}$$

Position Aware Viscoelastic(PA^{VE})

Mitchell, 2015

Scalar force state obtained from elastic energy density functional

$$W(\theta, \underline{\varepsilon}) = \frac{\kappa\theta^2}{2} + \mu_\infty(\underline{\sigma}\underline{\varepsilon}) \bullet \underline{\varepsilon} + \sum_i \mu_i(\underline{\varepsilon} - \underline{\varepsilon}^i) \underline{\sigma} \bullet (\underline{\varepsilon} - \underline{\varepsilon}^i)$$

Position Aware Viscoelastic(PA^{VE})

Mitchell, 2015

Scalar force state obtained from elastic energy density functional

$$W(\theta, \underline{\varepsilon}) = \frac{\kappa\theta^2}{2} + \mu_\infty(\underline{\sigma}\underline{\varepsilon}) \bullet \underline{\varepsilon} + \sum_i \mu_i(\underline{\varepsilon} - \underline{\varepsilon}^i) \underline{\sigma} \bullet (\underline{\varepsilon} - \underline{\varepsilon}^i)$$

Scalar force state

$$\textcolor{blue}{t(Y)} = p\underline{\omega x} + 2\mu_\infty\underline{\sigma}\underline{\varepsilon} + 2\sum_i \mu_i\underline{\sigma}(\underline{\varepsilon} - \underline{\varepsilon}^i)$$

Position Aware Viscoelastic(PAVE)

Mitchell, 2015

Scalar force state obtained from elastic energy density functional

$$W(\theta, \underline{\varepsilon}) = \frac{\kappa\theta^2}{2} + \mu_\infty(\underline{\sigma}\underline{\varepsilon}) \bullet \underline{\varepsilon} + \sum_i \mu_i(\underline{\varepsilon} - \underline{\varepsilon}^i) \underline{\sigma} \bullet (\underline{\varepsilon} - \underline{\varepsilon}^i)$$

Scalar force state

$$\underline{t}(\underline{Y}) = p\underline{\omega x} + 2\mu_\infty\underline{\sigma}\underline{\varepsilon} + 2\sum_i \mu_i\underline{\sigma}(\underline{\varepsilon} - \underline{\varepsilon}^i)$$

Governing equation for $\underline{\varepsilon}^i$

$$\dot{\underline{\varepsilon}}^i + \frac{1}{\tau_i} \underline{\varepsilon}^i = \underline{\varepsilon}(t)$$

PALS (position aware linear solid) model

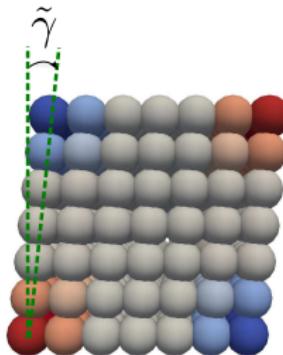
- ↪ $\underline{\omega}$, $\underline{\sigma}$ are computed for each point in mesh
- ↪ Initial influence functions $\underline{\omega}^0$, $\underline{\sigma}^0$ given
- ↪ Select $\underline{\omega}$, $\underline{\sigma}$ as best approximations to $\underline{\omega}^0$, $\underline{\sigma}^0$ subject to kinematic constraints: *matching deformations* $\underline{e}^k \langle \xi \rangle = \frac{\xi \cdot H^k \xi}{|\xi|}$

$$I(\underline{\omega}, \lambda) = \frac{1}{2}(\underline{\omega} - \underline{\omega}^0) \bullet (\underline{\omega} - \underline{\omega}^0) - \sum_{k=1}^K \lambda^k \left[(\underline{\omega} \underline{x}) \bullet \underline{e}^k - \text{Tr } \mathbf{H}^k \right]$$

$$N(\underline{\sigma}, \tau) = \frac{1}{2}(\underline{\sigma} - \underline{\sigma}^0) \bullet (\underline{\sigma} - \underline{\sigma}^0) - \sum_{k=1}^K \tau^k \left[(\underline{\sigma} \underline{\varepsilon}^k) \bullet \underline{\varepsilon}^k - \gamma^k \right]$$

