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1. Superconductors
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What is superconductivity? ) jeums

Two characteristic properties

1. Zero electrical resistance 2. Meissner effect
(expulsion of magnetic fields)
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What is superconductivity? rh) i,

BCS picture:

* Superconductivity is a macroscopic quantum condensate of Cooper
pairs
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* Superconducting wavefunction
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Element Superconductors rh) i,
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Evolution of superconducto
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Elements and
conventional SCs

High Tc cuprates

Iron-based SCs

Organic SCs



My research on cuprates rh) i,

In La,_Sr,CuO,

1. Change Sr doping. Charge glass coexists
and competes with SCFs at low T.
Emergence of SC. (Ref. 1,2)
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2. Tuning H field. Two quantum phase
transitions in H-tuned superconductor-
insulator transition (SIT). Two steps. (Ref. 3)

3. Tuning T in zero field. Beresinskii-
Kosterlitz-Thouless transition. (Ref. 4)
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2. X. Shi, et al., Nature Materials, 12, 47 (2013) o
3. X. Shi, et al., Nature Physics, 10, 437 (2014) NN v val
4. X. Shi, et al., in preparation (2015) glass SCOL




My research on pnictides

In Ba(FeAs), samples

1. Doping effect. Transport studies on
Ba(FeCo),As,, Ba(FeNi),As,, (BaK)Fe,As,.

2. New and detailed phase diagram for vortex
dynamics.

3. Magnetization studies. Ac loss.

Publications:

1. M. Nikolo, et al., J. Supercond. Nov. Mag. 27, 1983
(2014)

2. M. Nikolo, et al., J. Supercond. Nov. Mag. 27, 2231
(2014)

3. M. Nikolo, et al., J. Low Temp. Phys. 178, 188 (2015)
4. M. Nikolo, et al., J. Low Temp. Phys. 178, 345 (2015)
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2. Topological matters rh) i,

Nobel Prize for Topological Matters
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Integer quantum Hall effect D.C. Teui

fractional quantum Hall effect



Integer quantum Hall effect
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M. Paalanen, D. Tsui, A. Gossard, PRB 25, 5566 (1982)
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Low temperature observations in 2DEG:

 |QHE is robust

* Insulating bulk and
conductive edge



From IQHE to QSHE

’
Magnetic field—| &

Quantum Hall system Quantum spin Hall system

N. Nagaosa, Science, 318, 758 (2007)
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Strong spin-orbital
interaction-> lock of
momentum and spin

QSHE=two copies of
IQHE

No need for external
field

QSHIl isa 2D TI:
insulating bulk and
conductive edge



Topological insulator in 2D h) i,

HgTe/HgCdTe quantum well InAs/GaSb quantum well bilayer
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Band structure of InAs/GaSh ) i,
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Theoretic calculation:
inverted InAs/GaSb is a 2D topological insulator

C. Liu et al., Phys. Rev. Lett. 100, 236601 (2008)



InAs/GaSb ) e

8-band k.p calculation (fix GaSb quantum well width=5nm)
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d>10 nm (InAs) d=10 nm (InAs) d<10 nm (InAs)

K. Chang, unpublished
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3. Hybridizing SC and Ti rh) i,

Importance of a S-N interface

1. Proximity effect. Leak of superconductivity into normal metal

2. Andreev reflection. Electron-hole conversion

superconductor

insulator superconductor

specular reflection Andreev retro-reflection specular Andreev reflection

C. W. J. Beenakker, Phys. Rev. Lett. 97, 067007 (2006)
C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008)



Experiment: S-N-S junction rh) i,

Ta-InAs/GaSb-Ta junction
* Taisas-wave SC

InAs (2 nm)

Clean interface
AISb (50 nm)

InAs (10nm) * S-N-S junction
AISb (50 nm)

Substrate &
buffer layers

Critical InAs QW width: d=10 nm

* LARGE Junction: W=12 ym L= 2 pm
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V(mV)

Observation of supercurrent )
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* |~3.5uA
 Random oscillations (vanish quickly as H field applied)
* Multiple peaks



Magnetic Field dependence rh) i,
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e 3 pairs of peaks => 3 energy scales
* Need pyH>5.7 T to fully recovery the normal state
* BCS fit for AA’ pair A (uV)=78.3 (1-H/161 mT)/2



Gap evolution | rh) i,
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* Different field dependence indicates three different superconductors
* Field enhanced superconductivity



T dependence

V (mV)

25

2.0

15

1.0

05

0.0

-0.5

Tc: 1.16 K

Small hysteresis
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Proximity fit
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Quantum interference rh)
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* H.=1T>>0.082T * Fraunhofer-like pattern
(bulk Hc) 300 ®,/lobe !



Comparing to a short junctio rh) i,

2 60pm

-8 -4
Bz (mT) X (um)

Experiments: (short junction, inverted region)
Detecting the edge state superconductivity

Pribiag et al., ArXiv:1408.1701
400 nm vs. 2000 to 4000 nm



Giant induced SC
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Sample

Superconductor

Junction

Induced sc

T
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This research
Arxiv: 1410.7342

d=d,
(critical, Dirac cone)

Ta

Long
(2>>0.08 um)

Edge+bulk
1.16 K
350

1

Pribiag et al.,
ArXiv:1408.1701

d>d_
(inverted)

Al

Short
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0.13 K (?)
15
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Summary of this experiment rh) i,

Sample:
L(C) P
1501  Critical QW width: Dirac-cone
> |
El ¢ N
w | Y, * Long junction
100.- 1,2 L (2mm)>>§(78 nm)
Ly T - Clean sample
(nm-) (822 nm)>>£(78 nm)
Ta (S) Critical width Ta (S) Observations:
InAs/GaSb (QSH)

e Giant proximity-induced SC
n=1.8x10" cm2 T=1.16K, H=1T, 1 =3.5 pA
p=1.17x10° cm?/Vs

EFr =05 meVor 56 K * Both edge and bulk SCs
More details: * H-enhanced superconductivity
Shi et al., Arxiv: 1410.7342




Sandia
m National
Laboratories

1. Superconductors

2. Topological matters
3. Hybridizing superconductors and topological matters

4. Outlook




A big family of ... rh) i,

Topological Matters

1D edge Time reversal InAs/GaSb,
HgTe/HgCdTe
Tl 2D surface | Time reversal Bi,Se;, Sb,Te,, ...
3D
TCl 2D surface | Crystal symmetry SnTe, (PbSn)Te, ...
TKI 2D surface | Wavefunction parity ~ SmBg, Ce;Bi,Pt,, ...

New topological systems .... \
New state of matters

QSHI = Quantum Spin Hall Insulator
Tl = Topological Insulator

TCI = Topological Crystalline Insulator
TKI = Topological Kondo Insulator

Novel phenomena emerge as superconductors are in proximity of
topological matters



A big family of ... rh) i,

Superconductors

Varieties of SC gap symmetry

s-wave p-wave p-wave d-wave S+- others...
BCS (py) (P +ipy) cuprates pnictides



We can expect | rh) i,

Studies on hybridized topological matters and superconductors:

* Properties about topological matters

* Novel superconductivity in topological state

* Almost unlimited combination of structures

* New interactions can be introduced. eg. magnetism
* Practical devices and applications

* More...