Model problem: simple shear

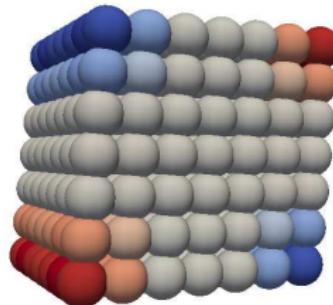
PALS versus LPS: expectation $dilatation \theta = 0$



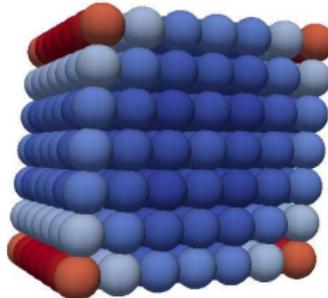
Simple shear

$$u = \tilde{\gamma}y; \quad v = 0; \quad w = 0; \quad \tilde{\gamma} = 1.0 \times 10^{-6}$$

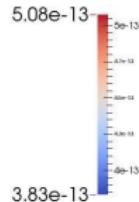
Dilatation



LPS



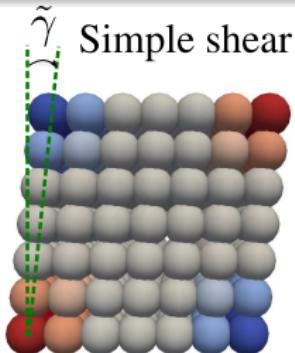
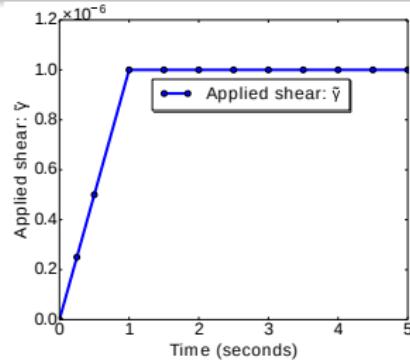
PALS



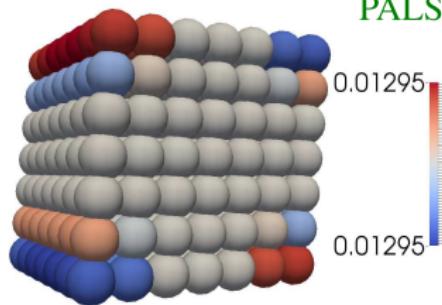
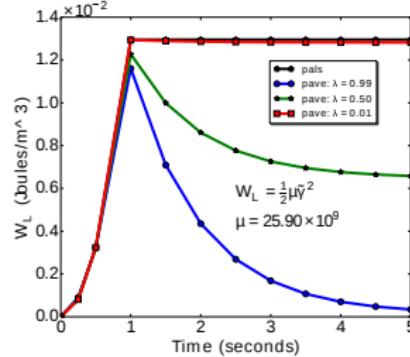
Sandia National Laboratories

John Mitchell

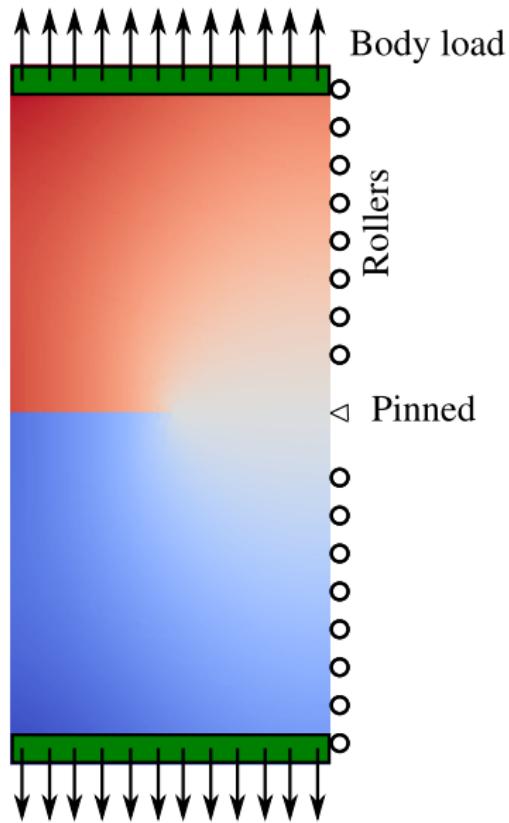
Model problem: simple shear PALS and PAVE



Stored elastic energy density



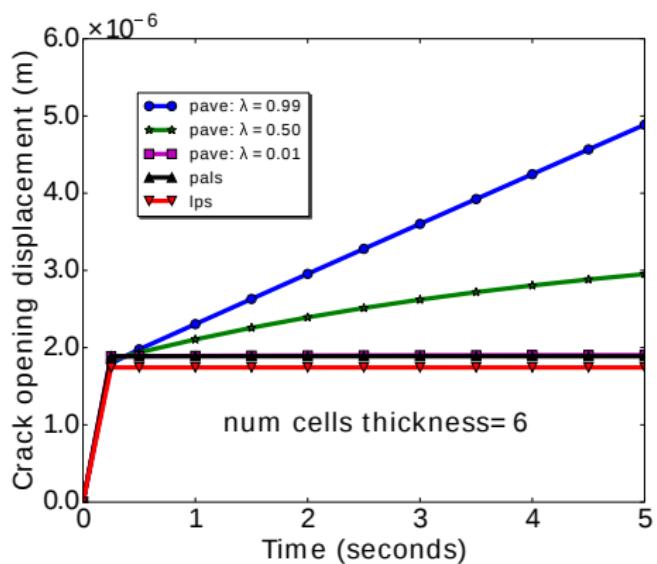
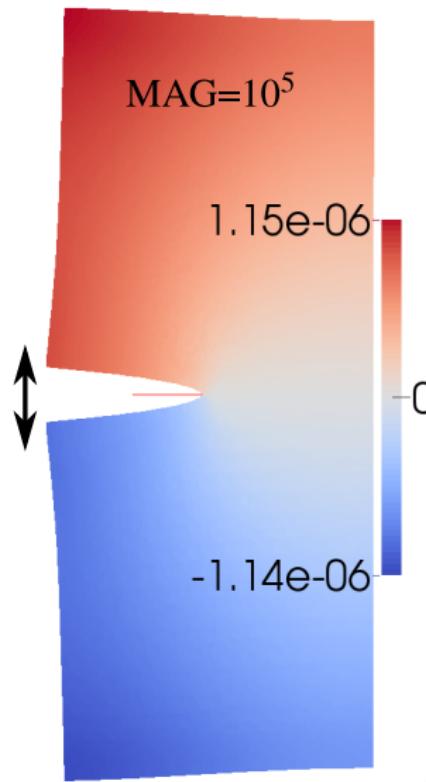
Crack Opening Displacement: Schematic



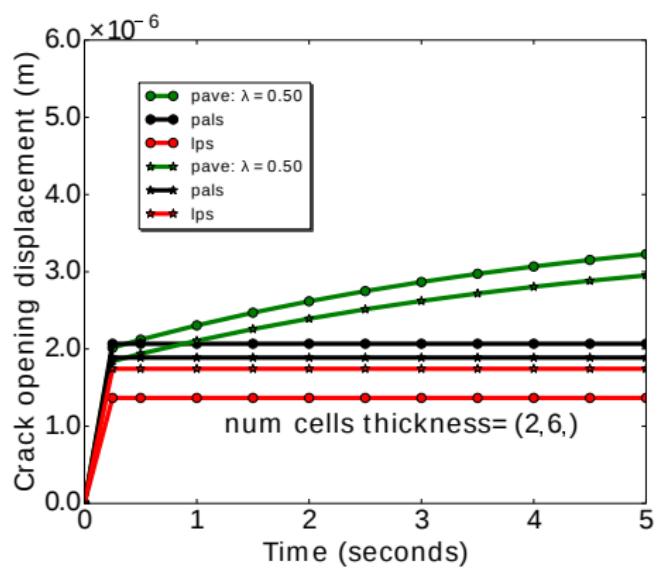
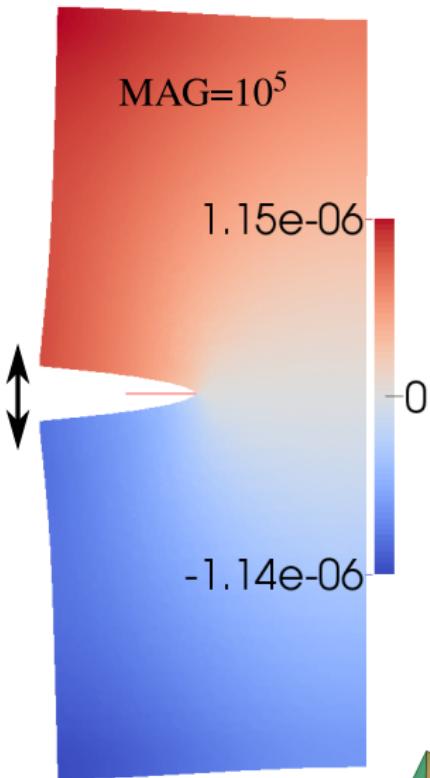
Sandia National Laboratories

John Mitchell

Crack Opening Displacement Model Convergence

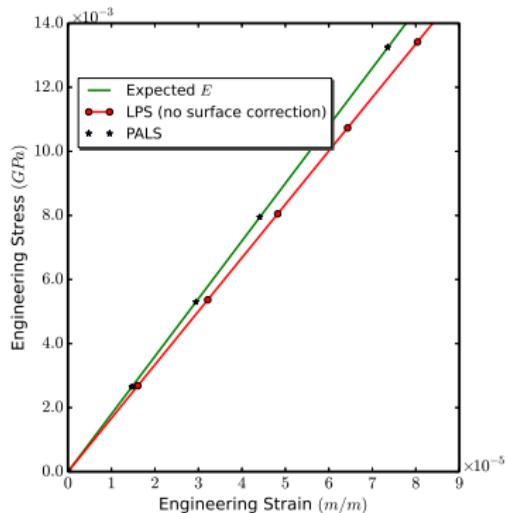


Crack Opening Displacement Mesh Convergence



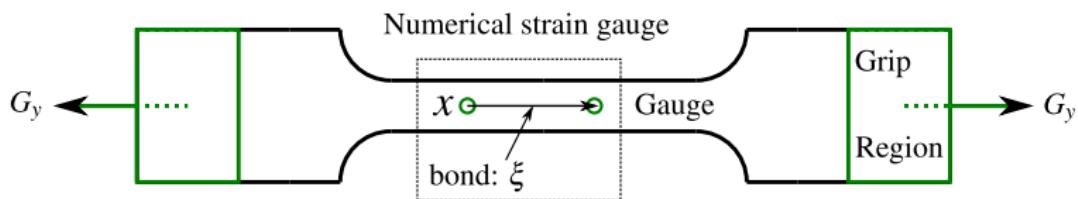
Recover Young's modulus E

Tensile test



PALS model: sharply reduces surface effects

PALS model: significant step toward making peridynamics accurate as a general-purpose simulation capability



Conclusions

- Reviewed the practical issue/problem of surface effects
- Introduced novel *Position Aware Linear Solid* model (PALS)
 - * Addresses inaccuracies (LPS) due to missing bonds near surface
- Introduced novel *Position Aware Viscoelastic* model (PA^{VE})
- Demonstration calculations of *new* PA^{VE} model
- Demonstration calculations show efficacy of PALS

THANK YOU
Questions?

